| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149 |
- /*
- * SPDX-FileCopyrightText: 2016-2022 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- #pragma once
- #include <stdint.h>
- #include <stddef.h>
- #include <stdlib.h>
- #include "esp_err.h"
- #include "ulp_common.h"
- #include "ulp_fsm_common.h"
- #include "soc/reg_base.h"
- #ifdef __cplusplus
- extern "C" {
- #endif
- /**
- * @defgroup ulp_registers ULP coprocessor registers
- * @{
- */
- #define R0 0 /*!< general purpose register 0 */
- #define R1 1 /*!< general purpose register 1 */
- #define R2 2 /*!< general purpose register 2 */
- #define R3 3 /*!< general purpose register 3 */
- /**@}*/
- /** @defgroup ulp_opcodes ULP coprocessor opcodes, sub opcodes, and various modifiers/flags
- *
- * These definitions are not intended to be used directly.
- * They are used in definitions of instructions later on.
- *
- * @{
- */
- #define OPCODE_WR_REG 1 /*!< Instruction: write peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
- #define OPCODE_RD_REG 2 /*!< Instruction: read peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
- #define RD_REG_PERIPH_RTC_CNTL 0 /*!< Identifier of RTC_CNTL peripheral for RD_REG and WR_REG instructions */
- #define RD_REG_PERIPH_RTC_IO 1 /*!< Identifier of RTC_IO peripheral for RD_REG and WR_REG instructions */
- #define RD_REG_PERIPH_SENS 2 /*!< Identifier of SARADC peripheral for RD_REG and WR_REG instructions */
- #define RD_REG_PERIPH_RTC_I2C 3 /*!< Identifier of RTC_I2C peripheral for RD_REG and WR_REG instructions */
- #define OPCODE_I2C 3 /*!< Instruction: read/write I2C (not implemented yet) */
- #define OPCODE_DELAY 4 /*!< Instruction: delay (nop) for a given number of cycles */
- #define OPCODE_ADC 5 /*!< Instruction: SAR ADC measurement (not implemented yet) */
- #define OPCODE_ST 6 /*!< Instruction: store indirect to RTC memory */
- #define SUB_OPCODE_ST_AUTO 1 /*!< Automatic Storage Mode - Access continuous addresses. Use SUB_OPCODE_ST_OFFSET to configure the initial address before using this instruction. */
- #define SUB_OPCODE_ST_OFFSET 3 /*!< Automatic Storage Mode - Configure the initial address. */
- #define SUB_OPCODE_ST 4 /*!< Manual Storage Mode. Store 32 bits, 16 MSBs contain PC, 16 LSBs contain value from source register */
- #define OPCODE_ALU 7 /*!< Arithmetic instructions */
- #define SUB_OPCODE_ALU_REG 0 /*!< Arithmetic instruction, both source values are in register */
- #define SUB_OPCODE_ALU_IMM 1 /*!< Arithmetic instruction, one source value is an immediate */
- #define SUB_OPCODE_ALU_CNT 2 /*!< Arithmetic instruction between counter register and an immediate (not implemented yet)*/
- #define ALU_SEL_ADD 0 /*!< Addition */
- #define ALU_SEL_SUB 1 /*!< Subtraction */
- #define ALU_SEL_AND 2 /*!< Logical AND */
- #define ALU_SEL_OR 3 /*!< Logical OR */
- #define ALU_SEL_MOV 4 /*!< Copy value (immediate to destination register or source register to destination register */
- #define ALU_SEL_LSH 5 /*!< Shift left by given number of bits */
- #define ALU_SEL_RSH 6 /*!< Shift right by given number of bits */
- #define ALU_SEL_STAGE_INC 0 /*!< Increment stage count register */
- #define ALU_SEL_STAGE_DEC 1 /*!< Decrement stage count register */
- #define ALU_SEL_STAGE_RST 2 /*!< Reset stage count register */
- #define OPCODE_BRANCH 8 /*!< Branch instructions */
- #define SUB_OPCODE_B 0 /*!< Branch to a relative offset */
- #define SUB_OPCODE_BX 1 /*!< Branch to absolute PC (immediate or in register) */
- #define SUB_OPCODE_BS 2 /*!< Branch to a relative offset by comparing the stage_cnt register */
- #define BX_JUMP_TYPE_DIRECT 0 /*!< Unconditional jump */
- #define BX_JUMP_TYPE_ZERO 1 /*!< Branch if last ALU result is zero */
- #define BX_JUMP_TYPE_OVF 2 /*!< Branch if last ALU operation caused and overflow */
- #define B_CMP_L 0 /*!< Branch if R0 is less than an immediate */
- #define B_CMP_G 1 /*!< Branch if R0 is greater than an immediate */
- #define B_CMP_E 2 /*!< Branch if R0 is equal to an immediate */
- #define BS_CMP_L 0 /*!< Branch if stage_cnt is less than an immediate */
