| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871 |
- /*
- * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- #include <stdint.h>
- #include <string.h>
- #include <sys/param.h>
- #include <sys/queue.h>
- #include <inttypes.h>
- #include "sdkconfig.h"
- #include "esp_attr.h"
- #include "esp_log.h"
- #include "esp_check.h"
- #include "esp_heap_caps.h"
- #include "soc/soc_caps.h"
- #include "hal/cache_types.h"
- #include "hal/cache_hal.h"
- #include "hal/cache_ll.h"
- #include "hal/mmu_types.h"
- #include "hal/mmu_hal.h"
- #include "hal/mmu_ll.h"
- #include "esp_private/cache_utils.h"
- #include "esp_private/esp_cache_esp32_private.h"
- #include "esp_private/esp_mmu_map_private.h"
- #include "ext_mem_layout.h"
- #include "esp_mmu_map.h"
- //This is for size align
- #define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
- //This is for vaddr align
- #define ALIGN_DOWN_BY(num, align) ((num) & (~((align) - 1)))
- //This flag indicates the memory region is merged, we don't care about it anymore
- #define MEM_REGION_MERGED -1
- /**
- * We have some hw related tests for vaddr region capabilites
- * Use this macro to disable paddr check as we need to reuse certain paddr blocks
- */
- #define ENABLE_PADDR_CHECK !ESP_MMAP_TEST_ALLOW_MAP_TO_MAPPED_PADDR
- static DRAM_ATTR const char *TAG = "mmap";
- /**
- * @brief MMU Memory Mapping Driver
- *
- * Driver Backgrounds:
- *
- * --------------------------------------------------------------------------------------------------------
- * Memory Pool |
- * --------------------------------------------------------------------------------------------------------
- * | Memory Region 0 | Memory Region 1 | ... |
- * --------------------------------------------------------------------------------------------------------
- * | Block 0 | Slot 0 | Block 1 | Block 2 | ... | Slot 1 (final slot) | ... |
- * --------------------------------------------------------------------------------------------------------
- *
- * - A block is a piece of vaddr range that is dynamically mapped. Blocks are doubly linked:
- * Block 0 <-> Block 1 <-> Block 2
- * - A Slot is the vaddr range between 2 blocks.
- */
- /**
- * Struct for a block
- */
- typedef struct mem_block_ {
- uint32_t laddr_start; //linear address start of this block
- uint32_t laddr_end; //linear address end of this block
- intptr_t vaddr_start; //virtual address start of this block
- intptr_t vaddr_end; //virtual address end of this block
- size_t size; //size of this block, should be aligned to MMU page size
- int caps; //caps of this block, `mmu_mem_caps_t`
- uint32_t paddr_start; //physical address start of this block
- uint32_t paddr_end; //physical address end of this block
- mmu_target_t target; //physical target that this block is mapped to
- TAILQ_ENTRY(mem_block_) entries; //link entry
- } mem_block_t;
- /**
- * Struct for a memory region
- */
- typedef struct mem_region_ {
- cache_bus_mask_t bus_id; //cache bus mask of this region
- uint32_t start; //linear address start of this region
- uint32_t end; //linear address end of this region
- size_t region_size; //region size, in bytes
- uint32_t free_head; //linear address free head of this region
- size_t max_slot_size; //max slot size within this region
- int caps; //caps of this region, `mmu_mem_caps_t`
- mmu_target_t targets; //physical targets that this region is supported
- TAILQ_HEAD(mem_block_head_, mem_block_) mem_block_head; //link head of allocated blocks within this region
- } mem_region_t;
- typedef struct {
- /**
- * number of memory regions that are available, after coalescing, this number should be smaller than or equal to `SOC_MMU_LINEAR_ADDRESS_REGION_NUM`
- */
- uint32_t num_regions;
- /**
- * This saves the available MMU linear address regions,
- * after reserving flash .rodata and .text, and after coalescing.
