| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458 |
- /*
- * SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- /*----------------------------------------------------------------------------------------------------
- * Abstraction layer for PSRAM. PSRAM device related registers and MMU/Cache related code shouls be
- * abstracted to lower layers.
- *
- * When we add more types of external RAM memory, this can be made into a more intelligent dispatcher.
- *----------------------------------------------------------------------------------------------------*/
- #include <sys/param.h>
- #include "sdkconfig.h"
- #include "esp_attr.h"
- #include "esp_err.h"
- #include "esp_log.h"
- #include "freertos/FreeRTOS.h"
- #include "esp_heap_caps_init.h"
- #include "hal/mmu_hal.h"
- #include "hal/mmu_ll.h"
- #include "hal/cache_ll.h"
- #include "esp_private/esp_psram_io.h"
- #include "esp_private/esp_psram_extram.h"
- #include "esp_private/mmu_psram_flash.h"
- #include "esp_psram_impl.h"
- #include "esp_psram.h"
- #include "esp_private/esp_mmu_map_private.h"
- #include "esp_mmu_map.h"
- #if CONFIG_IDF_TARGET_ESP32
- #include "esp32/himem.h"
- #include "esp32/rom/cache.h"
- #include "esp_private/esp_cache_esp32_private.h"
- #endif
- /**
- * Two types of PSRAM memory regions for now:
- * - 8bit aligned
- * - 32bit aligned
- */
- #define PSRAM_MEM_TYPE_NUM 2
- #define PSRAM_MEM_8BIT_ALIGNED 0
- #define PSRAM_MEM_32BIT_ALIGNED 1
- #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
- extern uint8_t _ext_ram_bss_start;
- extern uint8_t _ext_ram_bss_end;
- #endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
- #if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
- extern uint8_t _ext_ram_noinit_start;
- extern uint8_t _ext_ram_noinit_end;
- #endif //#if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
- typedef struct {
- intptr_t vaddr_start;
- intptr_t vaddr_end;
- size_t size; //in bytes
- } psram_mem_t;
- typedef struct {
- bool is_initialised;
- /**
- * @note 1
- * As we can't use heap allocator during this stage, we need to statically declare these regions.
- * Luckily only S2 has two different types of memory regions:
- * - byte-aligned memory
- * - word-aligned memory
- * On the other hand, the type number usually won't be very big
- *
- * On other chips, only one region is needed.
- * So for chips other than S2, size of `regions_to_heap[1]` and `mapped_regions[1]`will always be zero.
- *
- * If in the future, this condition is worse (dbus memory isn't consecutive), we need to delegate this context
- * to chip-specific files, and only keep a (void *) pointer here pointing to those chip-specific contexts
- */
- psram_mem_t regions_to_heap[PSRAM_MEM_TYPE_NUM]; //memory regions that are available to be added to the heap allocator
- psram_mem_t mapped_regions[PSRAM_MEM_TYPE_NUM]; //mapped memory regions
- } psram_ctx_t;
- static psram_ctx_t s_psram_ctx;
- static const char* TAG = "esp_psram";
- #if CONFIG_IDF_TARGET_ESP32
- //If no function in esp_himem.c is used, this function will be linked into the
- //binary instead of the one in esp_himem.c, automatically making sure no memory
- //is reserved if no himem function is used.
- size_t __attribute__((weak)) esp_himem_reserved_area_size(void)
- {
- return 0;
- }
- static void IRAM_ATTR s_mapping(int v_start, int size)
- {
- //Enable external RAM in MMU
- cache_sram_mmu_set(0, 0, v_start, 0, 32, (size / 1024 / 32));
- //Flush and enable icache for APP CPU
- #if !CONFIG_FREERTOS_UNICORE
- DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DRAM1);
- cache_sram_mmu_set(1, 0, v_start, 0, 32, (size / 1024 / 32));
- #endif
- }
- #endif //CONFIG_IDF_TARGET_ESP32
- esp_err_t esp_psram_init(void)
- {
- if (s_psram_ctx.is_initialised) {
- return ESP_ERR_INVALID_STATE;
- }
- esp_err_t ret = ESP_FAIL;
- ret = esp_psram_impl_enable();
- if (ret != ESP_OK) {
- #if CONFIG_SPIRAM_IGNORE_NOTFOUND
- ESP_EARLY_LOGE(TAG, "PSRAM enabled but initialization failed. Bailing out.");
- #endif
- return ret;
- }
- s_psram_ctx.is_initialised = true;
- uint32_t psram_physical_size = 0;
- ret = esp_psram_impl_get_physical_size(&psram_physical_size);
- assert(ret == ESP_OK);
- ESP_EARLY_LOGI(TAG, "Found %dMB PSRAM device", psram_physical_size / (1024 * 1024));
- ESP_EARLY_LOGI(TAG, "Speed: %dMHz", CONFIG_SPIRAM_SPEED);
- #if CONFIG_IDF_TARGET_ESP32
- #if CONFIG_FREERTOS_UNICORE
- ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in normal (1-core) mode.");
- #else
- ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in low/high (2-core) mode.");
- #endif
- #endif
- uint32_t psram_available_size = 0;
- ret = esp_psram_impl_get_available_size(&psram_available_size);
- assert(ret == ESP_OK);
- __attribute__((unused)) uint32_t total_available_size = psram_available_size;
- /**
- * `start_page` is the psram physical address in MMU page size.
