| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- /*
- * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- #pragma once
- #ifndef __ASSEMBLER__
- #include <stdint.h>
- #include "esp_assert.h"
- #endif
- #include "esp_bit_defs.h"
- #include "reg_base.h"
- #define PRO_CPU_NUM (0)
- #define REG_UHCI_BASE(i) (DR_REG_UHCI0_BASE) // only one UHCI on C6
- #define REG_UART_BASE(i) (DR_REG_UART_BASE + (i) * 0x1000) // UART0 and UART1
- #define REG_UART_AHB_BASE(i) (0x60000000 + (i) * 0x10000)
- #define UART_FIFO_AHB_REG(i) (REG_UART_AHB_BASE(i) + 0x0)
- #define REG_I2S_BASE(i) (DR_REG_I2S_BASE) // only one I2S on C6
- #define REG_TIMG_BASE(i) (DR_REG_TIMERGROUP0_BASE + (i) * 0x1000) // TIMERG0 and TIMERG1
- #define REG_SPI_MEM_BASE(i) (DR_REG_SPI0_BASE + (i) * 0x1000) // SPIMEM0 and SPIMEM1
- #define REG_SPI_BASE(i) (DR_REG_SPI2_BASE) // only one GPSPI on C6
- #define REG_I2C_BASE(i) (DR_REG_I2C_EXT_BASE) // only one I2C on C6
- #define REG_MCPWM_BASE(i) (DR_REG_MCPWM_BASE) // only one MCPWM on C6
- #define REG_TWAI_BASE(i) (DR_REG_TWAI0_BASE + (i) * 0x2000) // TWAI0 and TWAI1
- //Registers Operation {{
- #define ETS_UNCACHED_ADDR(addr) (addr)
- #define ETS_CACHED_ADDR(addr) (addr)
- #ifndef __ASSEMBLER__
- //write value to register
- #define REG_WRITE(_r, _v) do { \
- (*(volatile uint32_t *)(_r)) = (_v); \
- } while(0)
- //read value from register
- #define REG_READ(_r) ({ \
- (*(volatile uint32_t *)(_r)); \
- })
- //get bit or get bits from register
- #define REG_GET_BIT(_r, _b) ({ \
- (*(volatile uint32_t*)(_r) & (_b)); \
- })
- //set bit or set bits to register
- #define REG_SET_BIT(_r, _b) do { \
- *(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r)) | (_b); \
- } while(0)
- //clear bit or clear bits of register
- #define REG_CLR_BIT(_r, _b) do { \
- *(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r)) & (~(_b)); \
- } while(0)
- //set bits of register controlled by mask
- #define REG_SET_BITS(_r, _b, _m) do { \
- *(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r) & ~(_m)) | ((_b) & (_m)); \
- } while(0)
- //get field from register, uses field _S & _V to determine mask
- #define REG_GET_FIELD(_r, _f) ({ \
- ((REG_READ(_r) >> (_f##_S)) & (_f##_V)); \
- })
- //set field of a register from variable, uses field _S & _V to determine mask
- #define REG_SET_FIELD(_r, _f, _v) do { \
- REG_WRITE((_r),((REG_READ(_r) & ~((_f##_V) << (_f##_S)))|(((_v) & (_f##_V))<<(_f##_S)))); \
- } while(0)
- //get field value from a variable, used when _f is not left shifted by _f##_S
- #define VALUE_GET_FIELD(_r, _f) (((_r) >> (_f##_S)) & (_f))
- //get field value from a variable, used when _f is left shifted by _f##_S
- #define VALUE_GET_FIELD2(_r, _f) (((_r) & (_f))>> (_f##_S))
- //set field value to a variable, used when _f is not left shifted by _f##_S
- #define VALUE_SET_FIELD(_r, _f, _v) ((_r)=(((_r) & ~((_f) << (_f##_S)))|((_v)<<(_f##_S))))
- //set field value to a variable, used when _f is left shifted by _f##_S
- #define VALUE_SET_FIELD2(_r, _f, _v) ((_r)=(((_r) & ~(_f))|((_v)<<(_f##_S))))
- //generate a value from a field value, used when _f is not left shifted by _f##_S
