| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- /*
- * SPDX-FileCopyrightText: 2016-2023 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- #include <stdint.h>
- #include <stddef.h>
- #include <string.h>
- #include <sys/param.h>
- #include "esp_attr.h"
- #include "esp_cpu.h"
- #include "soc/wdev_reg.h"
- #include "esp_private/esp_clk.h"
- #if SOC_LP_TIMER_SUPPORTED
- #include "hal/lp_timer_hal.h"
- #endif
- #if defined CONFIG_IDF_TARGET_ESP32S3
- #define APB_CYCLE_WAIT_NUM (1778) /* If APB clock is 80 MHz, the maximum sampling frequency is around 45 KHz*/
- /* 45 KHz reading frequency is the maximum we have tested so far on S3 */
- #elif defined CONFIG_IDF_TARGET_ESP32C6
- #define APB_CYCLE_WAIT_NUM (160 * 16) /* On ESP32C6, we only read one byte at a time, then XOR the value with
- * an asynchronous timer (see code below).
- * The current value translates to a sampling frequency of around 62.5 KHz
- * for reading 8 bit samples, which is the rate at which the RNG was tested,
- * plus additional overhead for the calculation, making it slower. */
- #elif defined CONFIG_IDF_TARGET_ESP32H2
- #define APB_CYCLE_WAIT_NUM (96 * 16) /* Same reasoning as for ESP32C6, but the CPU frequency on ESP32H2 is
- * 96MHz instead of 160 MHz */
- #else
- #define APB_CYCLE_WAIT_NUM (16)
- #endif
- #if CONFIG_IDF_TARGET_ESP32P4
- #include "esp_log.h"
- static const char *TAG = "hw_random";
- uint32_t IRAM_ATTR esp_random(void)
- {
- // TODO: IDF-6522
- ESP_EARLY_LOGW(TAG, "esp_random() has not been implemented yet");
- return 0xDEADBEEF;
- }
- #else // !CONFIG_IDF_TARGET_ESP32P4
- uint32_t IRAM_ATTR esp_random(void)
- {
- /* The PRNG which implements WDEV_RANDOM register gets 2 bits
- * of extra entropy from a hardware randomness source every APB clock cycle
- * (provided WiFi or BT are enabled). To make sure entropy is not drained
- * faster than it is added, this function needs to wait for at least 16 APB
- * clock cycles after reading previous word. This implementation may actually
- * wait a bit longer due to extra time spent in arithmetic and branch statements.
- *
- * As a (probably unncessary) precaution to avoid returning the
- * RNG state as-is, the result is XORed with additional
- * WDEV_RND_REG reads while waiting.
- */
- /* This code does not run in a critical section, so CPU frequency switch may
- * happens while this code runs (this will not happen in the current
- * implementation, but possible in the future). However if that happens,
- * the number of cycles spent on frequency switching will certainly be more
- * than the number of cycles we need to wait here.
- */
- uint32_t cpu_to_apb_freq_ratio = esp_clk_cpu_freq() / esp_clk_apb_freq();
- static uint32_t last_ccount = 0;
- uint32_t ccount;
- uint32_t result = 0;
- #if SOC_LP_TIMER_SUPPORTED
- for (size_t i = 0; i < sizeof(result); i++) {
- do {
- ccount = esp_cpu_get_cycle_count();
- result ^= REG_READ(WDEV_RND_REG);
- } while (ccount - last_ccount < cpu_to_apb_freq_ratio * APB_CYCLE_WAIT_NUM);
- uint32_t current_rtc_timer_counter = (lp_timer_hal_get_cycle_count() & 0xFF);
- result ^= ((result ^ current_rtc_timer_counter) & 0xFF) << (i * 8);
- }
- #else
- do {
- ccount = esp_cpu_get_cycle_count();
- result ^= REG_READ(WDEV_RND_REG);
- } while (ccount - last_ccount < cpu_to_apb_freq_ratio * APB_CYCLE_WAIT_NUM);
- #endif
- last_ccount = ccount;
- return result ^ REG_READ(WDEV_RND_REG);
- }
- #endif //!CONFIG_IDF_TARGET_ESP32P4
- void esp_fill_random(void *buf, size_t len)
- {
- assert(buf != NULL);
- uint8_t *buf_bytes = (uint8_t *)buf;
- while (len > 0) {
- uint32_t word = esp_random();
- uint32_t to_copy = MIN(sizeof(word), len);
- memcpy(buf_bytes, &word, to_copy);
- buf_bytes += to_copy;
- len -= to_copy;
- }
- }
|