test_ulp.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. /*
  2. * SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdio.h>
  7. #include <string.h>
  8. #include <freertos/FreeRTOS.h>
  9. #include <freertos/task.h>
  10. #include <freertos/semphr.h>
  11. #include <unity.h>
  12. #include "esp_attr.h"
  13. #include "esp_err.h"
  14. #include "esp_log.h"
  15. #include "esp_sleep.h"
  16. #include "ulp.h"
  17. #include "soc/soc.h"
  18. #include "soc/rtc.h"
  19. #include "soc/rtc_cntl_reg.h"
  20. #include "soc/sens_reg.h"
  21. #include "soc/rtc_io_reg.h"
  22. #include "hal/misc.h"
  23. #include "driver/rtc_io.h"
  24. #include "sdkconfig.h"
  25. #include "esp_rom_sys.h"
  26. #include "ulp_test_app.h"
  27. extern const uint8_t ulp_test_app_bin_start[] asm("_binary_ulp_test_app_bin_start");
  28. extern const uint8_t ulp_test_app_bin_end[] asm("_binary_ulp_test_app_bin_end");
  29. #define HEX_DUMP_DEBUG 0
  30. static void hexdump(const uint32_t* src, size_t count) {
  31. #if HEX_DUMP_DEBUG
  32. for (size_t i = 0; i < count; ++i) {
  33. printf("%08x ", *src);
  34. ++src;
  35. if ((i + 1) % 4 == 0) {
  36. printf("\n");
  37. }
  38. }
  39. #else
  40. (void)src;
  41. (void)count;
  42. #endif
  43. }
  44. TEST_CASE("ULP FSM addition test", "[ulp]")
  45. {
  46. hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  47. /* ULP co-processor program to add data in 2 memory locations using ULP macros */
  48. const ulp_insn_t program[] = {
  49. I_MOVI(R3, 16), // r3 = 16
  50. I_LD(R0, R3, 0), // r0 = mem[r3 + 0]
  51. I_LD(R1, R3, 1), // r1 = mem[r3 + 1]
  52. I_ADDR(R2, R0, R1), // r2 = r0 + r1
  53. I_ST(R2, R3, 2), // mem[r3 + 2] = r2
  54. I_HALT() // halt
  55. };
  56. /* Load the memory regions used by the ULP co-processor */
  57. RTC_SLOW_MEM[16] = 10;
  58. RTC_SLOW_MEM[17] = 11;
  59. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  60. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  61. TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
  62. TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
  63. /* Wait for the ULP co-processor to finish up */
  64. esp_rom_delay_us(1000);
  65. hexdump(RTC_SLOW_MEM, 20);
  66. /* Verify the test results */
  67. TEST_ASSERT_EQUAL(10 + 11, RTC_SLOW_MEM[18] & 0xffff);
  68. }
  69. TEST_CASE("ULP FSM subtraction and branch test", "[ulp]")
  70. {
  71. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  72. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  73. hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  74. /* ULP co-processor program to perform subtractions and branch to a label */
  75. const ulp_insn_t program[] = {
  76. I_MOVI(R0, 34), // r0 = 34
  77. M_LABEL(1), // define a label with label number as 1
  78. I_MOVI(R1, 32), // r1 = 32
  79. I_LD(R1, R1, 0), // r1 = mem[32 + 0]
  80. I_MOVI(R2, 33), // r2 = 33
  81. I_LD(R2, R2, 0), // r2 = mem[33 + 0]
  82. I_SUBR(R3, R1, R2), // r3 = r1 - r2
  83. I_ST(R3, R0, 0), // mem[r0 + 0] = r3
  84. I_ADDI(R0, R0, 1), // r0 = r0 + 1
  85. M_BL(1, 64), // branch to label 1 if r0 < 64
  86. I_HALT(), // halt
  87. };
  88. /* Load the memory regions used by the ULP co-processor */
  89. RTC_SLOW_MEM[32] = 42;
  90. RTC_SLOW_MEM[33] = 18;
  91. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  92. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  93. TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
  94. TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
  95. printf("\n\n");
  96. /* Wait for the ULP co-processor to finish up */
  97. esp_rom_delay_us(1000);
  98. hexdump(RTC_SLOW_MEM, 50);
  99. /* Verify the test results */
  100. for (int i = 34; i < 64; ++i) {
  101. TEST_ASSERT_EQUAL(42 - 18, RTC_SLOW_MEM[i] & 0xffff);
  102. }
  103. TEST_ASSERT_EQUAL(0, RTC_SLOW_MEM[64]);
  104. }
  105. TEST_CASE("ULP FSM JUMPS instruction test", "[ulp]")
  106. {
  107. /*
  108. * Load the ULP binary.