- * MMU page size on ESP32S2 is 64KB
- * e.g.: psram physical address 16 is in page 0
- *
- * Here we plan to copy FLASH instructions to psram physical address 0, which is the No.0 page.
- */
- __attribute__((unused)) uint32_t start_page = 0;
- #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
- uint32_t used_page = 0;
- #endif
- //------------------------------------Copy Flash .text to PSRAM-------------------------------------//
- #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
- ret = mmu_config_psram_text_segment(start_page, total_available_size, &used_page);
- if (ret != ESP_OK) {
- ESP_EARLY_LOGE(TAG, "No enough psram memory for instructon!");
- abort();
- }
- start_page += used_page;
- psram_available_size -= MMU_PAGE_TO_BYTES(used_page);
- ESP_EARLY_LOGV(TAG, "after copy .text, used page is %d, start_page is %d, psram_available_size is %d B", used_page, start_page, psram_available_size);
- #endif //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
- //------------------------------------Copy Flash .rodata to PSRAM-------------------------------------//
- #if CONFIG_SPIRAM_RODATA
- ret = mmu_config_psram_rodata_segment(start_page, total_available_size, &used_page);
- if (ret != ESP_OK) {
- ESP_EARLY_LOGE(TAG, "No enough psram memory for rodata!");
- abort();
- }
- start_page += used_page;
- psram_available_size -= MMU_PAGE_TO_BYTES(used_page);
- ESP_EARLY_LOGV(TAG, "after copy .rodata, used page is %d, start_page is %d, psram_available_size is %d B", used_page, start_page, psram_available_size);
- #endif //#if CONFIG_SPIRAM_RODATA
- //----------------------------------Map the PSRAM physical range to MMU-----------------------------//
- /**
- * @note 2
- * Similarly to @note 1, we expect HW DBUS memory to be consecutive.
- *
- * If situation is worse in the future (memory region isn't consecutive), we need to put these logics into chip-specific files
- */
- size_t total_mapped_size = 0;
- size_t size_to_map = 0;
- size_t byte_aligned_size = 0;
- ret = esp_mmu_map_get_max_consecutive_free_block_size(MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_8BIT | MMU_MEM_CAP_32BIT, MMU_TARGET_PSRAM0, &byte_aligned_size);
- assert(ret == ESP_OK);
- size_to_map = MIN(byte_aligned_size, psram_available_size);
- const void *v_start_8bit_aligned = NULL;
- ret = esp_mmu_map_reserve_block_with_caps(size_to_map, MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_8BIT | MMU_MEM_CAP_32BIT, MMU_TARGET_PSRAM0, &v_start_8bit_aligned);
- assert(ret == ESP_OK);
- #if CONFIG_IDF_TARGET_ESP32
- s_mapping((int)v_start_8bit_aligned, size_to_map);
- #else
- uint32_t actual_mapped_len = 0;
- #if MMU_LL_MMU_PER_TARGET
- mmu_hal_map_region(1, MMU_TARGET_PSRAM0, (intptr_t)v_start_8bit_aligned, MMU_PAGE_TO_BYTES(start_page), size_to_map, &actual_mapped_len);
- #else
- mmu_hal_map_region(0, MMU_TARGET_PSRAM0, (intptr_t)v_start_8bit_aligned, MMU_PAGE_TO_BYTES(start_page), size_to_map, &actual_mapped_len);
- #endif
- start_page += BYTES_TO_MMU_PAGE(actual_mapped_len);
- ESP_EARLY_LOGV(TAG, "8bit-aligned-region: actual_mapped_len is 0x%x bytes", actual_mapped_len);
- cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, (uint32_t)v_start_8bit_aligned, actual_mapped_len);
- cache_ll_l1_enable_bus(0, bus_mask);
- #if !CONFIG_FREERTOS_UNICORE
- bus_mask = cache_ll_l1_get_bus(1, (uint32_t)v_start_8bit_aligned, actual_mapped_len);
- cache_ll_l1_enable_bus(1, bus_mask);
- #endif
- #endif //#if CONFIG_IDF_TARGET_ESP32
- s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].size = size_to_map;
- s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_start = (intptr_t)v_start_8bit_aligned;
- s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_end = (intptr_t)v_start_8bit_aligned + size_to_map;
- s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size = size_to_map;
- s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_start = (intptr_t)v_start_8bit_aligned;
- s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_end = (intptr_t)v_start_8bit_aligned + size_to_map;
- ESP_EARLY_LOGV(TAG, "8bit-aligned-range: 0x%x B, starting from: 0x%x", s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].size, v_start_8bit_aligned);
- total_mapped_size += size_to_map;
- #if CONFIG_IDF_TARGET_ESP32S2
- /**
- * On ESP32S2, there are 2 types of DBUS memory:
- * - byte-aligned-memory
- * - word-aligned-memory
