mmu_hal.c 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. /*
  2. * SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <sys/param.h>
  7. #include <stdint.h>
  8. #include <stdbool.h>
  9. #include "sdkconfig.h"
  10. #include "esp_err.h"
  11. #include "esp_attr.h"
  12. #include "hal/assert.h"
  13. #include "hal/mmu_hal.h"
  14. #include "hal/mmu_ll.h"
  15. #include "rom/cache.h"
  16. void mmu_hal_init(void)
  17. {
  18. #if CONFIG_ESP_ROM_RAM_APP_NEEDS_MMU_INIT
  19. ROM_Boot_Cache_Init();
  20. #endif
  21. mmu_ll_set_page_size(0, CONFIG_MMU_PAGE_SIZE);
  22. mmu_hal_unmap_all();
  23. }
  24. void mmu_hal_unmap_all(void)
  25. {
  26. #if MMU_LL_MMU_PER_TARGET
  27. mmu_ll_unmap_all(MMU_LL_FLASH_MMU_ID);
  28. mmu_ll_unmap_all(MMU_LL_PSRAM_MMU_ID);
  29. #else
  30. mmu_ll_unmap_all(0);
  31. #if !CONFIG_FREERTOS_UNICORE
  32. mmu_ll_unmap_all(1);
  33. #endif
  34. #endif
  35. }
  36. uint32_t mmu_hal_pages_to_bytes(uint32_t mmu_id, uint32_t page_num)
  37. {
  38. mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
  39. uint32_t shift_code = 0;
  40. switch (page_size) {
  41. case MMU_PAGE_64KB:
  42. shift_code = 16;
  43. break;
  44. case MMU_PAGE_32KB:
  45. shift_code = 15;
  46. break;
  47. case MMU_PAGE_16KB:
  48. shift_code = 14;
  49. break;
  50. default:
  51. HAL_ASSERT(shift_code);
  52. }
  53. return page_num << shift_code;
  54. }
  55. uint32_t mmu_hal_bytes_to_pages(uint32_t mmu_id, uint32_t bytes)
  56. {
  57. mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
  58. uint32_t shift_code = 0;
  59. switch (page_size) {
  60. case MMU_PAGE_64KB:
  61. shift_code = 16;
  62. break;
  63. case MMU_PAGE_32KB:
  64. shift_code = 15;
  65. break;
  66. case MMU_PAGE_16KB:
  67. shift_code = 14;
  68. break;
  69. default:
  70. HAL_ASSERT(shift_code);
  71. }
  72. return bytes >> shift_code;
  73. }
  74. void mmu_hal_map_region(uint32_t mmu_id, mmu_target_t mem_type, uint32_t vaddr, uint32_t paddr, uint32_t len, uint32_t *out_len)
  75. {
  76. uint32_t page_size_in_bytes = mmu_hal_pages_to_bytes(mmu_id, 1);
  77. HAL_ASSERT(vaddr % page_size_in_bytes == 0);
  78. HAL_ASSERT(paddr % page_size_in_bytes == 0);
  79. HAL_ASSERT(mmu_ll_check_valid_paddr_region(mmu_id, paddr, len));
  80. HAL_ASSERT(mmu_hal_check_valid_ext_vaddr_region(mmu_id, vaddr, len, MMU_VADDR_DATA | MMU_VADDR_INSTRUCTION));
  81. uint32_t page_num = (len + page_size_in_bytes - 1) / page_size_in_bytes;
  82. uint32_t entry_id = 0;
  83. uint32_t mmu_val; //This is the physical address in the format that MMU supported
  84. *out_len = mmu_hal_pages_to_bytes(mmu_id, page_num);
  85. mmu_val = mmu_ll_format_paddr(mmu_id, paddr, mem_type);
  86. while (page_num) {
  87. entry_id = mmu_ll_get_entry_id(mmu_id, vaddr);
  88. mmu_ll_write_entry(mmu_id, entry_id, mmu_val, mem_type);
  89. vaddr += page_size_in_bytes;
  90. mmu_val++;
  91. page_num--;
  92. }
  93. }
  94. void mmu_hal_unmap_region(uint32_t mmu_id, uint32_t vaddr, uint32_t len)
  95. {
  96. uint32_t page_size_in_bytes = mmu_hal_pages_to_bytes(mmu_id, 1);
  97. HAL_ASSERT(vaddr % page_size_in_bytes == 0);
  98. HAL_ASSERT(mmu_hal_check_valid_ext_vaddr_region(mmu_id, vaddr, len, MMU_VADDR_DATA | MMU_VADDR_INSTRUCTION));
  99. uint32_t page_num = (len + page_size_in_bytes - 1) / page_size_in_bytes;
  100. uint32_t entry_id = 0;
  101. while (page_num) {
  102. entry_id = mmu_ll_get_entry_id(mmu_id, vaddr);
  103. mmu_ll_set_entry_invalid(mmu_id, entry_id);
  104. vaddr += page_size_in_bytes;
  105. page_num--;
  106. }
  107. }
  108. bool mmu_hal_vaddr_to_paddr(uint32_t mmu_id, uint32_t vaddr, uint32_t *out_paddr, mmu_target_t *out_target)
  109. {
  110. HAL_ASSERT(mmu_hal_check_valid_ext_vaddr_region(mmu_id, vaddr, 1, MMU_VADDR_DATA | MMU_VADDR_INSTRUCTION));
  111. uint32_t entry_id = mmu_ll_get_entry_id(mmu_id, vaddr);
  112. if (!mmu_ll_check_entry_valid(mmu_id, entry_id)) {
  113. return false;
  114. }
  115. uint32_t page_size_in_bytes = mmu_hal_pages_to_bytes(mmu_id, 1);
  116. uint32_t offset = (uint32_t)vaddr % page_size_in_bytes;
  117. *out_target = mmu_ll_get_entry_target(mmu_id, entry_id);
  118. uint32_t paddr_base = mmu_ll_entry_id_to_paddr_base(mmu_id, entry_id);
  119. *out_paddr = paddr_base | offset;
  120. return true;
  121. }
  122. bool mmu_hal_paddr_to_vaddr(uint32_t mmu_id, uint32_t paddr, mmu_target_t target, mmu_vaddr_t type, uint32_t *out_vaddr)
  123. {
  124. HAL_ASSERT(mmu_ll_check_valid_paddr_region(mmu_id, paddr, 1));
  125. uint32_t mmu_val = mmu_ll_format_paddr(mmu_id, paddr, target);
  126. int entry_id = mmu_ll_find_entry_id_based_on_map_value(mmu_id, mmu_val, target);
  127. if (entry_id == -1) {
  128. return false;
  129. }
  130. uint32_t page_size_in_bytes = mmu_hal_pages_to_bytes(mmu_id, 1);
  131. uint32_t offset = paddr % page_size_in_bytes;
  132. uint32_t vaddr_base = mmu_ll_entry_id_to_vaddr_base(mmu_id, entry_id, type);
  133. if (vaddr_base == 0) {
  134. return false;
  135. }
  136. *out_vaddr = vaddr_base | offset;
  137. return true;
  138. }
  139. bool mmu_hal_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t vaddr_start, uint32_t len, mmu_vaddr_t type)
  140. {
  141. return mmu_ll_check_valid_ext_vaddr_region(mmu_id, vaddr_start, len, type);
  142. }