- * Only the first `num_regions` items are valid
- */
- mem_region_t mem_regions[SOC_MMU_LINEAR_ADDRESS_REGION_NUM];
- } mmu_ctx_t;
- static mmu_ctx_t s_mmu_ctx;
- #if ENABLE_PADDR_CHECK
- static bool s_is_enclosed(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size);
- static bool s_is_overlapped(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size);
- #endif //#if ENABLE_PADDR_CHECK
- #if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
- static cache_bus_mask_t s_get_bus_mask(uint32_t vaddr_start, uint32_t len)
- {
- #if CACHE_LL_EXT_MEM_VIA_L2CACHE
- return cache_ll_l2_get_bus(0, vaddr_start, len);
- #else
- return cache_ll_l1_get_bus(0, vaddr_start, len);
- #endif
- }
- static void s_reserve_irom_region(mem_region_t *hw_mem_regions, int region_nums)
- {
- /**
- * We follow the way how 1st bootloader load flash .text:
- *
- * - Now IBUS addresses (between `_instruction_reserved_start` and `_instruction_reserved_end`) are consecutive on all chips,
- * we strongly rely on this to calculate the .text length
- */
- extern int _instruction_reserved_start;
- extern int _instruction_reserved_end;
- size_t irom_len_to_reserve = (uint32_t)&_instruction_reserved_end - (uint32_t)&_instruction_reserved_start;
- assert((mmu_ll_vaddr_to_laddr((uint32_t)&_instruction_reserved_end) - mmu_ll_vaddr_to_laddr((uint32_t)&_instruction_reserved_start)) == irom_len_to_reserve);
- irom_len_to_reserve += (uint32_t)&_instruction_reserved_start - ALIGN_DOWN_BY((uint32_t)&_instruction_reserved_start, CONFIG_MMU_PAGE_SIZE);
- irom_len_to_reserve = ALIGN_UP_BY(irom_len_to_reserve, CONFIG_MMU_PAGE_SIZE);
- cache_bus_mask_t bus_mask = s_get_bus_mask((uint32_t)&_instruction_reserved_start, irom_len_to_reserve);
- for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
- if (bus_mask & hw_mem_regions[i].bus_id) {
- if (hw_mem_regions[i].region_size <= irom_len_to_reserve) {
- hw_mem_regions[i].free_head = hw_mem_regions[i].end;
- hw_mem_regions[i].max_slot_size = 0;
- irom_len_to_reserve -= hw_mem_regions[i].region_size;
- } else {
- hw_mem_regions[i].free_head = hw_mem_regions[i].free_head + irom_len_to_reserve;
- hw_mem_regions[i].max_slot_size -= irom_len_to_reserve;
- }
- }
- }
- }
- static void s_reserve_drom_region(mem_region_t *hw_mem_regions, int region_nums)
- {
- /**
- * Similarly, we follow the way how 1st bootloader load flash .rodata:
- */
- extern int _rodata_reserved_start;
- extern int _rodata_reserved_end;
- size_t drom_len_to_reserve = (uint32_t)&_rodata_reserved_end - (uint32_t)&_rodata_reserved_start;
- assert((mmu_ll_vaddr_to_laddr((uint32_t)&_rodata_reserved_end) - mmu_ll_vaddr_to_laddr((uint32_t)&_rodata_reserved_start)) == drom_len_to_reserve);
- drom_len_to_reserve += (uint32_t)&_rodata_reserved_start - ALIGN_DOWN_BY((uint32_t)&_rodata_reserved_start, CONFIG_MMU_PAGE_SIZE);
- drom_len_to_reserve = ALIGN_UP_BY(drom_len_to_reserve, CONFIG_MMU_PAGE_SIZE);
- cache_bus_mask_t bus_mask = s_get_bus_mask((uint32_t)&_rodata_reserved_start, drom_len_to_reserve);
- for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
- if (bus_mask & hw_mem_regions[i].bus_id) {
- if (hw_mem_regions[i].region_size <= drom_len_to_reserve) {
- hw_mem_regions[i].free_head = hw_mem_regions[i].end;
- hw_mem_regions[i].max_slot_size = 0;
- drom_len_to_reserve -= hw_mem_regions[i].region_size;
- } else {
- hw_mem_regions[i].free_head = hw_mem_regions[i].free_head + drom_len_to_reserve;
- hw_mem_regions[i].max_slot_size -= drom_len_to_reserve;
- }
- }
- }
- }
- #endif //#if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
- void esp_mmu_map_init(void)
- {
- mem_region_t hw_mem_regions[SOC_MMU_LINEAR_ADDRESS_REGION_NUM] = {};
- for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
