| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508 |
- /*
- * SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- #include <string.h>
- #include <stdatomic.h>
- #include <sys/queue.h>
- #include <sys/param.h>
- #include "sdkconfig.h"
- #include "freertos/FreeRTOS.h"
- #include "soc/soc_caps.h"
- #include "esp_log.h"
- #include "esp_check.h"
- #include "esp_attr.h"
- #include "esp_err.h"
- #include "esp_private/gdma.h"
- #include "esp_memory_utils.h"
- #include "esp_async_memcpy.h"
- #include "esp_async_memcpy_priv.h"
- #include "hal/dma_types.h"
- #include "hal/cache_hal.h"
- #include "hal/cache_ll.h"
- #include "rom/cache.h"
- static const char *TAG = "async_mcp.gdma";
- #define MCP_NEEDS_INVALIDATE_DST_CACHE CONFIG_IDF_TARGET_ESP32P4
- #define MCP_NEEDS_WRITE_BACK_SRC_CACHE CONFIG_IDF_TARGET_ESP32P4
- #define MCP_NEEDS_WRITE_BACK_DESC_CACHE CONFIG_IDF_TARGET_ESP32P4
- #if SOC_AXI_GDMA_SUPPORTED
- #define MCP_DMA_DESC_ALIGN 64
- typedef dma_descriptor_align8_t mcp_dma_descriptor_t;
- #elif SOC_AHB_GDMA_SUPPORTED
- #define MCP_DMA_DESC_ALIGN 32
- typedef dma_descriptor_align4_t mcp_dma_descriptor_t;
- #else
- #error "Unsupported GDMA type"
- #endif
- /// @brief Transaction object for async memcpy
- /// @note - GDMA requires the DMA descriptors to be 4 or 8 bytes aligned
- /// @note - The DMA descriptor link list is allocated dynamically from DMA-able memory
- /// @note - Because of the eof_node, the transaction object should also be allocated from DMA-able memory
- typedef struct async_memcpy_transaction_t {
- mcp_dma_descriptor_t eof_node; // this is the DMA node which act as the EOF descriptor (RX path only)
- mcp_dma_descriptor_t *tx_desc_link; // descriptor link list, the length of the link is determined by the copy buffer size
- mcp_dma_descriptor_t *rx_desc_link; // descriptor link list, the length of the link is determined by the copy buffer size
- intptr_t tx_start_desc_addr; // TX start descriptor address
- intptr_t rx_start_desc_addr; // RX start descriptor address
- intptr_t memcpy_dst_addr; // memcpy destination address
- size_t memcpy_size; // memcpy size
- async_memcpy_isr_cb_t cb; // user callback
- void *cb_args; // user callback args
- STAILQ_ENTRY(async_memcpy_transaction_t) idle_queue_entry; // Entry for the idle queue
- STAILQ_ENTRY(async_memcpy_transaction_t) ready_queue_entry; // Entry for the ready queue
- } async_memcpy_transaction_t;
- /// @brief Context of async memcpy driver
- /// @note - It saves two queues, one for idle transaction objects, one for ready transaction objects
- /// @note - Transaction objects are allocated from DMA-able memory
- /// @note - Number of transaction objects are determined by the backlog parameter
- typedef struct {
- async_memcpy_context_t parent; // Parent IO interface
- size_t sram_trans_align; // DMA transfer alignment (both in size and address) for SRAM memory
- size_t psram_trans_align; // DMA transfer alignment (both in size and address) for PSRAM memory
- size_t max_single_dma_buffer; // max DMA buffer size by a single descriptor
- int gdma_bus_id; // GDMA bus id (AHB, AXI, etc.)