  109. *
  110. * This ULP program is written in assembly. Please refer associated .S file.
  111. */
  112. esp_err_t err = ulp_load_binary(0, ulp_test_app_bin_start,
  113. (ulp_test_app_bin_end - ulp_test_app_bin_start) / sizeof(uint32_t));
  114. TEST_ESP_OK(err);
  115. /* Clear ULP FSM raw interrupt */
  116. REG_CLR_BIT(RTC_CNTL_INT_RAW_REG, RTC_CNTL_ULP_CP_INT_RAW);
  117. /* Run the ULP coprocessor */
  118. TEST_ESP_OK(ulp_run(&ulp_test_jumps - RTC_SLOW_MEM));
  119. /* Wait for the ULP co-processor to finish up */
  120. esp_rom_delay_us(1000);
  121. /* Verify that ULP FSM issued an interrupt to wake up the main CPU */
  122. TEST_ASSERT_NOT_EQUAL(0, REG_GET_BIT(RTC_CNTL_INT_RAW_REG, RTC_CNTL_ULP_CP_INT_RAW));
  123. /* Verify the test results */
  124. TEST_ASSERT_EQUAL(0, ulp_jumps_fail & UINT16_MAX);
  125. TEST_ASSERT_EQUAL(1, ulp_jumps_pass & UINT16_MAX);
  126. }
  127. TEST_CASE("ULP FSM light-sleep wakeup test", "[ulp]")
  128. {
  129. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  130. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  131. hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  132. /* ULP co-processor program to perform some activities and wakeup the main CPU from deep-sleep */
  133. const ulp_insn_t program[] = {
  134. I_MOVI(R1, 1024), // r1 = 1024
  135. M_LABEL(1), // define label 1
  136. I_DELAY(64000), // add a delay (NOP for 64000 cycles)
  137. I_SUBI(R1, R1, 1), // r1 = r1 - 1
  138. M_BXZ(3), // branch to label 3 if ALU value is 0. (r1 = 0)
  139. I_RSHI(R3, R1, 5), // r3 = r1 / 32
  140. I_ST(R1, R3, 16), // mem[r3 + 16] = r1
  141. M_BX(1), // loop to label 1
  142. M_LABEL(3), // define label 3
  143. I_MOVI(R2, 42), // r2 = 42
  144. I_MOVI(R3, 15), // r3 = 15
  145. I_ST(R2, R3, 0), // mem[r3 + 0] = r2
  146. I_WAKE(), // wake the SoC from deep-sleep
  147. I_END(), // stop ULP timer
  148. I_HALT() // halt
  149. };
  150. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  151. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  152. TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
  153. TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
  154. /* Setup wakeup triggers */
  155. TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
  156. /* Also wake-up by timer to help debug issues, timer will only timeout if ULP for some reason failed to wake-up cpu */
  157. TEST_ASSERT(esp_sleep_enable_timer_wakeup(10 * 1000000) == ESP_OK);
  158. /* Enter Light Sleep */
  159. TEST_ASSERT(esp_light_sleep_start() == ESP_OK);
  160. /* Wait for wakeup from ULP FSM Coprocessor */
  161. printf("cause %d\r\n", esp_sleep_get_wakeup_cause());
  162. TEST_ASSERT(esp_sleep_get_wakeup_cause() == ESP_SLEEP_WAKEUP_ULP);
  163. }
  164. static void ulp_fsm_deepsleep_wakeup_test(void)
  165. {
  166. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  167. /* Clearout the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  168. hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  169. /* ULP co-processor program to perform some activities and wakeup the main CPU from deep-sleep */
  170. const ulp_insn_t program[] = {
  171. I_MOVI(R1, 1024), // r1 = 1024
  172. M_LABEL(1), // define label 1
  173. I_DELAY(64000), // add a delay (NOP for 64000 cycles)
  174. I_SUBI(R1, R1, 1), // r1 = r1 - 1
  175. M_BXZ(3), // branch to label 3 if ALU value is 0. (r1 = 0)
  176. I_RSHI(R3, R1, 5), // r3 = r1 / 32
  177. I_ST(R1, R3, 16), // mem[r3 + 16] = r1
  178. M_BX(1), // loop to label 1
  179. M_LABEL(3), // define label 3
  180. I_MOVI(R2, 42), // r2 = 42