- hw_mem_regions[i].start = g_mmu_mem_regions[i].start;
- hw_mem_regions[i].end = g_mmu_mem_regions[i].end;
- hw_mem_regions[i].region_size = g_mmu_mem_regions[i].size;
- hw_mem_regions[i].max_slot_size = g_mmu_mem_regions[i].size;
- hw_mem_regions[i].free_head = g_mmu_mem_regions[i].start;
- hw_mem_regions[i].bus_id = g_mmu_mem_regions[i].bus_id;
- hw_mem_regions[i].caps = g_mmu_mem_regions[i].caps;
- hw_mem_regions[i].targets = g_mmu_mem_regions[i].targets;
- #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
- assert(__builtin_popcount(hw_mem_regions[i].bus_id) == 1);
- #endif
- assert(hw_mem_regions[i].region_size % CONFIG_MMU_PAGE_SIZE == 0);
- }
- #if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
- //First reserve memory regions used for irom and drom, as we must follow the way how 1st bootloader load them
- s_reserve_irom_region(hw_mem_regions, SOC_MMU_LINEAR_ADDRESS_REGION_NUM);
- s_reserve_drom_region(hw_mem_regions, SOC_MMU_LINEAR_ADDRESS_REGION_NUM);
- #endif //#if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
- if (SOC_MMU_LINEAR_ADDRESS_REGION_NUM > 1) {
- //Now we can coalesce adjacent regions
- for (int i = 1; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
- mem_region_t *a = &hw_mem_regions[i - 1];
- mem_region_t *b = &hw_mem_regions[i];
- if ((b->free_head == a->end) && (b->caps == a->caps) && (b->targets == a->targets)) {
- a->caps = MEM_REGION_MERGED;
- b->bus_id |= a->bus_id;
- b->start = a->start;
- b->region_size += a->region_size;
- b->free_head = a->free_head;
- b->max_slot_size += a->max_slot_size;
- }
- }
- }
- //Count the mem regions left after coalescing
- uint32_t region_num = 0;
- for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
- if (hw_mem_regions[i].caps != MEM_REGION_MERGED) {
- region_num++;
- }
- }
- ESP_EARLY_LOGV(TAG, "after coalescing, %d regions are left", region_num);
- //Initialise `s_mmu_ctx.mem_regions[]`, as we've done all static allocation, to prepare available virtual memory regions
- uint32_t available_region_idx = 0;
- s_mmu_ctx.num_regions = region_num;
- for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
- if (hw_mem_regions[i].caps == MEM_REGION_MERGED) {
- continue;
- }
- memcpy(&s_mmu_ctx.mem_regions[available_region_idx], &hw_mem_regions[i], sizeof(mem_region_t));
- available_region_idx++;
- }
- for (int i = 0; i < available_region_idx; i++) {
- TAILQ_INIT(&s_mmu_ctx.mem_regions[i].mem_block_head);
- }
- assert(available_region_idx == region_num);
- }
- static esp_err_t s_mem_caps_check(mmu_mem_caps_t caps)
- {
- if (caps & MMU_MEM_CAP_EXEC) {
- if ((caps & MMU_MEM_CAP_8BIT) || (caps & MMU_MEM_CAP_WRITE)) {
- //None of the executable memory are expected to be 8-bit accessible or writable.
- return ESP_ERR_INVALID_ARG;
- }
- caps |= MMU_MEM_CAP_32BIT;
- }
- return ESP_OK;
- }
- esp_err_t esp_mmu_map_get_max_consecutive_free_block_size(mmu_mem_caps_t caps, mmu_target_t target, size_t *out_len)
- {
- ESP_RETURN_ON_FALSE(out_len, ESP_ERR_INVALID_ARG, TAG, "null pointer");
- ESP_RETURN_ON_ERROR(s_mem_caps_check(caps), TAG, "invalid caps");
- *out_len = 0;
- size_t max = 0;
- for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
- if (((s_mmu_ctx.mem_regions[i].caps & caps) == caps) && ((s_mmu_ctx.mem_regions[i].targets & target) == target)) {
- if (s_mmu_ctx.mem_regions[i].max_slot_size > max) {
- max = s_mmu_ctx.mem_regions[i].max_slot_size;
- }
- }
- }
- *out_len = max;
- return ESP_OK;
- }
- static int32_t s_find_available_region(mem_region_t *mem_regions, uint32_t region_nums, size_t size, mmu_mem_caps_t caps, mmu_target_t target)
- {
- int32_t found_region_id = -1;
- for (int i = 0; i < region_nums; i++) {
- if (((mem_regions[i].caps & caps) == caps) && ((mem_regions[i].targets & target) == target)) {