- gdma_channel_handle_t tx_channel; // GDMA TX channel handle
- gdma_channel_handle_t rx_channel; // GDMA RX channel handle
- portMUX_TYPE spin_lock; // spin lock to avoid threads and isr from accessing the same resource simultaneously
- _Atomic async_memcpy_fsm_t fsm; // driver state machine, changing state should be atomic
- async_memcpy_transaction_t *transaction_pool; // transaction object pool
- STAILQ_HEAD(, async_memcpy_transaction_t) idle_queue_head; // Head of the idle queue
- STAILQ_HEAD(, async_memcpy_transaction_t) ready_queue_head; // Head of the ready queue
- } async_memcpy_gdma_context_t;
- static bool mcp_gdma_rx_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
- static esp_err_t mcp_gdma_del(async_memcpy_context_t *ctx);
- static esp_err_t mcp_gdma_memcpy(async_memcpy_context_t *ctx, void *dst, void *src, size_t n, async_memcpy_isr_cb_t cb_isr, void *cb_args);
- #if SOC_GDMA_SUPPORT_ETM
- static esp_err_t mcp_new_etm_event(async_memcpy_context_t *ctx, async_memcpy_etm_event_t event_type, esp_etm_event_handle_t *out_event);
- #endif // SOC_GDMA_SUPPORT_ETM
- static esp_err_t mcp_gdma_destroy(async_memcpy_gdma_context_t *mcp_gdma)
- {
- if (mcp_gdma->transaction_pool) {
- free(mcp_gdma->transaction_pool);
- }
- if (mcp_gdma->tx_channel) {
- gdma_disconnect(mcp_gdma->tx_channel);
- gdma_del_channel(mcp_gdma->tx_channel);
- }
- if (mcp_gdma->rx_channel) {
- gdma_disconnect(mcp_gdma->rx_channel);
- gdma_del_channel(mcp_gdma->rx_channel);
- }
- free(mcp_gdma);
- return ESP_OK;
- }
- static esp_err_t esp_async_memcpy_install_gdma_template(const async_memcpy_config_t *config, async_memcpy_handle_t *mcp,
- esp_err_t (*new_channel)(const gdma_channel_alloc_config_t *, gdma_channel_handle_t *), int gdma_bus_id)
- {
- esp_err_t ret = ESP_OK;
- async_memcpy_gdma_context_t *mcp_gdma = NULL;
- ESP_RETURN_ON_FALSE(config && mcp, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
- // allocate memory of driver context from internal memory
- mcp_gdma = heap_caps_calloc(1, sizeof(async_memcpy_gdma_context_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
- ESP_GOTO_ON_FALSE(mcp_gdma, ESP_ERR_NO_MEM, err, TAG, "no mem for driver context");
- uint32_t trans_queue_len = config->backlog ? config->backlog : DEFAULT_TRANSACTION_QUEUE_LENGTH;
- // allocate memory for transaction pool
- mcp_gdma->transaction_pool = heap_caps_aligned_calloc(MCP_DMA_DESC_ALIGN, trans_queue_len, sizeof(async_memcpy_transaction_t),
- MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT | MALLOC_CAP_DMA);
- ESP_GOTO_ON_FALSE(mcp_gdma->transaction_pool, ESP_ERR_NO_MEM, err, TAG, "no mem for transaction pool");
- // create TX channel and RX channel, they should reside in the same DMA pair
- gdma_channel_alloc_config_t tx_alloc_config = {
- .flags.reserve_sibling = 1,
- .direction = GDMA_CHANNEL_DIRECTION_TX,
- };
- ESP_GOTO_ON_ERROR(new_channel(&tx_alloc_config, &mcp_gdma->tx_channel), err, TAG, "failed to create GDMA TX channel");
- gdma_channel_alloc_config_t rx_alloc_config = {
- .direction = GDMA_CHANNEL_DIRECTION_RX,
- .sibling_chan = mcp_gdma->tx_channel,