- #define BS_CMP_GE 1 /*!< Branch if stage_cnt is greater than or equal to an immediate */
- #define BS_CMP_LE 2 /*!< Branch if stage_cnt is less than or equal to an immediate */
- #define OPCODE_END 9 /*!< Stop executing the program */
- #define SUB_OPCODE_END 0 /*!< Stop executing the program and optionally wake up the chip */
- #define SUB_OPCODE_SLEEP 1 /*!< Stop executing the program and run it again after selected interval */
- #define OPCODE_TSENS 10 /*!< Instruction: temperature sensor measurement (not implemented yet) */
- #define OPCODE_HALT 11 /*!< Halt the coprocessor */
- #define OPCODE_LD 13 /*!< Indirect load lower 16 bits from RTC memory */
- #define OPCODE_MACRO 15 /*!< Not a real opcode. Used to identify labels and branches in the program */
- #define SUB_OPCODE_MACRO_LABEL 0 /*!< Label macro */
- #define SUB_OPCODE_MACRO_BRANCH 1 /*!< Branch macro */
- #define SUB_OPCODE_MACRO_LABELPC 2 /*!< Label pointer macro */
- /**@}*/
- /**
- * @brief Instruction format structure
- *
- * All ULP instructions are 32 bit long.
- * This union contains field layouts used by all of the supported instructions.
- * This union also includes a special "macro" instruction layout.
- * This is not a real instruction which can be executed by the CPU. It acts
- * as a token which is removed from the program by the
- * ulp_process_macros_and_load function.
- *
- * These structures are not intended to be used directly.
- * Preprocessor definitions provided below fill the fields of these structure with
- * the right arguments.
- */
- union ulp_insn {
- struct {
- uint32_t cycles : 16; /*!< Number of cycles to sleep */
- uint32_t unused : 12; /*!< Unused */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_DELAY) */
- } delay; /*!< Format of DELAY instruction */
- struct {
- uint32_t dreg : 2; /*!< Register which contains data to store */
- uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
- uint32_t label: 2; /*!< Data label, 2-bit user defined unsigned value */
- uint32_t upper: 1; /*!< 0: write the low half-word; 1: write the high half-word */
- uint32_t wr_way: 2; /*!< 0: write the full-word; 1: with the label; 3: without the label */
- uint32_t unused1 : 1; /*!< Unused */
- uint32_t offset : 11; /*!< Offset to add to sreg */
- uint32_t unused2 : 4; /*!< Unused */
- uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ST) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_ST) */
- } st; /*!< Format of ST instruction */
- struct {
- uint32_t dreg : 2; /*!< Register where the data should be loaded to */
- uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
- uint32_t unused1 : 6; /*!< Unused */
- uint32_t offset : 11; /*!< Offset to add to sreg */
- uint32_t unused2 : 6; /*!< Unused */
- uint32_t rd_upper: 1; /*!< 0: read the high half-word; 1: read the low half-word*/
- uint32_t opcode : 4; /*!< Opcode (OPCODE_LD) */
- } ld; /*!< Format of LD instruction */
- struct {
- uint32_t unused : 28; /*!< Unused */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_HALT) */
- } halt; /*!< Format of HALT instruction */
- struct {
- uint32_t dreg : 2; /*!< Register which contains target PC, expressed in words (used if .reg == 1) */
- uint32_t addr : 11; /*!< Target PC, expressed in words (used if .reg == 0) */
- uint32_t unused1 : 8; /*!< Unused */
- uint32_t reg : 1; /*!< Target PC in register (1) or immediate (0) */
- uint32_t type : 3; /*!< Jump condition (BX_JUMP_TYPE_xxx) */
- uint32_t unused2 : 1; /*!< Unused */
- uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_BX) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
- } bx; /*!< Format of BRANCH instruction (absolute address) */
- struct {
- uint32_t imm : 16; /*!< Immediate value to compare against */
- uint32_t cmp : 2; /*!< Comparison to perform: B_CMP_L or B_CMP_GE */
- uint32_t offset : 7; /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */
- uint32_t sign : 1; /*!< Sign of target PC offset: 0: positive, 1: negative */
- uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_B) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