- #define FIELD_TO_VALUE(_f, _v) (((_v)&(_f))<<_f##_S)
- //generate a value from a field value, used when _f is left shifted by _f##_S
- #define FIELD_TO_VALUE2(_f, _v) (((_v)<<_f##_S) & (_f))
- //read value from register
- #define READ_PERI_REG(addr) ({ \
- (*((volatile uint32_t *)ETS_UNCACHED_ADDR(addr))); \
- })
- //write value to register
- #define WRITE_PERI_REG(addr, val) do { \
- (*((volatile uint32_t *)ETS_UNCACHED_ADDR(addr))) = (uint32_t)(val); \
- } while(0)
- //clear bits of register controlled by mask
- #define CLEAR_PERI_REG_MASK(reg, mask) do { \
- WRITE_PERI_REG((reg), (READ_PERI_REG(reg)&(~(mask)))); \
- } while(0)
- //set bits of register controlled by mask
- #define SET_PERI_REG_MASK(reg, mask) do { \
- WRITE_PERI_REG((reg), (READ_PERI_REG(reg)|(mask))); \
- } while(0)
- //get bits of register controlled by mask
- #define GET_PERI_REG_MASK(reg, mask) ({ \
- (READ_PERI_REG(reg) & (mask)); \
- })
- //get bits of register controlled by highest bit and lowest bit
- #define GET_PERI_REG_BITS(reg, hipos,lowpos) ({ \
- ((READ_PERI_REG(reg)>>(lowpos))&((1<<((hipos)-(lowpos)+1))-1)); \
- })
- //set bits of register controlled by mask and shift
- #define SET_PERI_REG_BITS(reg,bit_map,value,shift) do { \
- WRITE_PERI_REG((reg),(READ_PERI_REG(reg)&(~((bit_map)<<(shift))))|(((value) & (bit_map))<<(shift)) ); \
- } while(0)
- //get field of register
- #define GET_PERI_REG_BITS2(reg, mask,shift) ({ \
- ((READ_PERI_REG(reg)>>(shift))&(mask)); \
- })
- #endif /* !__ASSEMBLER__ */
- //}}
- //Periheral Clock {{
- #define APB_CLK_FREQ_ROM ( 40*1000000 )
- #define CPU_CLK_FREQ_ROM APB_CLK_FREQ_ROM
- #define EFUSE_CLK_FREQ_ROM ( 20*1000000)
- #define CPU_CLK_FREQ_MHZ_BTLD (80) // The cpu clock frequency (in MHz) to set at 2nd stage bootloader system clock configuration
- #define CPU_CLK_FREQ APB_CLK_FREQ
- #define APB_CLK_FREQ ( 40*1000000 )
- #define MODEM_REQUIRED_MIN_APB_CLK_FREQ ( 80*1000000 )
- #define REF_CLK_FREQ ( 1000000 )
- #define XTAL_CLK_FREQ (40*1000000)
- #define GPIO_MATRIX_DELAY_NS 0
- //}}
- /* Overall memory map */
- /* Note: We should not use MACROs similar in cache_memory.h
- * those are defined during run-time. But the MACROs here
- * should be defined statically!
- */
- #define SOC_IROM_LOW 0x42000000
- #define SOC_IROM_HIGH (SOC_IROM_LOW + (SOC_MMU_PAGE_SIZE<<8))
- #define SOC_DROM_LOW SOC_IROM_LOW
- #define SOC_DROM_HIGH SOC_IROM_HIGH
- #define SOC_IROM_MASK_LOW 0x40000000
- #define SOC_IROM_MASK_HIGH 0x40050000
- #define SOC_DROM_MASK_LOW 0x40000000
- #define SOC_DROM_MASK_HIGH 0x40050000
- #define SOC_IRAM_LOW 0x40800000
- #define SOC_IRAM_HIGH 0x40880000
- #define SOC_DRAM_LOW 0x40800000
- #define SOC_DRAM_HIGH 0x40880000
- #define SOC_RTC_IRAM_LOW 0x50000000 // ESP32-C6 only has 16k LP memory
- #define SOC_RTC_IRAM_HIGH 0x50004000
- #define SOC_RTC_DRAM_LOW 0x50000000
- #define SOC_RTC_DRAM_HIGH 0x50004000
- #define SOC_RTC_DATA_LOW 0x50000000
- #define SOC_RTC_DATA_HIGH 0x50004000
- //First and last words of the D/IRAM region, for both the DRAM address as well as the IRAM alias.