- *
- * If byte-aligned-memory isn't enough, we search for word-aligned-memory to do mapping
- */
- if (total_mapped_size < psram_available_size) {
- size_to_map = psram_available_size - total_mapped_size;
- size_t word_aligned_size = 0;
- ret = esp_mmu_map_get_max_consecutive_free_block_size(MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_32BIT, MMU_TARGET_PSRAM0, &word_aligned_size);
- assert(ret == ESP_OK);
- size_to_map = MIN(word_aligned_size, size_to_map);
- const void *v_start_32bit_aligned = NULL;
- ret = esp_mmu_map_reserve_block_with_caps(size_to_map, MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_32BIT, MMU_TARGET_PSRAM0, &v_start_32bit_aligned);
- assert(ret == ESP_OK);
- mmu_hal_map_region(0, MMU_TARGET_PSRAM0, (intptr_t)v_start_32bit_aligned, MMU_PAGE_TO_BYTES(start_page), size_to_map, &actual_mapped_len);
- ESP_EARLY_LOGV(TAG, "32bit-aligned-region: actual_mapped_len is 0x%x bytes", actual_mapped_len);
- cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, (uint32_t)v_start_32bit_aligned, actual_mapped_len);
- cache_ll_l1_enable_bus(0, bus_mask);
- s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].size = size_to_map;
- s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_start = (intptr_t)v_start_32bit_aligned;
- s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_end = (intptr_t)v_start_32bit_aligned + size_to_map;
- s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].size = size_to_map;
- s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_start = (intptr_t)v_start_32bit_aligned;
- s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_end = (intptr_t)v_start_32bit_aligned + size_to_map;
- ESP_EARLY_LOGV(TAG, "32bit-aligned-range: 0x%x B, starting from: 0x%x", s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].size, v_start_32bit_aligned);
- total_mapped_size += size_to_map;
- }
- #endif // #if CONFIG_IDF_TARGET_ESP32S2
- if (total_mapped_size < psram_available_size) {
- ESP_EARLY_LOGW(TAG, "Virtual address not enough for PSRAM, map as much as we can. %dMB is mapped", total_mapped_size / 1024 / 1024);
- }
- /*------------------------------------------------------------------------------
- * After mapping, we DON'T care about the PSRAM PHYSICAL ADDRESSS ANYMORE!
- *----------------------------------------------------------------------------*/
- //------------------------------------Configure .bss in PSRAM-------------------------------------//
- #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
- //should never be negative number
- uint32_t ext_bss_size = ((intptr_t)&_ext_ram_bss_end - (intptr_t)&_ext_ram_bss_start);
- ESP_EARLY_LOGV(TAG, "ext_bss_size is %d", ext_bss_size);
- s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_start += ext_bss_size;
- s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size -= ext_bss_size;
- #endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
- #if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
- uint32_t ext_noinit_size = ((intptr_t)&_ext_ram_noinit_end - (intptr_t)&_ext_ram_noinit_start);
- ESP_EARLY_LOGV(TAG, "ext_noinit_size is %d", ext_noinit_size);
- s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_start += ext_noinit_size;
- s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size -= ext_noinit_size;
- #endif
- #if CONFIG_IDF_TARGET_ESP32
- s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size -= esp_himem_reserved_area_size() - 1;
- #endif
- //will be removed, TODO: IDF-6944
- #if CONFIG_IDF_TARGET_ESP32
- cache_driver_t drv = {
- NULL,
- esp_psram_extram_writeback_cache,
- };
- cache_register_writeback(&drv);
- #endif
- return ESP_OK;
- }
- esp_err_t esp_psram_extram_add_to_heap_allocator(void)
- {
- esp_err_t ret = ESP_FAIL;
- uint32_t byte_aligned_caps[] = {MALLOC_CAP_SPIRAM | MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_8BIT | MALLOC_CAP_32BIT};
- ret = heap_caps_add_region_with_caps(byte_aligned_caps,
- s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_start,
- s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_end);
- if (ret != ESP_OK) {
- return ret;
- }
- if (s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].size) {
- assert(s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_start);
- uint32_t word_aligned_caps[] = {MALLOC_CAP_SPIRAM | MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_32BIT};