- } b; /*!< Format of BRANCH instruction (relative address) */
- struct {
- uint32_t dreg : 2; /*!< Destination register */
- uint32_t sreg : 2; /*!< Register with operand A */
- uint32_t treg : 2; /*!< Register with operand B */
- uint32_t unused1 : 15; /*!< Unused */
- uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
- uint32_t unused2 : 1; /*!< Unused */
- uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_ALU_REG) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
- } alu_reg; /*!< Format of ALU instruction (both sources are registers) */
- struct {
- uint32_t dreg : 2; /*!< Destination register */
- uint32_t sreg : 2; /*!< Register with operand A */
- uint32_t imm : 16; /*!< Immediate value of operand B */
- uint32_t unused1: 1; /*!< Unused */
- uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
- uint32_t unused2 : 1; /*!< Unused */
- uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
- } alu_imm; /*!< Format of ALU instruction (one source is an immediate) */
- struct {
- uint32_t unused1: 4; /*!< Unused */
- uint32_t imm : 8; /*!< Immediate value */
- uint32_t unused2: 9; /*!< Unused */
- uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
- uint32_t unused3 : 1; /*!< Unused */
- uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_ALU_CNT) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
- } alu_cnt; /*!< Format of ALU instruction with stage count register and an immediate */
- struct {
- uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
- uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
- uint32_t data : 8; /*!< 8 bits of data to write */
- uint32_t low : 5; /*!< Low bit */
- uint32_t high : 5; /*!< High bit */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */
- } wr_reg; /*!< Format of WR_REG instruction */
- struct {
- uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
- uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
- uint32_t unused : 8; /*!< Unused */
- uint32_t low : 5; /*!< Low bit */
- uint32_t high : 5; /*!< High bit */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_RD_REG) */
- } rd_reg; /*!< Format of RD_REG instruction */
- struct {
- uint32_t dreg : 2; /*!< Register where to store ADC result */
- uint32_t mux : 4; /*!< Select SARADC pad (mux + 1) */
- uint32_t sar_sel : 1; /*!< Select SARADC0 (0) or SARADC1 (1) */
- uint32_t unused1 : 1; /*!< Unused */
- uint32_t cycles : 16; /*!< TBD, cycles used for measurement */
- uint32_t unused2 : 4; /*!< Unused */
- uint32_t opcode: 4; /*!< Opcode (OPCODE_ADC) */
- } adc; /*!< Format of ADC instruction */
- struct {
- uint32_t dreg : 2; /*!< Register where to store temperature measurement result */
- uint32_t wait_delay: 14; /*!< Cycles to wait after measurement is done */
- uint32_t reserved: 12; /*!< Reserved, set to 0 */
- uint32_t opcode: 4; /*!< Opcode (OPCODE_TSENS) */
- } tsens; /*!< Format of TSENS instruction */
- struct {
- uint32_t i2c_addr : 8; /*!< I2C slave address */
- uint32_t data : 8; /*!< Data to read or write */
- uint32_t low_bits : 3; /*!< TBD */
- uint32_t high_bits : 3; /*!< TBD */
- uint32_t i2c_sel : 4; /*!< TBD, select reg_i2c_slave_address[7:0] */
- uint32_t unused : 1; /*!< Unused */
- uint32_t rw : 1; /*!< Write (1) or read (0) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_I2C) */
- } i2c; /*!< Format of I2C instruction */
- struct {
- uint32_t wakeup : 1; /*!< Set to 1 to wake up chip */
- uint32_t unused : 25; /*!< Unused */
- uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_WAKEUP) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
- } end; /*!< Format of END instruction with wakeup */
- struct {
- uint32_t label : 16; /*!< Label number */
- uint32_t unused : 8; /*!< Unused */
- uint32_t sub_opcode : 4; /*!< SUB_OPCODE_MACRO_LABEL or SUB_OPCODE_MACRO_BRANCH */
- uint32_t opcode: 4; /*!< Opcode (OPCODE_MACRO) */
- } macro; /*!< Format of tokens used by LABEL and BRANCH macros */
- };
- /**
- * Delay (nop) for a given number of cycles
- */
- #define I_DELAY(cycles_) { .delay = {\
- .cycles = cycles_, \
- .unused = 0, \
- .opcode = OPCODE_DELAY } }
- /**
- * Halt the coprocessor.