- };
- ESP_GOTO_ON_ERROR(new_channel(&rx_alloc_config, &mcp_gdma->rx_channel), err, TAG, "failed to create GDMA RX channel");
- // initialize GDMA channels
- gdma_trigger_t m2m_trigger = GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_M2M, 0);
- // get a free DMA trigger ID for memory copy
- uint32_t free_m2m_id_mask = 0;
- gdma_get_free_m2m_trig_id_mask(mcp_gdma->tx_channel, &free_m2m_id_mask);
- m2m_trigger.instance_id = __builtin_ctz(free_m2m_id_mask);
- gdma_connect(mcp_gdma->rx_channel, m2m_trigger);
- gdma_connect(mcp_gdma->tx_channel, m2m_trigger);
- gdma_transfer_ability_t transfer_ability = {
- .sram_trans_align = config->sram_trans_align,
- .psram_trans_align = config->psram_trans_align,
- };
- ESP_GOTO_ON_ERROR(gdma_set_transfer_ability(mcp_gdma->tx_channel, &transfer_ability), err, TAG, "set tx trans ability failed");
- ESP_GOTO_ON_ERROR(gdma_set_transfer_ability(mcp_gdma->rx_channel, &transfer_ability), err, TAG, "set rx trans ability failed");
- // register rx eof callback
- gdma_rx_event_callbacks_t cbs = {
- .on_recv_eof = mcp_gdma_rx_eof_callback,
- };
- ESP_GOTO_ON_ERROR(gdma_register_rx_event_callbacks(mcp_gdma->rx_channel, &cbs, mcp_gdma), err, TAG, "failed to register RX EOF callback");
- // initialize transaction queue
- STAILQ_INIT(&mcp_gdma->idle_queue_head);
- STAILQ_INIT(&mcp_gdma->ready_queue_head);
- // pick transactions from the pool and insert to the idle queue
- for (int i = 0; i < trans_queue_len; i++) {
- STAILQ_INSERT_TAIL(&mcp_gdma->idle_queue_head, &mcp_gdma->transaction_pool[i], idle_queue_entry);
- }
- // initialize other members
- portMUX_INITIALIZE(&mcp_gdma->spin_lock);
- atomic_init(&mcp_gdma->fsm, MCP_FSM_IDLE);
- mcp_gdma->gdma_bus_id = gdma_bus_id;
- uint32_t psram_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_DATA);
- uint32_t sram_cache_line_size = 0;
- #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
- sram_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA);
- #endif
- // if the psram_trans_align is configured to zero, we should fall back to use the data cache line size
- size_t psram_trans_align = MAX(psram_cache_line_size, config->psram_trans_align);
- size_t sram_trans_align = MAX(sram_cache_line_size, config->sram_trans_align);
- size_t trans_align = MAX(sram_trans_align, psram_trans_align);
- mcp_gdma->max_single_dma_buffer = ALIGN_DOWN(DMA_DESCRIPTOR_BUFFER_MAX_SIZE, trans_align);
- mcp_gdma->psram_trans_align = psram_trans_align;
- mcp_gdma->sram_trans_align = sram_trans_align;
- mcp_gdma->parent.del = mcp_gdma_del;
- mcp_gdma->parent.memcpy = mcp_gdma_memcpy;
- #if SOC_GDMA_SUPPORT_ETM
- mcp_gdma->parent.new_etm_event = mcp_new_etm_event;
- #endif
- // return driver object
- *mcp = &mcp_gdma->parent;
- return ESP_OK;
- err:
- if (mcp_gdma) {
- mcp_gdma_destroy(mcp_gdma);
- }
- return ret;
- }
- #if SOC_AHB_GDMA_SUPPORTED
- esp_err_t esp_async_memcpy_install_gdma_ahb(const async_memcpy_config_t *config, async_memcpy_handle_t *mcp)
- {
- return esp_async_memcpy_install_gdma_template(config, mcp, gdma_new_ahb_channel, SOC_GDMA_BUS_AHB);
- }