- #define SOC_DIRAM_IRAM_LOW 0x40800000
- #define SOC_DIRAM_IRAM_HIGH 0x40880000
- #define SOC_DIRAM_DRAM_LOW 0x40800000
- #define SOC_DIRAM_DRAM_HIGH 0x40880000
- #define MAP_DRAM_TO_IRAM(addr) (addr)
- #define MAP_IRAM_TO_DRAM(addr) (addr)
- // Region of memory accessible via DMA. See esp_ptr_dma_capable().
- #define SOC_DMA_LOW 0x40800000
- #define SOC_DMA_HIGH 0x40880000
- // Region of RAM that is byte-accessible. See esp_ptr_byte_accessible().
- #define SOC_BYTE_ACCESSIBLE_LOW 0x40800000
- #define SOC_BYTE_ACCESSIBLE_HIGH 0x40880000
- //Region of memory that is internal, as in on the same silicon die as the ESP32 CPUs
- //(excluding RTC data region, that's checked separately.) See esp_ptr_internal().
- #define SOC_MEM_INTERNAL_LOW 0x40800000
- #define SOC_MEM_INTERNAL_HIGH 0x40880000
- #define SOC_MEM_INTERNAL_LOW1 0x40800000
- #define SOC_MEM_INTERNAL_HIGH1 0x40880000
- #define SOC_MAX_CONTIGUOUS_RAM_SIZE (SOC_IRAM_HIGH - SOC_IRAM_LOW) ///< Largest span of contiguous memory (DRAM or IRAM) in the address space
- // Region of address space that holds peripherals
- #define SOC_PERIPHERAL_LOW 0x60000000
- #define SOC_PERIPHERAL_HIGH 0x60100000
- // Debug region, not used by software
- #define SOC_DEBUG_LOW 0x20000000
- #define SOC_DEBUG_HIGH 0x28000000
- // Start (highest address) of ROM boot stack, only relevant during early boot
- #define SOC_ROM_STACK_START 0x4087e610
- #define SOC_ROM_STACK_SIZE 0x2000
- //On RISC-V CPUs, the interrupt sources are all external interrupts, whose type, source and priority are configured by SW.
- //There is no HW NMI conception. SW should controlled the masked levels through INT_THRESH_REG.
- //CPU0 Interrupt numbers used in components/riscv/vectors.S. Change it's logic if modifying
- #define ETS_T1_WDT_INUM 24
- #define ETS_CACHEERR_INUM 25
- #define ETS_MEMPROT_ERR_INUM 26
- #define ETS_ASSIST_DEBUG_INUM 27 // Note: this interrupt can be combined with others (e.g., CACHEERR), as we can identify its trigger is activated
- //CPU0 Max valid interrupt number
- #define ETS_MAX_INUM 31
- //CPU0 Interrupt number used in ROM, should be cancelled in SDK
- #define ETS_SLC_INUM 1
- #define ETS_UART0_INUM 5
- #define ETS_UART1_INUM 5
- #define ETS_SPI2_INUM 1
- //CPU0 Interrupt number used in ROM code only when module init function called, should pay attention here.
- #define ETS_GPIO_INUM 4
- //Other interrupt number should be managed by the user
- //Invalid interrupt for number interrupt matrix
- #define ETS_INVALID_INUM 0
- //Interrupt medium level, used for INT WDT for example
- #define SOC_INTERRUPT_LEVEL_MEDIUM 4
- // Interrupt number for the Interrupt watchdog
- #define ETS_INT_WDT_INUM (ETS_T1_WDT_INUM)
|