- *
- * This instruction halts the coprocessor, but keeps ULP timer active.
- * As such, ULP program will be restarted again by timer.
- * To stop the program and prevent the timer from restarting the program,
- * use I_END(0) instruction.
- */
- #define I_HALT() { .halt = {\
- .unused = 0, \
- .opcode = OPCODE_HALT } }
- /**
- * Map SoC peripheral register to periph_sel field of RD_REG and WR_REG
- * instructions.
- *
- * @param reg peripheral register in RTC_CNTL_, RTC_IO_, SENS_, RTC_I2C peripherals.
- * @return periph_sel value for the peripheral to which this register belongs.
- */
- static inline uint32_t SOC_REG_TO_ULP_PERIPH_SEL(uint32_t reg)
- {
- uint32_t ret = 3;
- if (reg < DR_REG_RTCCNTL_BASE) {
- assert(0 && "invalid register base");
- } else if (reg < DR_REG_RTCIO_BASE) {
- ret = RD_REG_PERIPH_RTC_CNTL;
- } else if (reg < DR_REG_SENS_BASE) {
- ret = RD_REG_PERIPH_RTC_IO;
- } else if (reg < DR_REG_RTC_I2C_BASE) {
- ret = RD_REG_PERIPH_SENS;
- } else if (reg < DR_REG_IO_MUX_BASE) {
- ret = RD_REG_PERIPH_RTC_I2C;
- } else {
- assert(0 && "invalid register base");
- }
- return ret;
- }
- /**
- * Write literal value to a peripheral register
- *
- * reg[high_bit : low_bit] = val
- * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
- */
- #define I_WR_REG(reg, low_bit, high_bit, val) {.wr_reg = {\
- .addr = ((reg) / sizeof(uint32_t)) & 0xff, \
- .periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
- .data = val, \
- .low = low_bit, \
- .high = high_bit, \
- .opcode = OPCODE_WR_REG } }
- /**
- * Read from peripheral register into R0
- *
- * R0 = reg[high_bit : low_bit]
- * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
- */
- #define I_RD_REG(reg, low_bit, high_bit) {.rd_reg = {\
- .addr = ((reg) / sizeof(uint32_t)) & 0xff, \
- .periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
- .unused = 0, \
- .low = low_bit, \
- .high = high_bit, \
- .opcode = OPCODE_RD_REG } }
- /**
- * Set or clear a bit in the peripheral register.
- *
- * Sets bit (1 << shift) of register reg to value val.
- * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
- */
- #define I_WR_REG_BIT(reg, shift, val) I_WR_REG(reg, shift, shift, val)
- /**
- * Wake the SoC from deep sleep.
- *
- * This instruction initiates wake up from deep sleep.
- * Use esp_deep_sleep_enable_ulp_wakeup to enable deep sleep wakeup
- * triggered by the ULP before going into deep sleep.
- * Note that ULP program will still keep running until the I_HALT
- * instruction, and it will still be restarted by timer at regular
- * intervals, even when the SoC is woken up.
- *
- * To stop the ULP program, use I_HALT instruction.
- *
- * To disable the timer which start ULP program, use I_END()
- * instruction. I_END instruction clears the
- * RTC_CNTL_ULP_CP_SLP_TIMER_EN_S bit of RTC_CNTL_ULP_CP_TIMER_REG
- * register, which controls the ULP timer.
- */
- #define I_WAKE() { .end = { \
- .wakeup = 1, \
- .unused = 0, \
- .sub_opcode = SUB_OPCODE_END, \
- .opcode = OPCODE_END } }
- /**
- * Stop ULP program timer.
- *
- * This is a convenience macro which disables the ULP program timer.