- /// default installation falls back to use the AHB GDMA
- esp_err_t esp_async_memcpy_install(const async_memcpy_config_t *config, async_memcpy_handle_t *asmcp)
- __attribute__((alias("esp_async_memcpy_install_gdma_ahb")));
- #endif // SOC_AHB_GDMA_SUPPORTED
- #if SOC_AXI_GDMA_SUPPORTED
- esp_err_t esp_async_memcpy_install_gdma_axi(const async_memcpy_config_t *config, async_memcpy_handle_t *mcp)
- {
- return esp_async_memcpy_install_gdma_template(config, mcp, gdma_new_axi_channel, SOC_GDMA_BUS_AXI);
- }
- #endif // SOC_AXI_GDMA_SUPPORTED
- static esp_err_t mcp_gdma_del(async_memcpy_context_t *ctx)
- {
- async_memcpy_gdma_context_t *mcp_gdma = __containerof(ctx, async_memcpy_gdma_context_t, parent);
- // check if there are pending transactions
- ESP_RETURN_ON_FALSE(STAILQ_EMPTY(&mcp_gdma->ready_queue_head), ESP_ERR_INVALID_STATE, TAG, "there are pending transactions");
- // check if the driver is in IDLE state
- ESP_RETURN_ON_FALSE(atomic_load(&mcp_gdma->fsm) == MCP_FSM_IDLE, ESP_ERR_INVALID_STATE, TAG, "driver is not in IDLE state");
- return mcp_gdma_destroy(mcp_gdma);
- }
- static void mount_tx_buffer_to_dma(mcp_dma_descriptor_t *desc_array, int num_desc,
- uint8_t *buf, size_t buf_sz, size_t max_single_dma_buffer)
- {
- uint32_t prepared_length = 0;
- size_t len = buf_sz;
- for (int i = 0; i < num_desc - 1; i++) {
- desc_array[i].buffer = &buf[prepared_length];
- desc_array[i].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
- desc_array[i].dw0.suc_eof = 0;
- desc_array[i].dw0.size = max_single_dma_buffer;
- desc_array[i].dw0.length = max_single_dma_buffer;
- desc_array[i].next = &desc_array[i + 1];
- prepared_length += max_single_dma_buffer;
- len -= max_single_dma_buffer;
- }
- // take special care to the EOF descriptor
- desc_array[num_desc - 1].buffer = &buf[prepared_length];
- desc_array[num_desc - 1].next = NULL;
- desc_array[num_desc - 1].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
- desc_array[num_desc - 1].dw0.suc_eof = 1;
- desc_array[num_desc - 1].dw0.size = len;
- desc_array[num_desc - 1].dw0.length = len;
- #if MCP_NEEDS_WRITE_BACK_DESC_CACHE
- Cache_WriteBack_Addr(CACHE_MAP_L1_DCACHE, (uint32_t)desc_array, sizeof(mcp_dma_descriptor_t) * num_desc);
- #endif
- }
- static void mount_rx_buffer_to_dma(mcp_dma_descriptor_t *desc_array, int num_desc, mcp_dma_descriptor_t *eof_desc,
- uint8_t *buf, size_t buf_sz, size_t max_single_dma_buffer)
- {
- uint32_t prepared_length = 0;
- size_t len = buf_sz;
- if (desc_array) {
- assert(num_desc > 0);
- for (int i = 0; i < num_desc; i++) {
- desc_array[i].buffer = &buf[prepared_length];
- desc_array[i].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
- desc_array[i].dw0.size = max_single_dma_buffer;
- desc_array[i].dw0.length = max_single_dma_buffer;
- desc_array[i].next = &desc_array[i + 1];
- prepared_length += max_single_dma_buffer;
- len -= max_single_dma_buffer;
- }
- desc_array[num_desc - 1].next = eof_desc;
- }
- eof_desc->buffer = &buf[prepared_length];
- eof_desc->next = NULL;
- eof_desc->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
- eof_desc->dw0.size = len;