  181. I_MOVI(R3, 15), // r3 = 15
  182. I_ST(R2, R3, 0), // mem[r3 + 0] = r2
  183. I_WAKE(), // wake the SoC from deep-sleep
  184. I_END(), // stop ULP timer
  185. I_HALT() // halt
  186. };
  187. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  188. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  189. TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
  190. TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
  191. /* Setup wakeup triggers */
  192. TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
  193. /* Enter Deep Sleep */
  194. esp_deep_sleep_start();
  195. UNITY_TEST_FAIL(__LINE__, "Should not get here!");
  196. }
  197. static void check_sleep_reset(void)
  198. {
  199. TEST_ASSERT_EQUAL(ESP_RST_DEEPSLEEP, esp_reset_reason());
  200. esp_sleep_wakeup_cause_t cause = esp_sleep_get_wakeup_cause();
  201. TEST_ASSERT_EQUAL(ESP_SLEEP_WAKEUP_ULP, cause);
  202. }
  203. TEST_CASE_MULTIPLE_STAGES("ULP FSM deep-sleep wakeup test", "[deepsleep][reset=DEEPSLEEP_RESET]",
  204. ulp_fsm_deepsleep_wakeup_test,
  205. check_sleep_reset)
  206. TEST_CASE("ULP FSM can write and read peripheral registers", "[ulp]")
  207. {
  208. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  209. /* Clear ULP timer */
  210. CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN);
  211. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  212. hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  213. uint32_t rtc_store0 = REG_READ(RTC_CNTL_STORE0_REG);
  214. uint32_t rtc_store1 = REG_READ(RTC_CNTL_STORE1_REG);
  215. /* ULP co-processor program to read from and write to peripheral registers */
  216. const ulp_insn_t program[] = {
  217. I_MOVI(R1, 64), // r1 = 64
  218. I_RD_REG(RTC_CNTL_STORE1_REG, 0, 15), // r0 = REG_READ(RTC_CNTL_STORE1_REG[15:0])
  219. I_ST(R0, R1, 0), // mem[r1 + 0] = r0
  220. I_RD_REG(RTC_CNTL_STORE1_REG, 4, 11), // r0 = REG_READ(RTC_CNTL_STORE1_REG[11:4])
  221. I_ST(R0, R1, 1), // mem[r1 + 1] = r0
  222. I_RD_REG(RTC_CNTL_STORE1_REG, 16, 31), // r0 = REG_READ(RTC_CNTL_STORE1_REG[31:16])
  223. I_ST(R0, R1, 2), // mem[r1 + 2] = r0
  224. I_RD_REG(RTC_CNTL_STORE1_REG, 20, 27), // r0 = REG_READ(RTC_CNTL_STORE1_REG[27:20])
  225. I_ST(R0, R1, 3), // mem[r1 + 3] = r0
  226. I_WR_REG(RTC_CNTL_STORE0_REG, 0, 7, 0x89), // REG_WRITE(RTC_CNTL_STORE0_REG[7:0], 0x89)
  227. I_WR_REG(RTC_CNTL_STORE0_REG, 8, 15, 0xab), // REG_WRITE(RTC_CNTL_STORE0_REG[15:8], 0xab)
  228. I_WR_REG(RTC_CNTL_STORE0_REG, 16, 23, 0xcd), // REG_WRITE(RTC_CNTL_STORE0_REG[23:16], 0xcd)
  229. I_WR_REG(RTC_CNTL_STORE0_REG, 24, 31, 0xef), // REG_WRITE(RTC_CNTL_STORE0_REG[31:24], 0xef)
  230. I_LD(R0, R1, 4), // r0 = mem[r1 + 4]
  231. I_ADDI(R0, R0, 1), // r0 = r0 + 1
  232. I_ST(R0, R1, 4), // mem[r1 + 4] = r0
  233. I_END(), // stop ULP timer
  234. I_HALT() // halt
  235. };
  236. /* Set data in the peripheral register to be read by the ULP co-processor */
  237. REG_WRITE(RTC_CNTL_STORE1_REG, 0x89abcdef);
  238. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  239. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  240. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  241. TEST_ESP_OK(ulp_run(0));
  242. /* Wait for the ULP co-processor to finish up */
  243. vTaskDelay(100/portTICK_PERIOD_MS);
  244. /* Verify the test results */
  245. TEST_ASSERT_EQUAL_HEX32(0xefcdab89, REG_READ(RTC_CNTL_STORE0_REG));
  246. TEST_ASSERT_EQUAL_HEX16(0xcdef, RTC_SLOW_MEM[64] & 0xffff);
  247. TEST_ASSERT_EQUAL_HEX16(0xde, RTC_SLOW_MEM[65] & 0xffff);
  248. TEST_ASSERT_EQUAL_HEX16(0x89ab, RTC_SLOW_MEM[66] & 0xffff);