- * Once this instruction is used, ULP program will not be restarted
- * anymore until ulp_run function is called.
- *
- * ULP program will continue running after this instruction. To stop
- * the currently running program, use I_HALT().
- */
- #define I_END() \
- I_WR_REG_BIT(RTC_CNTL_ULP_CP_TIMER_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN_S, 0)
- /**
- * Perform temperature sensor measurement and store it into reg_dest.
- *
- * Delay can be set between 1 and ((1 << 14) - 1). Higher values give
- * higher measurement resolution.
- */
- #define I_TSENS(reg_dest, delay) { .tsens = { \
- .dreg = reg_dest, \
- .wait_delay = delay, \
- .reserved = 0, \
- .opcode = OPCODE_TSENS } }
- /**
- * Perform ADC measurement and store result in reg_dest.
- *
- * adc_idx selects ADC (0 or 1).
- * pad_idx selects ADC pad (0 - 7).
- */
- #define I_ADC(reg_dest, adc_idx, pad_idx) { .adc = {\
- .dreg = reg_dest, \
- .mux = pad_idx + 1, \
- .sar_sel = adc_idx, \
- .unused1 = 0, \
- .cycles = 0, \
- .unused2 = 0, \
- .opcode = OPCODE_ADC } }
- /**
- * Store lower half-word, upper half-word or full-word data from register reg_val into RTC memory address.
- *
- * This instruction can be used to write data to discontinuous addresses in the RTC_SLOW_MEM.
- * The value is written to an offset calculated by adding the value of
- * reg_addr register and offset_ field (this offset is expressed in 32-bit words).
- * The storage method is dictated by the wr_way and upper field settings as summarized in the following table:
- *
- * @verbatim
- * |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
- * | wr_way | upper | data | operation |
- * |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
- * | | | | Write full-word, including |
- * | 0 | X | RTC_SLOW_MEM[addr + offset_]{31:0} = {insn_PC[10:0], 3’b0, label_[1:0], reg_val[15:0]} | the PC and the data |
- * |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
- * | | | | Store the data with label |
- * | 1 | 0 | RTC_SLOW_MEM[addr + offset_]{15:0} = {label_[1:0], reg_val[13:0]} | in the low half-word |
- * |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
- * | | | | Store the data with label |
- * | 1 | 1 | RTC_SLOW_MEM[addr + offset_]{31:16} = {label_[1:0], reg_val[13:0]} | in the high half-word |
- * |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
- * | | | | Store the data without |
- * | 3 | 0 | RTC_SLOW_MEM[addr + offset_]{15:0} = reg_val[15:0] | label in the low half-word |
- * |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
- * | | | | Store the data without |
- * | 3 | 1 | RTC_SLOW_MEM[addr + offset_]{31:16} = reg_val[15:0] | label in the high half-word|
- * |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
- * @endverbatim
- *
- * SUB_OPCODE_ST = manual_en:1, offset_set:0, wr_auto:0
- */
- #define I_ST_MANUAL(reg_val, reg_addr, offset_, label_, upper_, wr_way_) { .st = { \
- .dreg = reg_val, \
- .sreg = reg_addr, \
- .label = label_, \
- .upper = upper_, \
- .wr_way = wr_way_, \
- .unused1 = 0, \
- .offset = offset_, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ST, \
- .opcode = OPCODE_ST } }
- /**
- * Store value from register reg_val into RTC memory.
- *
- * I_ST() instruction provides backward compatibility for code written for esp32 to be run on esp32s2.
- * This instruction is equivalent to calling I_ST_MANUAL() instruction with label = 0, upper = 0 and wr_way = 3.
- */
- #define I_ST(reg_val, reg_addr, offset_) I_ST_MANUAL(reg_val, reg_addr, offset_, 0, 0, 3)
- /**
- * Store value from register reg_val to lower 16 bits of the RTC memory address.
- *
- * This instruction is equivalent to calling I_ST_MANUAL() instruction with label = 0, upper = 0 and wr_way = 3.
- */
- #define I_STL(reg_val, reg_addr, offset_) I_ST_MANUAL(reg_val, reg_addr, offset_, 0, 0, 3)
- /**
- * Store value from register reg_val to upper 16 bits of the RTC memory address.
- *
- * This instruction is equivalent to calling I_ST_MANUAL() instruction with label = 0, upper = 1 and wr_way = 3.