- if (mem_regions[i].max_slot_size >= size) {
- found_region_id = i;
- break;
- }
- }
- }
- return found_region_id;
- }
- esp_err_t esp_mmu_map_reserve_block_with_caps(size_t size, mmu_mem_caps_t caps, mmu_target_t target, const void **out_ptr)
- {
- ESP_RETURN_ON_FALSE(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
- ESP_RETURN_ON_ERROR(s_mem_caps_check(caps), TAG, "invalid caps");
- size_t aligned_size = ALIGN_UP_BY(size, CONFIG_MMU_PAGE_SIZE);
- uint32_t laddr = 0;
- int32_t found_region_id = s_find_available_region(s_mmu_ctx.mem_regions, s_mmu_ctx.num_regions, aligned_size, caps, target);
- if (found_region_id == -1) {
- ESP_EARLY_LOGE(TAG, "no such vaddr range");
- return ESP_ERR_NOT_FOUND;
- }
- laddr = (uint32_t)s_mmu_ctx.mem_regions[found_region_id].free_head;
- s_mmu_ctx.mem_regions[found_region_id].free_head += aligned_size;
- s_mmu_ctx.mem_regions[found_region_id].max_slot_size -= aligned_size;
- ESP_EARLY_LOGV(TAG, "found laddr is 0x%x", laddr);
- uint32_t vaddr = 0;
- if (caps & MMU_MEM_CAP_EXEC) {
- vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_INSTRUCTION, target);
- } else {
- vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_DATA, target);
- }
- *out_ptr = (void *)vaddr;
- return ESP_OK;
- }
- IRAM_ATTR esp_err_t esp_mmu_paddr_find_caps(const esp_paddr_t paddr, mmu_mem_caps_t *out_caps)
- {
- mem_region_t *region = NULL;
- mem_block_t *mem_block = NULL;
- bool found = false;
- mem_block_t *found_block = NULL;
- if (out_caps == NULL) {
- return ESP_ERR_INVALID_ARG;
- }
- for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
- region = &s_mmu_ctx.mem_regions[i];
- TAILQ_FOREACH(mem_block, ®ion->mem_block_head, entries) {
- if (mem_block == TAILQ_FIRST(®ion->mem_block_head) || mem_block == TAILQ_LAST(®ion->mem_block_head, mem_block_head_)) {
- //we don't care the dummy_head and the dummy_tail
- continue;
- }
- //now we are only traversing the actual dynamically allocated blocks, dummy_head and dummy_tail are excluded already
- if (mem_block->paddr_start == paddr) {
- found = true;
- found_block = mem_block;
- break;
- }
- }
- }
- if (!found) {
- return ESP_ERR_NOT_FOUND;
- }
- *out_caps = found_block->caps;
- return ESP_OK;
- }
- static void IRAM_ATTR NOINLINE_ATTR s_do_cache_invalidate(uint32_t vaddr_start, uint32_t size)
- {
- #if CONFIG_IDF_TARGET_ESP32
- /**
- * On ESP32, due to hardware limitation, we don't have an
- * easy way to sync between cache and external memory wrt
- * certain range. So we do a full sync here
- */
- cache_sync();
- #else //Other chips
- cache_hal_invalidate_addr(vaddr_start, size);
- #endif // CONFIG_IDF_TARGET_ESP32
- }
- #if MMU_LL_MMU_PER_TARGET
- FORCE_INLINE_ATTR uint32_t s_mapping_operation(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
- {
- uint32_t actual_mapped_len = 0;
- uint32_t mmu_id = 0;
- if (target == MMU_TARGET_FLASH0) {
- mmu_id = MMU_LL_FLASH_MMU_ID;
- } else {
- mmu_id = MMU_LL_PSRAM_MMU_ID;
- }
- mmu_hal_map_region(mmu_id, target, vaddr_start, paddr_start, size, &actual_mapped_len);
- return actual_mapped_len;
- }
- #else
- FORCE_INLINE_ATTR uint32_t s_mapping_operation(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
- {
- uint32_t actual_mapped_len = 0;
- mmu_hal_map_region(0, target, vaddr_start, paddr_start, size, &actual_mapped_len);
- #if (SOC_MMU_PERIPH_NUM == 2)
- #if !CONFIG_FREERTOS_UNICORE
- mmu_hal_map_region(1, target, vaddr_start, paddr_start, size, &actual_mapped_len);
- #endif // #if !CONFIG_FREERTOS_UNICORE
- #endif // #if (SOC_MMU_PERIPH_NUM == 2)
- return actual_mapped_len;
- }
- #endif
- static void IRAM_ATTR NOINLINE_ATTR s_do_mapping(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
- {
- /**
- * Disable Cache, after this function, involved code and data should be placed in internal RAM.