- eof_desc->dw0.length = len;
- #if MCP_NEEDS_WRITE_BACK_DESC_CACHE
- if (desc_array) {
- Cache_WriteBack_Addr(CACHE_MAP_L1_DCACHE, (uint32_t)desc_array, sizeof(mcp_dma_descriptor_t) * num_desc);
- }
- Cache_WriteBack_Addr(CACHE_MAP_L1_DCACHE, (uint32_t)eof_desc, sizeof(mcp_dma_descriptor_t));
- #endif
- }
- /// @brief help function to get one transaction from the ready queue
- /// @note this function is allowed to be called in ISR
- static async_memcpy_transaction_t *try_pop_trans_from_ready_queue(async_memcpy_gdma_context_t *mcp_gdma)
- {
- async_memcpy_transaction_t *trans = NULL;
- portENTER_CRITICAL_SAFE(&mcp_gdma->spin_lock);
- trans = STAILQ_FIRST(&mcp_gdma->ready_queue_head);
- if (trans) {
- STAILQ_REMOVE_HEAD(&mcp_gdma->ready_queue_head, ready_queue_entry);
- }
- portEXIT_CRITICAL_SAFE(&mcp_gdma->spin_lock);
- return trans;
- }
- /// @brief help function to start a pending transaction
- /// @note this function is allowed to be called in ISR
- static void try_start_pending_transaction(async_memcpy_gdma_context_t *mcp_gdma)
- {
- async_memcpy_fsm_t expected_fsm = MCP_FSM_IDLE;
- async_memcpy_transaction_t *trans = NULL;
- if (atomic_compare_exchange_strong(&mcp_gdma->fsm, &expected_fsm, MCP_FSM_RUN_WAIT)) {
- trans = try_pop_trans_from_ready_queue(mcp_gdma);
- if (trans) {
- atomic_store(&mcp_gdma->fsm, MCP_FSM_RUN);
- gdma_start(mcp_gdma->rx_channel, trans->rx_start_desc_addr);
- gdma_start(mcp_gdma->tx_channel, trans->tx_start_desc_addr);
- } else {
- atomic_store(&mcp_gdma->fsm, MCP_FSM_IDLE);
- }
- }
- }
- /// @brief help function to get one transaction from the idle queue
- /// @note this function is allowed to be called in ISR
- static async_memcpy_transaction_t *try_pop_trans_from_idle_queue(async_memcpy_gdma_context_t *mcp_gdma)
- {
- async_memcpy_transaction_t *trans = NULL;
- portENTER_CRITICAL_SAFE(&mcp_gdma->spin_lock);
- trans = STAILQ_FIRST(&mcp_gdma->idle_queue_head);
- if (trans) {
- STAILQ_REMOVE_HEAD(&mcp_gdma->idle_queue_head, idle_queue_entry);
- }
- portEXIT_CRITICAL_SAFE(&mcp_gdma->spin_lock);
- return trans;
- }
- static bool check_buffer_aligned(async_memcpy_gdma_context_t *mcp_gdma, void *src, void *dst, size_t n)
- {
- bool valid = true;
- uint32_t align_mask = 0;
- if (esp_ptr_external_ram(dst)) {
- if (mcp_gdma->psram_trans_align) {
- align_mask = mcp_gdma->psram_trans_align - 1;
- }
- } else {
- if (mcp_gdma->sram_trans_align) {
- align_mask = mcp_gdma->sram_trans_align - 1;
- }
- }
- // destination address must be cache line aligned
- valid = valid && (((uint32_t)dst & align_mask) == 0);
- valid = valid && ((n & align_mask) == 0);
- return valid;
- }
- static esp_err_t mcp_gdma_memcpy(async_memcpy_context_t *ctx, void *dst, void *src, size_t n, async_memcpy_isr_cb_t cb_isr, void *cb_args)
- {
- esp_err_t ret = ESP_OK;
- async_memcpy_gdma_context_t *mcp_gdma = __containerof(ctx, async_memcpy_gdma_context_t, parent);
- // buffer location check
- #if SOC_AHB_GDMA_SUPPORTED && !SOC_AHB_GDMA_SUPPORT_PSRAM
- if (mcp_gdma->gdma_bus_id == SOC_GDMA_BUS_AHB) {