- */
- #define I_STH(reg_val, reg_addr, offset_) I_ST_MANUAL(reg_val, reg_addr, offset_, 0, 1, 3)
- /**
- * Store value from register reg_val to full 32 bit word of the RTC memory address.
- *
- * This instruction is equivalent to calling I_ST_MANUAL() instruction with wr_way = 0.
- */
- #define I_ST32(reg_val, reg_addr, offset_, label_) I_ST_MANUAL(reg_val, reg_addr, offset_, label_, 0, 0)
- /**
- * Store value from register reg_val with label to lower 16 bits of RTC memory address.
- *
- * This instruction is equivalent to calling I_ST_MANUAL() instruction with label = label_, upper = 0 and wr_way = 1.
- */
- #define I_STL_LABEL(reg_val, reg_addr, offset_, label_) I_ST_MANUAL(reg_val, reg_addr, offset_, label_, 0, 1)
- /**
- * Store value from register reg_val with label to upper 16 bits of RTC memory address.
- *
- * This instruction is equivalent to calling I_ST_MANUAL() instruction with label = label_, upper = 1 and wr_way = 1.
- */
- #define I_STH_LABEL(reg_val, reg_addr, offset_, label_) I_ST_MANUAL(reg_val, reg_addr, offset_, label_, 1, 1)
- /**
- * Store lower half-word, upper half-word or full-word data from register reg_val into RTC memory address with auto-increment of the offset value.
- *
- * This instruction can be used to write data to continuous addresses in the RTC_SLOW_MEM.
- * The initial address must be set using the SUB_OPCODE_ST_OFFSET instruction before the auto store instruction is called.
- * The data written to the RTC memory address could be written to the full 32 bit word or to the lower half-word or the
- * upper half-word. The storage method is dictated by the wr_way field and the number of times the SUB_OPCODE_ST_AUTO instruction is called.
- * write_cnt indicates the later. The following table summarizes the storage method:
- *
- * @verbatim
- * |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
- * | wr_way | write_cnt | data | operation |
- * |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
- * | | | | Write full-word, including |
- * | 0 | X | RTC_SLOW_MEM[addr + offset_]{31:0} = {insn_PC[10:0], 3’b0, label_[1:0], reg_val[15:0]} | the PC and the data |
- * |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
- * | | | | Store the data with label |
- * | 1 | odd | RTC_SLOW_MEM[addr + offset_]{15:0} = {label_[1:0], reg_val[13:0]} | in the low half-word |
- * |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
- * | | | | Store the data with label |
- * | 1 | even | RTC_SLOW_MEM[addr + offset_]{31:16} = {label_[1:0], reg_val[13:0]} | in the high half-word |
- * |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
- * | | | | Store the data without |
- * | 3 | odd | RTC_SLOW_MEM[addr + offset_]{15:0} = reg_val[15:0] | label in the low half-word |
- * |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
- * | | | | Store the data without |
- * | 3 | even | RTC_SLOW_MEM[addr + offset_]{31:16} = reg_val[15:0] | label in the high half-word|
- * |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
- * @endverbatim
- *
- * The initial address offset is incremented after each store operation as follows:
- * - When a full-word is written, the offset is automatically incremented by 1 after each SUB_OPCODE_ST_AUTO operation.
- * - When a half-word is written (lower half-word first), the offset is automatically incremented by 1 after two
- * SUB_OPCODE_ST_AUTO operations.
- *
- * SUB_OPCODE_ST_AUTO = manual_en:0, offset_set:0, wr_auto:1
- */
- #define I_ST_AUTO(reg_val, reg_addr, label_, wr_way_) { .st = { \
- .dreg = reg_addr, \
- .sreg = reg_val, \
- .label = label_, \
- .upper = 0, \
- .wr_way = wr_way_, \
- .unused1 = 0, \
- .offset = 0, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ST_AUTO, \
- .opcode = OPCODE_ST } }
- /**
- * Set the initial address offset for auto-store operation
- *
- * This instruction sets the initial address of the RTC_SLOW_MEM to be used by the auto-store operation.
- * The offset is incremented automatically.
- * Refer I_ST_AUTO() for detailed explaination.