- *
- * @note we call this for now, but this will be refactored to move out of `spi_flash`
- */
- spi_flash_disable_interrupts_caches_and_other_cpu();
- uint32_t actual_mapped_len = s_mapping_operation(target, vaddr_start, paddr_start, size);
- cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, vaddr_start, size);
- cache_ll_l1_enable_bus(0, bus_mask);
- #if !CONFIG_FREERTOS_UNICORE
- bus_mask = cache_ll_l1_get_bus(0, vaddr_start, size);
- cache_ll_l1_enable_bus(1, bus_mask);
- #endif
- s_do_cache_invalidate(vaddr_start, size);
- //enable Cache, after this function, internal RAM access is no longer mandatory
- spi_flash_enable_interrupts_caches_and_other_cpu();
- ESP_EARLY_LOGV(TAG, "actual_mapped_len is 0x%"PRIx32, actual_mapped_len);
- }
- esp_err_t esp_mmu_map(esp_paddr_t paddr_start, size_t size, mmu_target_t target, mmu_mem_caps_t caps, int flags, void **out_ptr)
- {
- esp_err_t ret = ESP_FAIL;
- ESP_RETURN_ON_FALSE(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
- #if !SOC_SPIRAM_SUPPORTED || CONFIG_IDF_TARGET_ESP32
- ESP_RETURN_ON_FALSE(!(target & MMU_TARGET_PSRAM0), ESP_ERR_NOT_SUPPORTED, TAG, "PSRAM is not supported");
- #endif
- ESP_RETURN_ON_FALSE((paddr_start % CONFIG_MMU_PAGE_SIZE == 0), ESP_ERR_INVALID_ARG, TAG, "paddr must be rounded up to the nearest multiple of CONFIG_MMU_PAGE_SIZE");
- ESP_RETURN_ON_ERROR(s_mem_caps_check(caps), TAG, "invalid caps");
- size_t aligned_size = ALIGN_UP_BY(size, CONFIG_MMU_PAGE_SIZE);
- int32_t found_region_id = s_find_available_region(s_mmu_ctx.mem_regions, s_mmu_ctx.num_regions, aligned_size, caps, target);
- if (found_region_id == -1) {
- ESP_EARLY_LOGE(TAG, "no such vaddr range");
- return ESP_ERR_NOT_FOUND;
- }
- //Now we're sure we can find an available block inside a certain region
- mem_region_t *found_region = &s_mmu_ctx.mem_regions[found_region_id];
- mem_block_t *dummy_head = NULL;
- mem_block_t *dummy_tail = NULL;
- mem_block_t *new_block = NULL;
- if (TAILQ_EMPTY(&found_region->mem_block_head)) {
- dummy_head = (mem_block_t *)heap_caps_calloc(1, sizeof(mem_block_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
- ESP_GOTO_ON_FALSE(dummy_head, ESP_ERR_NO_MEM, err, TAG, "no mem");
- dummy_head->laddr_start = found_region->free_head;
- dummy_head->laddr_end = found_region->free_head;
- //We don't care vaddr or paddr address for dummy head
- dummy_head->size = 0;
- dummy_head->caps = caps;
- TAILQ_INSERT_HEAD(&found_region->mem_block_head, dummy_head, entries);
- dummy_tail = (mem_block_t *)heap_caps_calloc(1, sizeof(mem_block_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
- ESP_GOTO_ON_FALSE(dummy_tail, ESP_ERR_NO_MEM, err, TAG, "no mem");
- dummy_tail->laddr_start = found_region->end;
- dummy_tail->laddr_end = found_region->end;
- //We don't care vaddr or paddr address for dummy tail
- dummy_tail->size = 0;
- dummy_tail->caps = caps;
- TAILQ_INSERT_TAIL(&found_region->mem_block_head, dummy_tail, entries);
- }
- //Check if paddr is overlapped
- mem_block_t *mem_block = NULL;
- #if ENABLE_PADDR_CHECK
- bool is_enclosed = false;
- bool is_overlapped = false;
- bool allow_overlap = flags & ESP_MMU_MMAP_FLAG_PADDR_SHARED;
- TAILQ_FOREACH(mem_block, &found_region->mem_block_head, entries) {
- if (target == mem_block->target) {
- if ((s_is_enclosed(mem_block->paddr_start, mem_block->paddr_end, paddr_start, aligned_size))) {
- //the to-be-mapped paddr block is mapped already
- is_enclosed = true;
- break;
- }
- if (!allow_overlap && (s_is_overlapped(mem_block->paddr_start, mem_block->paddr_end, paddr_start, aligned_size))) {
- is_overlapped = true;
- break;
- }
- }
- }
- if (is_enclosed) {
- ESP_LOGW(TAG, "paddr block is mapped already, vaddr_start: %p, size: 0x%x", (void *)mem_block->vaddr_start, mem_block->size);
- *out_ptr = (void *)mem_block->vaddr_start;
- return ESP_ERR_INVALID_STATE;
- }
- if (!allow_overlap && is_overlapped) {
- ESP_LOGE(TAG, "paddr block is overlapped with an already mapped paddr block");
- return ESP_ERR_INVALID_ARG;
- }
- #endif //#if ENABLE_PADDR_CHECK
