rtc_init.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. /*
  2. * SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdint.h>
  7. #include "sdkconfig.h"
  8. #include "soc/soc.h"
  9. #include "soc/rtc.h"
  10. #include "soc/rtc_cntl_reg.h"
  11. #include "soc/gpio_reg.h"
  12. #include "soc/spi_mem_reg.h"
  13. #include "soc/extmem_reg.h"
  14. #include "soc/system_reg.h"
  15. #include "hal/efuse_hal.h"
  16. #include "hal/efuse_ll.h"
  17. #include "regi2c_ctrl.h"
  18. #include "soc/regi2c_dig_reg.h"
  19. #include "soc/regi2c_lp_bias.h"
  20. #include "esp_hw_log.h"
  21. #ifndef BOOTLOADER_BUILD
  22. #include "esp_private/sar_periph_ctrl.h"
  23. #endif
  24. static const char *TAG = "rtc_init";
  25. static void set_ocode_by_efuse(int ocode_scheme_ver);
  26. static void calibrate_ocode(void);
  27. static void set_rtc_dig_dbias(void);
  28. void rtc_init(rtc_config_t cfg)
  29. {
  30. REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_XPD_DIG_REG, 0);
  31. REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_XPD_RTC_REG, 0);
  32. REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_PLL_BUF_WAIT, cfg.pll_wait);
  33. REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, cfg.ck8m_wait);
  34. REG_SET_FIELD(RTC_CNTL_TIMER5_REG, RTC_CNTL_MIN_SLP_VAL, RTC_CNTL_MIN_SLP_VAL_MIN);
  35. if (cfg.cali_ocode) {
  36. uint8_t blk_version_minor = efuse_ll_get_blk_version_minor();
  37. uint8_t blk_version_major = efuse_ll_get_blk_version_major();
  38. bool ignore_major = efuse_ll_get_disable_blk_version_major();
  39. uint8_t ocode_scheme_ver = 0;
  40. if(blk_version_major > 0 && !ignore_major) {
  41. ESP_HW_LOGE(TAG, "Invalid blk_version_major.\n");
  42. abort();
  43. }
  44. if((blk_version_major > 0) || (blk_version_major == 0 && blk_version_minor >= 1)) {
  45. ocode_scheme_ver = 1;
  46. }
  47. if (ocode_scheme_ver == 1) {
  48. set_ocode_by_efuse(ocode_scheme_ver);
  49. } else {
  50. calibrate_ocode();
  51. }
  52. }
  53. set_rtc_dig_dbias();
  54. if (cfg.clkctl_init) {
  55. //clear CMMU clock force on
  56. CLEAR_PERI_REG_MASK(EXTMEM_CACHE_MMU_POWER_CTRL_REG, EXTMEM_CACHE_MMU_MEM_FORCE_ON);
  57. //clear tag clock force on
  58. CLEAR_PERI_REG_MASK(EXTMEM_ICACHE_TAG_POWER_CTRL_REG, EXTMEM_ICACHE_TAG_MEM_FORCE_ON);
  59. //clear register clock force on
  60. CLEAR_PERI_REG_MASK(SPI_MEM_CLOCK_GATE_REG(0), SPI_MEM_CLK_EN);
  61. CLEAR_PERI_REG_MASK(SPI_MEM_CLOCK_GATE_REG(1), SPI_MEM_CLK_EN);
  62. }
  63. if (cfg.pwrctl_init) {
  64. CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_FORCE_PU);
  65. //cancel xtal force pu if no need to force power up
  66. //cannot cancel xtal force pu if pll is force power on
  67. if (!(cfg.xtal_fpu | cfg.bbpll_fpu)) {
  68. CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_XTL_FORCE_PU);
  69. } else {
  70. SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_XTL_FORCE_PU);
  71. }
  72. //cancel bbpll force pu if setting no force power up
  73. if (!cfg.bbpll_fpu) {
  74. CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_FORCE_PU);
  75. CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_I2C_FORCE_PU);
  76. CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PU);
  77. } else {
  78. SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_FORCE_PU);
  79. SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_I2C_FORCE_PU);
  80. SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PU);
  81. }
  82. CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_REGULATOR_FORCE_PU);
  83. //clear i2c_reset_protect pd force, need tested in low temperature.
