rtc_time.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. /*
  2. * SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdint.h>
  7. #include "esp32c2/rom/ets_sys.h"
  8. #include "soc/rtc.h"
  9. #include "soc/rtc_cntl_reg.h"
  10. #include "hal/clk_tree_ll.h"
  11. #include "hal/rtc_cntl_ll.h"
  12. #include "hal/timer_ll.h"
  13. #include "soc/timer_group_reg.h"
  14. #include "esp_rom_sys.h"
  15. #include "esp_private/periph_ctrl.h"
  16. /* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
  17. * This feature counts the number of XTAL clock cycles within a given number of
  18. * RTC_SLOW_CLK cycles.
  19. *
  20. * Slow clock calibration feature has two modes of operation: one-off and cycling.
  21. * In cycling mode (which is enabled by default on SoC reset), counting of XTAL
  22. * cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
  23. * using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
  24. * once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
  25. * enabled using TIMG_RTC_CALI_START bit.
  26. */
  27. /**
  28. * @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio
  29. * @param cal_clk which clock to calibrate
  30. * @param slowclk_cycles number of slow clock cycles to count
  31. * @return number of XTAL clock cycles within the given number of slow clock cycles
  32. */
  33. uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  34. {
  35. /* On ESP32-C2, choosing RTC_CAL_RTC_MUX results in calibration of
  36. * the 150k RTC clock regardless of the currenlty selected SLOW_CLK.
  37. * On the ESP32, it used the currently selected SLOW_CLK.
  38. * The following code emulates ESP32 behavior:
  39. */
  40. if (cal_clk == RTC_CAL_RTC_MUX) {
  41. soc_rtc_slow_clk_src_t slow_clk_src = rtc_clk_slow_src_get();
  42. if (slow_clk_src == SOC_RTC_SLOW_CLK_SRC_OSC_SLOW) {
  43. cal_clk = RTC_CAL_32K_OSC_SLOW;
  44. } else if (slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256) {
  45. cal_clk = RTC_CAL_8MD256;
  46. }
  47. }
  48. /* Enable requested clock (150k clock is always on) */
  49. bool dig_ext_clk_enabled = clk_ll_xtal32k_digi_is_enabled();
  50. if (cal_clk == RTC_CAL_32K_OSC_SLOW && !dig_ext_clk_enabled) {
  51. clk_ll_xtal32k_digi_enable();
  52. }
  53. bool rc_fast_enabled = clk_ll_rc_fast_is_enabled();
  54. bool rc_fast_d256_enabled = clk_ll_rc_fast_d256_is_enabled();
  55. if (cal_clk == RTC_CAL_8MD256) {
  56. rtc_clk_8m_enable(true, true);
  57. clk_ll_rc_fast_d256_digi_enable();
  58. }
  59. /* There may be another calibration process already running during we call this function,
  60. * so we should wait the last process is done.
  61. */
  62. if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING)) {
  63. /**
  64. * Set a small timeout threshold to accelerate the generation of timeout.
  65. * The internal circuit will be reset when the timeout occurs and will not affect the next calibration.
  66. */
  67. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, 1);
  68. while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)
  69. && !GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT));
  70. }
  71. /* Prepare calibration */
  72. REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk);
  73. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
  74. REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
  75. /* Figure out how long to wait for calibration to finish */
  76. /* Set timeout reg and expect time delay*/
  77. uint32_t expected_freq;
  78. if (cal_clk == RTC_CAL_32K_OSC_SLOW) {
  79. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_X32K_CAL_TIMEOUT_THRES(slowclk_cycles));
  80. expected_freq = SOC_CLK_OSC_SLOW_FREQ_APPROX;
  81. } else if (cal_clk == RTC_CAL_8MD256) {
  82. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_8MD256_CAL_TIMEOUT_THRES(slowclk_cycles));
  83. expected_freq = SOC_CLK_RC_FAST_D256_FREQ_APPROX;
  84. } else {
  85. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_150K_CAL_TIMEOUT_THRES(slowclk_cycles));
  86. expected_freq = SOC_CLK_RC_SLOW_FREQ_APPROX;
  87. }
  88. uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq);
  89. /* Start calibration */
  90. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  91. SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  92. /* Wait for calibration to finish up to another us_time_estimate */
  93. esp_rom_delay_us(us_time_estimate);
  94. uint32_t cal_val;
  95. while (true) {
  96. if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) {
  97. cal_val = REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
  98. break;
  99. }
  100. if (GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
  101. cal_val = 0;
  102. break;
  103. }
  104. }
  105. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  106. /* if dig_ext_clk was originally off and enabled due to calibration, then set back to off state */
  107. if (cal_clk == RTC_CAL_32K_OSC_SLOW && !dig_ext_clk_enabled) {
  108. clk_ll_xtal32k_digi_disable();
  109. }
  110. if (cal_clk == RTC_CAL_8MD256) {
  111. clk_ll_rc_fast_d256_digi_disable();
  112. rtc_clk_8m_enable(rc_fast_enabled, rc_fast_d256_enabled);
  113. }
  114. return cal_val;
  115. }
  116. uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  117. {
  118. uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
  119. uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles;
  120. uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX);
  121. return ratio;
  122. }
  123. static inline bool rtc_clk_cal_32k_valid(rtc_xtal_freq_t xtal_freq, uint32_t slowclk_cycles, uint64_t actual_xtal_cycles)
  124. {
  125. uint64_t expected_xtal_cycles = (xtal_freq * 1000000ULL * slowclk_cycles) >> 15; // xtal_freq(hz) * slowclk_cycles / 32768
  126. uint64_t delta = expected_xtal_cycles / 2000; // 5/10000
  127. return (actual_xtal_cycles >= (expected_xtal_cycles - delta)) && (actual_xtal_cycles <= (expected_xtal_cycles + delta));
  128. }
  129. uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  130. {
  131. rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
  132. uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
  133. if ((cal_clk == RTC_CAL_32K_OSC_SLOW) && !rtc_clk_cal_32k_valid(xtal_freq, slowclk_cycles, xtal_cycles)) {
  134. return 0;
  135. }
  136. uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
  137. uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
  138. uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
  139. return period;
  140. }
  141. uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
  142. {
  143. /* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
  144. * TODO: fix overflow.
  145. */
  146. return (time_in_us << RTC_CLK_CAL_FRACT) / period;
  147. }
  148. uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
  149. {
  150. return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
  151. }
  152. uint64_t rtc_time_get(void)
  153. {
  154. return rtc_cntl_ll_get_rtc_time();
  155. }
  156. void rtc_clk_wait_for_slow_cycle(void) //This function may not by useful any more
  157. {
  158. SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE);
  159. while (GET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE)) {
  160. esp_rom_delay_us(1);
  161. }
  162. }
  163. uint32_t rtc_clk_freq_cal(uint32_t cal_val)
  164. {
  165. if (cal_val == 0) {
  166. return 0; // cal_val will be denominator, return 0 as the symbol of failure.
  167. }
  168. return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
  169. }
  170. /// @brief if the calibration is used, we need to enable the timer group0 first
  171. __attribute__((constructor))
  172. static void enable_timer_group0_for_calibration(void)
  173. {
  174. PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_TIMG0_MODULE, ref_count) {
  175. if (ref_count == 0) {
  176. timer_ll_enable_bus_clock(0, true);
  177. timer_ll_reset_register(0);
  178. }
  179. }
  180. }