- new_block = (mem_block_t *)heap_caps_calloc(1, sizeof(mem_block_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
- ESP_GOTO_ON_FALSE(new_block, ESP_ERR_NO_MEM, err, TAG, "no mem");
- //Reserve this block as it'll be mapped
- bool found = false;
- // Get the end address of the dummy_head block, which is always first block on the list
- uint32_t last_end = TAILQ_FIRST(&found_region->mem_block_head)->laddr_end;
- size_t slot_len = 0;
- size_t max_slot_len = 0;
- mem_block_t *found_block = NULL; //This stands for the block we found, whose slot between its prior block is where we will insert the new block to
- TAILQ_FOREACH(mem_block, &found_region->mem_block_head, entries) {
- slot_len = mem_block->laddr_start - last_end;
- if (!found) {
- if (slot_len >= aligned_size) {
- //Found it
- found = true;
- found_block = mem_block;
- slot_len -= aligned_size;
- new_block->laddr_start = last_end;
- }
- }
- max_slot_len = (slot_len > max_slot_len) ? slot_len : max_slot_len;
- last_end = mem_block->laddr_end;
- }
- assert(found);
- //insert the to-be-mapped new block to the list
- TAILQ_INSERT_BEFORE(found_block, new_block, entries);
- //Finally, we update the max_slot_size
- found_region->max_slot_size = max_slot_len;
- //Now we fill others according to the found `new_block->laddr_start`
- new_block->laddr_end = new_block->laddr_start + aligned_size;
- new_block->size = aligned_size;
- new_block->caps = caps;
- new_block->paddr_start = paddr_start;
- new_block->paddr_end = paddr_start + aligned_size;
- new_block->target = target;
- if (caps & MMU_MEM_CAP_EXEC) {
- new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_INSTRUCTION, target);
- new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_INSTRUCTION, target);
- } else {
- new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_DATA, target);
- new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_DATA, target);
- }
- //do mapping
- s_do_mapping(target, new_block->vaddr_start, paddr_start, aligned_size);
- *out_ptr = (void *)new_block->vaddr_start;
- return ESP_OK;
- err:
- if (dummy_tail) {
- free(dummy_tail);
- }
- if (dummy_head) {
- free(dummy_head);
- }
- return ret;
- }
- #if MMU_LL_MMU_PER_TARGET
- FORCE_INLINE_ATTR void s_unmapping_operation(uint32_t vaddr_start, uint32_t size)
- {
- uint32_t mmu_id = 0;
- mmu_target_t target = mmu_ll_vaddr_to_target(vaddr_start);
- if (target == MMU_TARGET_FLASH0) {
- mmu_id = MMU_LL_FLASH_MMU_ID;
- } else {
- mmu_id = MMU_LL_PSRAM_MMU_ID;
- }
- mmu_hal_unmap_region(mmu_id, vaddr_start, size);
- }
- #else
- FORCE_INLINE_ATTR void s_unmapping_operation(uint32_t vaddr_start, uint32_t size)
- {
- mmu_hal_unmap_region(0, vaddr_start, size);
- #if (SOC_MMU_PERIPH_NUM == 2)
- #if !CONFIG_FREERTOS_UNICORE
- mmu_hal_unmap_region(1, vaddr_start, size);
- #endif // #if !CONFIG_FREERTOS_UNICORE
- #endif // #if (SOC_MMU_PERIPH_NUM == 2)
- }
- #endif
- static void IRAM_ATTR NOINLINE_ATTR s_do_unmapping(uint32_t vaddr_start, uint32_t size)
- {
- /**
- * Disable Cache, after this function, involved code and data should be placed in internal RAM.
- *
- * @note we call this for now, but this will be refactored to move out of `spi_flash`
- */
- spi_flash_disable_interrupts_caches_and_other_cpu();
- s_unmapping_operation(vaddr_start, size);
- //enable Cache, after this function, internal RAM access is no longer mandatory
- spi_flash_enable_interrupts_caches_and_other_cpu();
- }
- esp_err_t esp_mmu_unmap(void *ptr)
- {
- ESP_RETURN_ON_FALSE(ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
- mem_region_t *region = NULL;
- mem_block_t *mem_block = NULL;
- uint32_t ptr_laddr = mmu_ll_vaddr_to_laddr((uint32_t)ptr);
- size_t slot_len = 0;
- for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
- if (ptr_laddr >= s_mmu_ctx.mem_regions[i].free_head && ptr_laddr < s_mmu_ctx.mem_regions[i].end) {
- region = &s_mmu_ctx.mem_regions[i];
- }
- }
- ESP_RETURN_ON_FALSE(region, ESP_ERR_NOT_FOUND, TAG, "munmap target pointer is outside external memory regions");
- bool found = false;
- mem_block_t *found_block = NULL;
- TAILQ_FOREACH(mem_block, ®ion->mem_block_head, entries) {