  84. //CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG,RTC_CNTL_I2C_RESET_POR_FORCE_PD);
  85. /* If this mask is enabled, all soc memories cannot enter power down mode */
  86. /* We should control soc memory power down mode from RTC, so we will not touch this register any more */
  87. CLEAR_PERI_REG_MASK(SYSTEM_MEM_PD_MASK_REG, SYSTEM_LSLP_MEM_PD_MASK);
  88. /* If this pd_cfg is set to 1, all memory won't enter low power mode during light sleep */
  89. /* If this pd_cfg is set to 0, all memory will enter low power mode during light sleep */
  90. rtc_sleep_pu_config_t pu_cfg = RTC_SLEEP_PU_CONFIG_ALL(0);
  91. rtc_sleep_pu(pu_cfg);
  92. CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_FORCE_PU);
  93. CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_WRAP_FORCE_NOISO);
  94. //cancel digital PADS force no iso
  95. if (cfg.cpu_waiti_clk_gate) {
  96. CLEAR_PERI_REG_MASK(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPU_WAIT_MODE_FORCE_ON);
  97. } else {
  98. SET_PERI_REG_MASK(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPU_WAIT_MODE_FORCE_ON);
  99. }
  100. /*if SYSTEM_CPU_WAIT_MODE_FORCE_ON == 0 , the cpu clk will be closed when cpu enter WAITI mode*/
  101. CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_UNHOLD);
  102. CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_NOISO);
  103. }
  104. REG_WRITE(RTC_CNTL_INT_ENA_REG, 0);
  105. REG_WRITE(RTC_CNTL_INT_CLR_REG, UINT32_MAX);
  106. REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_FORCE_XPD_CK, 1);
  107. #ifndef BOOTLOADER_BUILD
  108. //initialise SAR related peripheral register settings
  109. sar_periph_ctrl_init();
  110. #endif
  111. }
  112. static void set_ocode_by_efuse(int ocode_scheme_ver)
  113. {
  114. assert(ocode_scheme_ver == 1);
  115. signed int ocode = efuse_ll_get_ocode();
  116. //recover efuse data
  117. ocode = ((ocode & BIT(6)) != 0)? -(ocode & 0x3f): ocode;
  118. ocode = ocode + 100;
  119. //set ext_ocode
  120. REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_EXT_CODE, ocode);
  121. REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_FORCE_CODE, 1);
  122. }
  123. static void calibrate_ocode(void)
  124. {
  125. /*
  126. Bandgap output voltage is not precise when calibrate o-code by hardware sometimes, so need software o-code calibration (must turn off PLL).
  127. Method:
  128. 1. read current cpu config, save in old_config;
  129. 2. switch cpu to xtal because PLL will be closed when o-code calibration;
  130. 3. begin o-code calibration;
  131. 4. wait o-code calibration done flag(odone_flag & bg_odone_flag) or timeout;
  132. 5. set cpu to old-config.