  249. TEST_ASSERT_EQUAL_HEX16(0x9a, RTC_SLOW_MEM[67] & 0xffff);
  250. TEST_ASSERT_EQUAL_HEX16(1, RTC_SLOW_MEM[68] & 0xffff);
  251. /* Restore initial calibration values */
  252. REG_WRITE(RTC_CNTL_STORE0_REG, rtc_store0);
  253. REG_WRITE(RTC_CNTL_STORE1_REG, rtc_store1);
  254. }
  255. TEST_CASE("ULP FSM I_WR_REG instruction test", "[ulp]")
  256. {
  257. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  258. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  259. hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  260. /* Define the test set */
  261. typedef struct {
  262. int low;
  263. int width;
  264. } wr_reg_test_item_t;
  265. const wr_reg_test_item_t test_items[] = {
  266. {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {0, 7}, {0, 8},
  267. {3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3, 8},
  268. {15, 1}, {15, 2}, {15, 3}, {15, 4}, {15, 5}, {15, 6}, {15, 7}, {15, 8},
  269. {16, 1}, {16, 2}, {16, 3}, {16, 4}, {16, 5}, {16, 6}, {16, 7}, {16, 8},
  270. {18, 1}, {18, 2}, {18, 3}, {18, 4}, {18, 5}, {18, 6}, {18, 7}, {18, 8},
  271. {24, 1}, {24, 2}, {24, 3}, {24, 4}, {24, 5}, {24, 6}, {24, 7}, {24, 8},
  272. };
  273. const size_t test_items_count =
  274. sizeof(test_items)/sizeof(test_items[0]);
  275. for (size_t i = 0; i < test_items_count; ++i) {
  276. const uint32_t mask = (uint32_t) (((1ULL << test_items[i].width) - 1) << test_items[i].low);
  277. const uint32_t not_mask = ~mask;
  278. printf("#%2d: low: %2d width: %2d mask: %08" PRIx32 " expected: %08" PRIx32 " ", i,
  279. test_items[i].low, test_items[i].width,
  280. mask, not_mask);
  281. /* Set all bits in RTC_CNTL_STORE0_REG and reset all bits in RTC_CNTL_STORE1_REG */
  282. uint32_t rtc_store0 = REG_READ(RTC_CNTL_STORE0_REG);
  283. uint32_t rtc_store1 = REG_READ(RTC_CNTL_STORE1_REG);
  284. REG_WRITE(RTC_CNTL_STORE0_REG, 0xffffffff);
  285. REG_WRITE(RTC_CNTL_STORE1_REG, 0x00000000);
  286. /* ULP co-processor program to write to peripheral registers */
  287. const ulp_insn_t program[] = {
  288. I_WR_REG(RTC_CNTL_STORE0_REG,
  289. test_items[i].low,
  290. test_items[i].low + test_items[i].width - 1,
  291. 0),
  292. I_WR_REG(RTC_CNTL_STORE1_REG,
  293. test_items[i].low,
  294. test_items[i].low + test_items[i].width - 1,
  295. 0xff & ((1 << test_items[i].width) - 1)),
  296. I_END(),
  297. I_HALT()
  298. };
  299. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  300. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  301. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  302. TEST_ESP_OK(ulp_run(0));
  303. /* Wait for the ULP co-processor to finish up */
  304. vTaskDelay(10/portTICK_PERIOD_MS);
  305. /* Verify the test results */
  306. uint32_t clear = REG_READ(RTC_CNTL_STORE0_REG);
  307. uint32_t set = REG_READ(RTC_CNTL_STORE1_REG);
  308. printf("clear: %08" PRIx32 " set: %08" PRIx32 "\n", clear, set);
  309. /* Restore initial calibration values */
  310. REG_WRITE(RTC_CNTL_STORE0_REG, rtc_store0);
  311. REG_WRITE(RTC_CNTL_STORE1_REG, rtc_store1);
  312. TEST_ASSERT_EQUAL_HEX32(not_mask, clear);
  313. TEST_ASSERT_EQUAL_HEX32(mask, set);
  314. }
  315. }
  316. TEST_CASE("ULP FSM timer setting", "[ulp]")
  317. {
  318. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 32 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  319. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  320. hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  321. /*
  322. * Run a simple ULP program which increments the counter, for one second.