- if (mem_block == TAILQ_FIRST(®ion->mem_block_head) || mem_block == TAILQ_LAST(®ion->mem_block_head, mem_block_head_)) {
- //we don't care the dummy_head and the dummy_tail
- continue;
- }
- //now we are only traversing the actual dynamically allocated blocks, dummy_head and dummy_tail are excluded already
- if (mem_block->laddr_start == ptr_laddr) {
- slot_len = TAILQ_NEXT(mem_block, entries)->laddr_start - TAILQ_PREV(mem_block, mem_block_head_, entries)->laddr_end;
- region->max_slot_size = (slot_len > region->max_slot_size) ? slot_len : region->max_slot_size;
- found = true;
- found_block = mem_block;
- break;
- }
- }
- ESP_RETURN_ON_FALSE(found, ESP_ERR_NOT_FOUND, TAG, "munmap target pointer isn't mapped yet");
- //do unmap
- s_do_unmapping(mem_block->vaddr_start, mem_block->size);
- //remove the already unmapped block from the list
- TAILQ_REMOVE(®ion->mem_block_head, found_block, entries);
- free(found_block);
- return ESP_OK;
- }
- esp_err_t esp_mmu_map_dump_mapped_blocks(FILE* stream)
- {
- char line[100];
- for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
- fprintf(stream, "region %d:\n", i);
- fprintf(stream, "%-15s %-14s %-14s %-12s %-12s %-12s\n", "Bus ID", "Start", "Free Head", "End", "Caps", "Max Slot Size");
- char *buf = line;
- size_t len = sizeof(line);
- memset(line, 0x0, len);
- snprintf(buf, len, "0x%-13x 0x%-12"PRIx32" 0x%-11"PRIx32" 0x%-10"PRIx32" 0x%-10x 0x%-8x\n",
- s_mmu_ctx.mem_regions[i].bus_id,
- s_mmu_ctx.mem_regions[i].start,
- s_mmu_ctx.mem_regions[i].free_head,
- s_mmu_ctx.mem_regions[i].end,
- s_mmu_ctx.mem_regions[i].caps,
- s_mmu_ctx.mem_regions[i].max_slot_size);
- fputs(line, stream);
- fprintf(stream, "mapped blocks:\n");
- fprintf(stream, "%-4s %-13s %-12s %-12s %-6s %-13s %-11s\n", "ID", "Vaddr Start", "Vaddr End", "Block Size", "Caps", "Paddr Start", "Paddr End");
- mem_region_t *region = &s_mmu_ctx.mem_regions[i];
- mem_block_t *mem_block = NULL;
- int id = 0;
- TAILQ_FOREACH(mem_block, ®ion->mem_block_head, entries) {
- if (mem_block != TAILQ_FIRST(®ion->mem_block_head) && mem_block != TAILQ_LAST(®ion->mem_block_head, mem_block_head_)) {
- snprintf(buf, len, "%-4d 0x%-11x 0x%-10x 0x%-10x 0x%-4x 0x%-11"PRIx32" 0x%-8"PRIx32"\n",
- id,
- mem_block->vaddr_start,
- mem_block->vaddr_end,
- mem_block->size,
- mem_block->caps,
- mem_block->paddr_start,
- mem_block->paddr_end);
- fputs(line, stream);
- id++;
- }
- }
- fprintf(stream, "\n");
- }
- return ESP_OK;
- }
- /*---------------------------------------------------------------
- Private dump functions, IRAM Safe
- ---------------------------------------------------------------*/
- esp_err_t IRAM_ATTR esp_mmu_map_dump_mapped_blocks_private(void)
- {
- for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
- mem_region_t *region = &s_mmu_ctx.mem_regions[i];
- mem_block_t *mem_block = NULL;
- TAILQ_FOREACH(mem_block, ®ion->mem_block_head, entries) {
- if (mem_block != TAILQ_FIRST(®ion->mem_block_head) && mem_block != TAILQ_LAST(®ion->mem_block_head, mem_block_head_)) {
- ESP_DRAM_LOGI(TAG, "block vaddr_start: 0x%x", mem_block->vaddr_start);
- ESP_DRAM_LOGI(TAG, "block vaddr_end: 0x%x", mem_block->vaddr_end);
- ESP_DRAM_LOGI(TAG, "block size: 0x%x", mem_block->size);
- ESP_DRAM_LOGI(TAG, "block caps: 0x%x\n", mem_block->caps);
- ESP_DRAM_LOGI(TAG, "block paddr_start: 0x%x\n", mem_block->paddr_start);
- ESP_DRAM_LOGI(TAG, "block paddr_end: 0x%x\n", mem_block->paddr_end);
- }
- }
- ESP_DRAM_LOGI(TAG, "region bus_id: 0x%x", s_mmu_ctx.mem_regions[i].bus_id);
- ESP_DRAM_LOGI(TAG, "region start: 0x%x", s_mmu_ctx.mem_regions[i].start);
- ESP_DRAM_LOGI(TAG, "region end: 0x%x", s_mmu_ctx.mem_regions[i].end);
- ESP_DRAM_LOGI(TAG, "region caps: 0x%x\n", s_mmu_ctx.mem_regions[i].caps);
- }
- return ESP_OK;
- }
- /*---------------------------------------------------------------
- Helper APIs for conversion between vaddr and paddr
- ---------------------------------------------------------------*/
- static bool NOINLINE_ATTR IRAM_ATTR s_vaddr_to_paddr(uint32_t vaddr, esp_paddr_t *out_paddr, mmu_target_t *out_target)