  133. */
  134. soc_rtc_slow_clk_src_t slow_clk_src = rtc_clk_slow_src_get();
  135. rtc_cal_sel_t cal_clk = RTC_CAL_RTC_MUX;
  136. if (slow_clk_src == SOC_RTC_SLOW_CLK_SRC_OSC_SLOW) {
  137. cal_clk = RTC_CAL_32K_OSC_SLOW;
  138. } else if (slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256) {
  139. cal_clk = RTC_CAL_8MD256;
  140. }
  141. uint64_t max_delay_time_us = 10000;
  142. uint32_t slow_clk_period = rtc_clk_cal(cal_clk, 100);
  143. uint64_t max_delay_cycle = rtc_time_us_to_slowclk(max_delay_time_us, slow_clk_period);
  144. uint64_t cycle0 = rtc_time_get();
  145. uint64_t timeout_cycle = cycle0 + max_delay_cycle;
  146. uint64_t cycle1 = 0;
  147. rtc_cpu_freq_config_t old_config;
  148. rtc_clk_cpu_freq_get_config(&old_config);
  149. rtc_clk_cpu_freq_set_xtal();
  150. REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 0);
  151. REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 1);
  152. bool odone_flag = 0;
  153. bool bg_odone_flag = 0;
  154. while (1) {
  155. odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_O_DONE_FLAG);
  156. bg_odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_BG_O_DONE_FLAG);
  157. cycle1 = rtc_time_get();
  158. if (odone_flag && bg_odone_flag) {
  159. break;
  160. }
  161. if (cycle1 >= timeout_cycle) {
  162. ESP_HW_LOGW(TAG, "o_code calibration fail\n");
  163. break;
  164. }
  165. }
  166. rtc_clk_cpu_freq_set_config(&old_config);
  167. }
  168. static uint32_t get_dig_dbias_by_efuse(uint8_t dbias_scheme_ver)
  169. {
  170. assert(dbias_scheme_ver == 1);
  171. return efuse_ll_get_dig_dbias_hvt();
  172. }
  173. uint32_t get_rtc_dbias_by_efuse(uint8_t dbias_scheme_ver, uint32_t dig_dbias)
  174. {
  175. assert(dbias_scheme_ver == 1);
  176. uint32_t rtc_dbias = 31;
  177. //read efuse data
  178. signed int dig_slp_dbias2 = efuse_ll_get_dig_ldo_slp_dbias2();
  179. signed int dig_slp_dbias26 = efuse_ll_get_dig_ldo_slp_dbias26();
  180. signed int dig_act_dbias26 = efuse_ll_get_dig_ldo_act_dbias26();
  181. signed int dig_act_step = efuse_ll_get_dig_ldo_act_stepd10();
  182. signed int rtc_slp_dbias29 = efuse_ll_get_rtc_ldo_slp_dbias29();
  183. signed int rtc_slp_dbias31 = efuse_ll_get_rtc_ldo_slp_dbias31();
  184. signed int rtc_act_dbias31 = efuse_ll_get_rtc_ldo_act_dbias31();
  185. signed int rtc_act_dbias13 = efuse_ll_get_rtc_ldo_act_dbias13();
  186. //recover dig&rtc parameter
  187. dig_slp_dbias2 = ((dig_slp_dbias2 & BIT(6)) != 0)? -(dig_slp_dbias2 & 0x3f): dig_slp_dbias2;
  188. dig_slp_dbias26 = ((dig_slp_dbias26 & BIT(7)) != 0)? -(dig_slp_dbias26 & 0x7f): dig_slp_dbias26;
  189. dig_act_dbias26 = ((dig_act_dbias26 & BIT(5)) != 0)? -(dig_act_dbias26 & 0x1f): dig_act_dbias26;
  190. dig_act_step = ((dig_act_step & BIT(3)) != 0)? -(dig_act_step & 0x7): dig_act_step;
  191. rtc_slp_dbias29 = ((rtc_slp_dbias29 & BIT(8)) != 0)? -(rtc_slp_dbias29 & 0xff): rtc_slp_dbias29;
  192. rtc_slp_dbias31 = ((rtc_slp_dbias31 & BIT(5)) != 0)? -(rtc_slp_dbias31 & 0x1f): rtc_slp_dbias31;
  193. rtc_act_dbias31 = ((rtc_act_dbias31 & BIT(5)) != 0)? -(rtc_act_dbias31 & 0x1f): rtc_act_dbias31;