  323. * Program calls I_HALT each time and gets restarted by the timer.
  324. * Compare the expected number of times the program runs with the actual.
  325. */
  326. const int offset = 6;
  327. const ulp_insn_t program[] = {
  328. I_MOVI(R1, offset), // r1 <- offset
  329. I_LD(R2, R1, 0), // load counter
  330. I_ADDI(R2, R2, 1), // counter += 1
  331. I_ST(R2, R1, 0), // save counter
  332. I_HALT(),
  333. };
  334. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  335. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  336. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  337. assert(offset >= size && "data offset needs to be greater or equal to program size");
  338. TEST_ESP_OK(ulp_run(0));
  339. /* Disable the ULP program timer — we will enable it later */
  340. ulp_timer_stop();
  341. /* Define the test data */
  342. const uint32_t cycles_to_test[] = { 10000, // 10 ms
  343. 20000, // 20 ms
  344. 50000, // 50 ms
  345. 100000, // 100 ms
  346. 200000, // 200 ms
  347. 500000, // 500 ms
  348. 1000000 }; // 1 sec
  349. const size_t tests_count = sizeof(cycles_to_test) / sizeof(cycles_to_test[0]);
  350. for (size_t i = 0; i < tests_count; ++i) {
  351. // zero out the counter
  352. RTC_SLOW_MEM[offset] = 0;
  353. // set the ulp timer period
  354. ulp_set_wakeup_period(0, cycles_to_test[i]);
  355. // enable the timer and wait for a second
  356. ulp_timer_resume();
  357. vTaskDelay(1000 / portTICK_PERIOD_MS);
  358. // stop the timer and get the counter value
  359. ulp_timer_stop();
  360. uint32_t counter = RTC_SLOW_MEM[offset] & 0xffff;
  361. // calculate the expected counter value and allow a tolerance of 15%
  362. uint32_t expected_counter = 1000000 / cycles_to_test[i];
  363. uint32_t tolerance = (expected_counter * 15 / 100);
  364. tolerance = tolerance ? tolerance : 1; // Keep a tolerance of at least 1 count
  365. printf("expected: %" PRIu32 "\t tolerance: +/- %" PRIu32 "\t actual: %" PRIu32 "\n", expected_counter, tolerance, counter);
  366. // Should be within 15%
  367. TEST_ASSERT_INT_WITHIN(tolerance, expected_counter, counter);
  368. }
  369. }
  370. static void ulp_isr(void *arg)
  371. {
  372. BaseType_t yield = 0;
  373. SemaphoreHandle_t sem = (SemaphoreHandle_t)arg;
  374. xSemaphoreGiveFromISR(sem, &yield);
  375. if (yield) {
  376. portYIELD_FROM_ISR();
  377. }
  378. }
  379. TEST_CASE("ULP FSM interrupt signal can be handled via ISRs on the main core", "[ulp]")
  380. {
  381. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  382. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  383. hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  384. /* ULP co-processor program to send a wakeup to the main CPU */
  385. const ulp_insn_t program[] = {
  386. I_WAKE(), // send wakeup signal to main CPU
  387. I_END(), // stop ULP timer
  388. I_HALT() // halt
  389. };
  390. /* Create test semaphore */
  391. SemaphoreHandle_t ulp_isr_sem = xSemaphoreCreateBinary();
  392. TEST_ASSERT_NOT_NULL(ulp_isr_sem);
  393. /* Register ULP wakeup signal ISR */
  394. TEST_ASSERT_EQUAL(ESP_OK, ulp_isr_register(ulp_isr, (void *)ulp_isr_sem));
  395. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  396. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  397. TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
  398. TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
  399. /* Wait from ISR to be called */
  400. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(ulp_isr_sem, portMAX_DELAY));
  401. /* Deregister the ISR */
  402. TEST_ASSERT_EQUAL(ESP_OK, ulp_isr_deregister(ulp_isr, (void *)ulp_isr_sem ));
  403. /* Delete test semaphore */
  404. vSemaphoreDelete(ulp_isr_sem);
  405. }