- {
- //we call this for now, but this will be refactored to move out of `spi_flash`
- spi_flash_disable_interrupts_caches_and_other_cpu();
- //On ESP32, core 1 settings should be the same as the core 0
- bool is_mapped = mmu_hal_vaddr_to_paddr(0, vaddr, out_paddr, out_target);
- spi_flash_enable_interrupts_caches_and_other_cpu();
- return is_mapped;
- }
- esp_err_t esp_mmu_vaddr_to_paddr(void *vaddr, esp_paddr_t *out_paddr, mmu_target_t *out_target)
- {
- ESP_RETURN_ON_FALSE(vaddr && out_paddr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
- ESP_RETURN_ON_FALSE(mmu_hal_check_valid_ext_vaddr_region(0, (uint32_t)vaddr, 1, MMU_VADDR_DATA | MMU_VADDR_INSTRUCTION), ESP_ERR_INVALID_ARG, TAG, "not a valid external virtual address");
- esp_paddr_t paddr = 0;
- mmu_target_t target = 0;
- bool is_mapped = s_vaddr_to_paddr((uint32_t)vaddr, &paddr, &target);
- ESP_RETURN_ON_FALSE(is_mapped, ESP_ERR_NOT_FOUND, TAG, "vaddr isn't mapped");
- *out_paddr = paddr;
- *out_target = target;
- return ESP_OK;
- }
- static bool NOINLINE_ATTR IRAM_ATTR s_paddr_to_vaddr(esp_paddr_t paddr, mmu_target_t target, mmu_vaddr_t type, uint32_t *out_vaddr)
- {
- //we call this for now, but this will be refactored to move out of `spi_flash`
- spi_flash_disable_interrupts_caches_and_other_cpu();
- //On ESP32, core 1 settings should be the same as the core 0
- bool found = mmu_hal_paddr_to_vaddr(0, paddr, target, type, out_vaddr);
- spi_flash_enable_interrupts_caches_and_other_cpu();
- return found;
- }
- esp_err_t esp_mmu_paddr_to_vaddr(esp_paddr_t paddr, mmu_target_t target, mmu_vaddr_t type, void **out_vaddr)
- {
- ESP_RETURN_ON_FALSE(out_vaddr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
- uint32_t vaddr = 0;
- bool found = false;
- found = s_paddr_to_vaddr(paddr, target, type, &vaddr);
- ESP_RETURN_ON_FALSE(found, ESP_ERR_NOT_FOUND, TAG, "paddr isn't mapped");
- *out_vaddr = (void *)vaddr;
- return ESP_OK;
- }
- #if ENABLE_PADDR_CHECK
- /*---------------------------------------------------------------
- Helper functions to check block
- ---------------------------------------------------------------*/
- /**
- * Check if a new block is enclosed by another, e.g.
- *
- * This is enclosed:
- *
- * new_block_start new_block_end
- * |-------- New Block --------|
- * |--------------- Block ---------------|
- * block_start block_end
- *
- * @note Note the difference between `s_is_overlapped()` below
- *
- * @param block_start An original block start
- * @param block_end An original block end
- * @param new_block_start New block start
- * @param new_block_size New block size
- *
- * @return True: new block is enclosed; False: new block is not enclosed
- */
- static bool s_is_enclosed(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size)
- {
- bool is_enclosed = false;
- uint32_t new_block_end = new_block_start + new_block_size;
- if ((new_block_start >= block_start) && (new_block_end <= block_end)) {
- is_enclosed = true;
- } else {
- is_enclosed = false;
- }
- return is_enclosed;
- }
- /**
- * Check if a new block is overlapped by another, e.g.
- *
- * This is overlapped:
- *
- * new_block_start new_block_end
- * |---------- New Block ----------|
- * |--------------- Block ---------------|
- * block_start block_end
- *
- * @note Note the difference between `s_is_enclosed()` above
- *
- * @param block_start An original block start
- * @param block_end An original block end
- * @param new_block_start New block start
- * @param new_block_size New block size
- *
- * @return True: new block is overlapped; False: new block is not overlapped
- */
- static bool s_is_overlapped(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size)
- {
- bool is_overlapped = false;
- uint32_t new_block_end = new_block_start + new_block_size;
- if (((new_block_start < block_start) && (new_block_end > block_start)) ||
- ((new_block_start < block_end) && (new_block_end > block_end))) {
- is_overlapped = true;
- } else {
- is_overlapped = false;
- }
- return is_overlapped;
- }
- #endif //#if ENABLE_PADDR_CHECK
|