- ESP_RETURN_ON_FALSE(esp_ptr_internal(src) && esp_ptr_internal(dst), ESP_ERR_INVALID_ARG, TAG, "AHB GDMA can only access SRAM");
- }
- #endif // SOC_AHB_GDMA_SUPPORTED && !SOC_AHB_GDMA_SUPPORT_PSRAM
- #if SOC_AXI_GDMA_SUPPORTED && !SOC_AXI_GDMA_SUPPORT_PSRAM
- if (mcp_gdma->gdma_bus_id == SOC_GDMA_BUS_AXI) {
- ESP_RETURN_ON_FALSE(esp_ptr_internal(src) && esp_ptr_internal(dst), ESP_ERR_INVALID_ARG, TAG, "AXI_DMA can only access SRAM");
- }
- #endif // SOC_AXI_GDMA_SUPPORTED && !SOC_AXI_GDMA_SUPPORT_PSRAM
- // alignment check
- ESP_RETURN_ON_FALSE(check_buffer_aligned(mcp_gdma, src, dst, n), ESP_ERR_INVALID_ARG, TAG, "buffer not aligned: %p -> %p, sz=%zu", src, dst, n);
- async_memcpy_transaction_t *trans = NULL;
- // pick one transaction node from idle queue
- trans = try_pop_trans_from_idle_queue(mcp_gdma);
- // check if we get the transaction object successfully
- ESP_RETURN_ON_FALSE(trans, ESP_ERR_INVALID_STATE, TAG, "no free node in the idle queue");
- // calculate how many descriptors we want
- size_t max_single_dma_buffer = mcp_gdma->max_single_dma_buffer;
- uint32_t num_desc_per_path = (n + max_single_dma_buffer - 1) / max_single_dma_buffer;
- // allocate DMA descriptors, descriptors need a strict alignment
- trans->tx_desc_link = heap_caps_aligned_calloc(MCP_DMA_DESC_ALIGN, num_desc_per_path, sizeof(mcp_dma_descriptor_t),
- MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT | MALLOC_CAP_DMA);
- ESP_GOTO_ON_FALSE(trans->tx_desc_link, ESP_ERR_NO_MEM, err, TAG, "no mem for DMA descriptors");
- // don't have to allocate the EOF descriptor, we will use trans->eof_node as the RX EOF descriptor
- if (num_desc_per_path > 1) {
- trans->rx_desc_link = heap_caps_aligned_calloc(MCP_DMA_DESC_ALIGN, num_desc_per_path - 1, sizeof(mcp_dma_descriptor_t),
- MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT | MALLOC_CAP_DMA);
- ESP_GOTO_ON_FALSE(trans->rx_desc_link, ESP_ERR_NO_MEM, err, TAG, "no mem for DMA descriptors");
- } else {
- // small copy buffer, use the trans->eof_node is sufficient
- trans->rx_desc_link = NULL;
- }
- // (preload) mount src data to the TX descriptor
- mount_tx_buffer_to_dma(trans->tx_desc_link, num_desc_per_path, src, n, max_single_dma_buffer);
- // (preload) mount dst data to the RX descriptor
- mount_rx_buffer_to_dma(trans->rx_desc_link, num_desc_per_path - 1, &trans->eof_node, dst, n, max_single_dma_buffer);
- // if the data is in the cache, write back, then DMA can see the latest data
- #if MCP_NEEDS_WRITE_BACK_SRC_CACHE
- int write_back_map = CACHE_MAP_L1_DCACHE;
- if (esp_ptr_external_ram(src)) {
- write_back_map |= CACHE_MAP_L2_CACHE;
- }
- Cache_WriteBack_Addr(write_back_map, (uint32_t)src, n);
- #endif
- // save other transaction context
- trans->cb = cb_isr;
- trans->cb_args = cb_args;
- trans->memcpy_size = n;
- trans->memcpy_dst_addr = (intptr_t)dst;
- trans->tx_start_desc_addr = (intptr_t)trans->tx_desc_link;
- trans->rx_start_desc_addr = trans->rx_desc_link ? (intptr_t)trans->rx_desc_link : (intptr_t)&trans->eof_node;
- portENTER_CRITICAL(&mcp_gdma->spin_lock);
- // insert the trans to ready queue
- STAILQ_INSERT_TAIL(&mcp_gdma->ready_queue_head, trans, ready_queue_entry);