- *
- * SUB_OPCODE_ST_OFFSET = manual_en:0, offset_set:1, wr_auto:1
- */
- #define I_STO(offset_) { .st = { \
- .dreg = 0, \
- .sreg = 0, \
- .label = 0, \
- .upper = 0, \
- .wr_way = 0, \
- .unused1 = 0, \
- .offset = offset_, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ST_OFFSET, \
- .opcode = OPCODE_ST } }
- /**
- * Store value from register reg_val to 32 bit word of the RTC memory address.
- *
- * This instruction is equivalent to calling I_ST_AUTO() instruction with label = 0 and wr_way = 3.
- * The data in reg_val will be either written to the lower half-word or the upper half-word of the RTC memory address
- * depending on the count of the number of times the I_STI() instruction is called.
- * The initial offset is automatically incremented with I_STI() is called twice.
- * Refer I_ST_AUTO() for detailed explaination.
- */
- #define I_STI(reg_val, reg_addr) I_ST_AUTO(reg_val, reg_addr, 0, 3)
- /**
- * Store value from register reg_val with label to 32 bit word of the RTC memory address.
- *
- * This instruction is equivalent to calling I_ST_AUTO() instruction with label = label_ and wr_way = 1.
- * The data in reg_val will be either written to the lower half-word or the upper half-word of the RTC memory address
- * depending on the count of the number of times the I_STI_LABEL() instruction is called.
- * The initial offset is automatically incremented with I_STI_LABEL() is called twice.
- * Refer I_ST_AUTO() for detailed explaination.
- */
- #define I_STI_LABEL(reg_val, reg_addr, label_) I_ST_AUTO(reg_val, reg_addr, label_, 1)
- /**
- * Store value from register reg_val to full 32 bit word of the RTC memory address.
- *
- * This instruction is equivalent to calling I_ST_AUTO() instruction with label = label_ and wr_way = 0.
- * The data in reg_val will be written to the RTC memory address along with the label and the PC.
- * The initial offset is automatically incremented each time the I_STI32() instruction is called.
- * Refer I_ST_AUTO() for detailed explaination.
- */
- #define I_STI32(reg_val, reg_addr, label_) I_ST_AUTO(reg_val, reg_addr, label_, 0)
- /**
- * Load lower half-word, upper half-word or full-word data from RTC memory address into the register reg_dest.
- *
- * This instruction reads the lower half-word or upper half-word of the RTC memory address depending on the value
- * of rd_upper_. The following table summarizes the loading method:
- *
- * @verbatim
- * |----------|------------------------------------------------------|-------------------------|
- * | rd_upper | data | operation |
- * |----------|------------------------------------------------------|-------------------------|
- * | | | Read lower half-word of |
- * | 0 | reg_dest{15:0} = RTC_SLOW_MEM[addr + offset_]{31:16} | the memory |
- * |----------|------------------------------------------------------|-------------------------|
- * | | | Read upper half-word of |
- * | 1 | reg_dest{15:0} = RTC_SLOW_MEM[addr + offset_]{15:0} | the memory |
- * |----------|------------------------------------------------------|-------------------------|
- * @endverbatim
- *
- */
- #define I_LD_MANUAL(reg_dest, reg_addr, offset_, rd_upper_) { .ld = { \
- .dreg = reg_dest, \
- .sreg = reg_addr, \
- .unused1 = 0, \
- .offset = offset_, \
- .unused2 = 0, \
- .rd_upper = rd_upper_, \
- .opcode = OPCODE_LD } }
- /**
- * Load lower 16 bits value from RTC memory into reg_dest register.
- *
- * Loads 16 LSBs (rd_upper = 1) from RTC memory word given by the sum of value in reg_addr and
- * value of offset_.
- * I_LD() instruction provides backward compatibility for code written for esp32 to be run on esp32s2.
- */
- #define I_LD(reg_dest, reg_addr, offset_) I_LD_MANUAL(reg_dest, reg_addr, offset_, 0)
- /**
- * Load lower 16 bits value from RTC memory into reg_dest register.
- *
- * I_LDL() instruction and I_LD() instruction can be used interchangably.
- */
- #define I_LDL(reg_dest, reg_addr, offset_) I_LD(reg_dest, reg_addr, offset_)
- /**
- * Load upper 16 bits value from RTC memory into reg_dest register.