  194. rtc_act_dbias13 = ((rtc_act_dbias13 & BIT(7)) != 0)? -(rtc_act_dbias13 & 0x7f): rtc_act_dbias13;
  195. dig_slp_dbias2 = dig_slp_dbias2 + 705;
  196. dig_slp_dbias26 = dig_slp_dbias26 + dig_slp_dbias2 + 502;
  197. dig_act_dbias26 = dig_act_dbias26 + dig_slp_dbias26 + 10;
  198. signed int dig_slp_dbias9 = dig_slp_dbias26 - (dig_slp_dbias26 - dig_slp_dbias2) * 17 / 24;
  199. signed int dig_act_dbias9 = dig_slp_dbias9 + (dig_act_dbias26 - dig_slp_dbias26) - dig_act_step * 17 / 10;
  200. rtc_slp_dbias29 = rtc_slp_dbias29 + 1160;
  201. rtc_slp_dbias31 = rtc_slp_dbias31 + rtc_slp_dbias29 + 37;
  202. rtc_act_dbias31 = rtc_act_dbias31 + rtc_slp_dbias31 + 8;
  203. rtc_act_dbias13 = rtc_act_dbias13 + 860;
  204. //calculate digital LDO volt
  205. signed int dig_k_act = (dig_act_dbias26 - dig_act_dbias9) / 17;
  206. signed int dig_b_act = dig_act_dbias26 - dig_k_act * 26;
  207. uint32_t v_dig_cal = dig_k_act * dig_dbias + dig_b_act;
  208. //calculate rtc_dbias with dig_volt
  209. signed int rtc_k_act = (rtc_act_dbias31 - rtc_act_dbias13) / 18;
  210. signed int rtc_b_act = rtc_act_dbias31 - rtc_k_act * 31;
  211. uint32_t v_rtc_cal = 0;
  212. for (rtc_dbias = 15; rtc_dbias < 32; rtc_dbias++) {
  213. v_rtc_cal = rtc_k_act * rtc_dbias + rtc_b_act;
  214. if (v_rtc_cal >= v_dig_cal) {
  215. return rtc_dbias;
  216. }
  217. }
  218. //can't find correct rtc-volt, rtc_dbias can use default value.
  219. rtc_dbias = 31;
  220. return rtc_dbias;
  221. }
  222. static void set_rtc_dig_dbias()
  223. {
  224. /*
  225. 1. a reasonable dig_dbias which by scaning pvt to make 120 CPU run successful stored in efuse;
  226. 2. a reasonable rtc_dbias can be calculated by a certion formula.
  227. */
  228. uint32_t rtc_dbias = 31, dig_dbias = 26;
  229. uint8_t blk_version_minor = efuse_ll_get_blk_version_minor();
  230. uint8_t blk_version_major = efuse_ll_get_blk_version_major();
  231. bool ignore_major = efuse_ll_get_disable_blk_version_major();
  232. uint8_t dbias_scheme_ver = 0;
  233. if(blk_version_major > 0 && !ignore_major) {
  234. ESP_HW_LOGE(TAG, "Invalid blk_version_major.\n");
  235. abort();
  236. }
  237. if((blk_version_major > 0) || (blk_version_major == 0 && blk_version_minor >= 1)) {
  238. dbias_scheme_ver = 1;
  239. }
  240. if (dbias_scheme_ver == 1) {
  241. dig_dbias = get_dig_dbias_by_efuse(dbias_scheme_ver);
  242. if (dig_dbias != 0) {
  243. rtc_dbias = get_rtc_dbias_by_efuse(dbias_scheme_ver, dig_dbias); // already burn dig_dbias in efuse
  244. } else {
  245. dig_dbias = 26;
  246. ESP_HW_LOGD(TAG, "not burn core voltage in efuse or burn wrong voltage value. blk_ver: %d.%d\n", blk_version_major, blk_version_minor);
  247. }
  248. }
  249. else {
  250. ESP_HW_LOGD(TAG, "core voltage not burnt in efuse. blk_ver: %d.%d\n", blk_version_major, blk_version_minor);
  251. }
  252. REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_EXT_RTC_DREG, rtc_dbias);
  253. REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_EXT_DIG_DREG, dig_dbias);
  254. }