- portEXIT_CRITICAL(&mcp_gdma->spin_lock);
- // check driver state, if there's no running transaction, start a new one
- try_start_pending_transaction(mcp_gdma);
- return ESP_OK;
- err:
- if (trans) {
- if (trans->tx_desc_link) {
- free(trans->tx_desc_link);
- trans->tx_desc_link = NULL;
- }
- if (trans->rx_desc_link) {
- free(trans->rx_desc_link);
- trans->rx_desc_link = NULL;
- }
- // return back the trans to idle queue
- portENTER_CRITICAL(&mcp_gdma->spin_lock);
- STAILQ_INSERT_TAIL(&mcp_gdma->idle_queue_head, trans, idle_queue_entry);
- portEXIT_CRITICAL(&mcp_gdma->spin_lock);
- }
- return ret;
- }
- static bool mcp_gdma_rx_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
- {
- bool need_yield = false;
- async_memcpy_gdma_context_t *mcp_gdma = (async_memcpy_gdma_context_t *)user_data;
- mcp_dma_descriptor_t *eof_desc = (mcp_dma_descriptor_t *)event_data->rx_eof_desc_addr;
- // get the transaction object address by the EOF descriptor address
- async_memcpy_transaction_t *trans = __containerof(eof_desc, async_memcpy_transaction_t, eof_node);
- // switch driver state from RUN to IDLE
- async_memcpy_fsm_t expected_fsm = MCP_FSM_RUN;
- if (atomic_compare_exchange_strong(&mcp_gdma->fsm, &expected_fsm, MCP_FSM_IDLE_WAIT)) {
- // if the data is in the cache, invalidate, then CPU can see the latest data
- #if MCP_NEEDS_INVALIDATE_DST_CACHE
- int invalidate_map = CACHE_MAP_L1_DCACHE;
- if (esp_ptr_external_ram((const void *)trans->memcpy_dst_addr)) {
- invalidate_map |= CACHE_MAP_L2_CACHE;
- }
- Cache_Invalidate_Addr(invalidate_map, (uint32_t)trans->memcpy_dst_addr, trans->memcpy_size);
- #endif
- // invoked callback registered by user
- async_memcpy_isr_cb_t cb = trans->cb;
- if (cb) {
- async_memcpy_event_t e = {
- // No event data for now
- };
- need_yield = cb(&mcp_gdma->parent, &e, trans->cb_args);
- }
- // recycle descriptor memory
- if (trans->tx_desc_link) {
- free(trans->tx_desc_link);
- trans->tx_desc_link = NULL;
- }
- if (trans->rx_desc_link) {
- free(trans->rx_desc_link);
- trans->rx_desc_link = NULL;
- }
- trans->cb = NULL;
- portENTER_CRITICAL_ISR(&mcp_gdma->spin_lock);
- // insert the trans object to the idle queue
- STAILQ_INSERT_TAIL(&mcp_gdma->idle_queue_head, trans, idle_queue_entry);
- portEXIT_CRITICAL_ISR(&mcp_gdma->spin_lock);
- atomic_store(&mcp_gdma->fsm, MCP_FSM_IDLE);
- }
- // try start the next pending transaction
- try_start_pending_transaction(mcp_gdma);
- return need_yield;
- }
- #if SOC_GDMA_SUPPORT_ETM
- static esp_err_t mcp_new_etm_event(async_memcpy_context_t *ctx, async_memcpy_etm_event_t event_type, esp_etm_event_handle_t *out_event)
- {
- async_memcpy_gdma_context_t *mcp_gdma = __containerof(ctx, async_memcpy_gdma_context_t, parent);
- if (event_type == ASYNC_MEMCPY_ETM_EVENT_COPY_DONE) {
- // use the RX EOF to indicate the async memcpy done event
- gdma_etm_event_config_t etm_event_conf = {
- .event_type = GDMA_ETM_EVENT_EOF,
- };
- return gdma_new_etm_event(mcp_gdma->rx_channel, &etm_event_conf, out_event);
- } else {
- return ESP_ERR_NOT_SUPPORTED;
- }
- }
- #endif // SOC_GDMA_SUPPORT_ETM
|