- ret = heap_caps_add_region_with_caps(word_aligned_caps,
- s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_start,
- s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_end);
- if (ret != ESP_OK) {
- return ret;
- }
- }
- ESP_EARLY_LOGI(TAG, "Adding pool of %dK of PSRAM memory to heap allocator",
- (s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size + s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].size) / 1024);
- return ESP_OK;
- }
- bool IRAM_ATTR esp_psram_check_ptr_addr(const void *p)
- {
- if (!s_psram_ctx.is_initialised) {
- return false;
- }
- return ((intptr_t)p >= s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_start && (intptr_t)p < s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_end) ||
- ((intptr_t)p >= s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_start && (intptr_t)p < s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_end);
- }
- esp_err_t esp_psram_extram_reserve_dma_pool(size_t size)
- {
- if (size == 0) {
- return ESP_OK; //no-op
- }
- ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size / 1024);
- /* Pool may be allocated in multiple non-contiguous chunks, depending on available RAM */
- while (size > 0) {
- size_t next_size = heap_caps_get_largest_free_block(MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
- next_size = MIN(next_size, size);
- ESP_EARLY_LOGD(TAG, "Allocating block of size %d bytes", next_size);
- uint8_t *dma_heap = heap_caps_malloc(next_size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
- if (!dma_heap || next_size == 0) {
- return ESP_ERR_NO_MEM;
- }
- uint32_t caps[] = {0, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT | MALLOC_CAP_32BIT};
- esp_err_t e = heap_caps_add_region_with_caps(caps, (intptr_t)dma_heap, (intptr_t)dma_heap + next_size - 1);
- if (e != ESP_OK) {
- return e;
- }
- size -= next_size;
- }
- return ESP_OK;
- }
- bool IRAM_ATTR __attribute__((pure)) esp_psram_is_initialized(void)
- {
- return s_psram_ctx.is_initialised;
- }
- size_t esp_psram_get_size(void)
- {
- uint32_t available_size = 0;
- esp_err_t ret = esp_psram_impl_get_available_size(&available_size);
- if (ret != ESP_OK) {
- //This means PSRAM isn't initialised, to keep back-compatibility, set size to 0.
- available_size = 0;
- }
- return (size_t)available_size;
- }
- uint8_t esp_psram_io_get_cs_io(void)
- {
- return esp_psram_impl_get_cs_io();
- }
- /*
- Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns
- true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been
- initialized (in a two-core system) or after the heap allocator has taken ownership of the memory.
- */
- static bool s_test_psram(intptr_t v_start, size_t size, intptr_t reserved_start, intptr_t reserved_end)
- {
- volatile int *spiram = (volatile int *)v_start;
- size_t p;
- int errct = 0;
- int initial_err = -1;
- for (p = 0; p < (size / sizeof(int)); p += 8) {
- intptr_t addr = (intptr_t)&spiram[p];
- if ((reserved_start <= addr) && (addr < reserved_end)) {
- continue;
- }
- spiram[p] = p ^ 0xAAAAAAAA;
- }
- for (p = 0; p < (size / sizeof(int)); p += 8) {
- intptr_t addr = (intptr_t)&spiram[p];
- if ((reserved_start <= addr) && (addr < reserved_end)) {
- continue;
- }
- if (spiram[p] != (p ^ 0xAAAAAAAA)) {
- errct++;
- if (errct == 1) {
- initial_err = p * 4;
- }
- }
- }
- if (errct) {
- ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, size / 32, initial_err + v_start);
- return false;
- } else {
- ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK");
- return true;
- }
- }
- bool esp_psram_extram_test(void)
- {
- bool test_success = false;
- #if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
- intptr_t noinit_vstart = (intptr_t)&_ext_ram_noinit_start;
- intptr_t noinit_vend = (intptr_t)&_ext_ram_noinit_end;
- #else
- intptr_t noinit_vstart = 0;
- intptr_t noinit_vend = 0;
- #endif
- test_success = s_test_psram(s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_start,
- s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].size,
- noinit_vstart,
- noinit_vend);
- if (!test_success) {
- return false;
- }
- if (s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].size) {
- test_success = s_test_psram(s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_start,
- s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].size,
- 0,
- 0);
- }
- if (!test_success) {
- return false;
- }
- return true;
- }
|