- *
- * Loads 16 MSBs (rd_upper = 0) from RTC memory word given by the sum of value in reg_addr and
- * value of offset_.
- */
- #define I_LDH(reg_dest, reg_addr, offset_) I_LD_MANUAL(reg_dest, reg_addr, offset_, 1)
- /**
- * Branch relative if R0 register less than the immediate value.
- *
- * pc_offset is expressed in words, and can be from -127 to 127
- * imm_value is a 16-bit value to compare R0 against
- */
- #define I_BL(pc_offset, imm_value) { .b = { \
- .imm = imm_value, \
- .cmp = B_CMP_L, \
- .offset = abs(pc_offset), \
- .sign = (pc_offset >= 0) ? 0 : 1, \
- .sub_opcode = SUB_OPCODE_B, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch relative if R0 register greater than the immediate value.
- *
- * pc_offset is expressed in words, and can be from -127 to 127
- * imm_value is a 16-bit value to compare R0 against
- */
- #define I_BG(pc_offset, imm_value) { .b = { \
- .imm = imm_value, \
- .cmp = B_CMP_G, \
- .offset = abs(pc_offset), \
- .sign = (pc_offset >= 0) ? 0 : 1, \
- .sub_opcode = SUB_OPCODE_B, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch relative if R0 register is equal to the immediate value.
- *
- * pc_offset is expressed in words, and can be from -127 to 127
- * imm_value is a 16-bit value to compare R0 against
- */
- #define I_BE(pc_offset, imm_value) { .b = { \
- .imm = imm_value, \
- .cmp = B_CMP_E, \
- .offset = abs(pc_offset), \
- .sign = (pc_offset >= 0) ? 0 : 1, \
- .sub_opcode = SUB_OPCODE_B, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Unconditional branch to absolute PC, address in register.
- *
- * reg_pc is the register which contains address to jump to.
- * Address is expressed in 32-bit words.
- */
- #define I_BXR(reg_pc) { .bx = { \
- .dreg = reg_pc, \
- .addr = 0, \
- .unused1 = 0, \
- .reg = 1, \
- .type = BX_JUMP_TYPE_DIRECT, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_BX, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Unconditional branch to absolute PC, immediate address.
- *
- * Address imm_pc is expressed in 32-bit words.
- */
- #define I_BXI(imm_pc) { .bx = { \
- .dreg = 0, \
- .addr = imm_pc, \
- .unused1 = 0, \
- .reg = 0, \
- .type = BX_JUMP_TYPE_DIRECT, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_BX, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch to absolute PC if ALU result is zero, address in register.
- *
- * reg_pc is the register which contains address to jump to.
- * Address is expressed in 32-bit words.
- */
- #define I_BXZR(reg_pc) { .bx = { \
- .dreg = reg_pc, \
- .addr = 0, \
- .unused1 = 0, \
- .reg = 1, \
- .type = BX_JUMP_TYPE_ZERO, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_BX, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch to absolute PC if ALU result is zero, immediate address.
- *
- * Address imm_pc is expressed in 32-bit words.
- */
- #define I_BXZI(imm_pc) { .bx = { \
- .dreg = 0, \
- .addr = imm_pc, \
- .unused1 = 0, \
- .reg = 0, \
- .type = BX_JUMP_TYPE_ZERO, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_BX, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch to absolute PC if ALU overflow, address in register
- *
- * reg_pc is the register which contains address to jump to.
- * Address is expressed in 32-bit words.
- */
- #define I_BXFR(reg_pc) { .bx = { \
- .dreg = reg_pc, \
- .addr = 0, \
- .unused1 = 0, \
- .reg = 1, \
- .type = BX_JUMP_TYPE_OVF, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_BX, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch to absolute PC if ALU overflow, immediate address
- *
- * Address imm_pc is expressed in 32-bit words.
- */
- #define I_BXFI(imm_pc) { .bx = { \
- .dreg = 0, \
- .addr = imm_pc, \
- .unused1 = 0, \
- .reg = 0, \
- .type = BX_JUMP_TYPE_OVF, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_BX, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch relative if stage_cnt is less than or equal to the immediate value.
- *
- * pc_offset is expressed in words, and can be from -127 to 127
- * imm_value is a 16-bit value to compare R0 against
- */
- #define I_BSLE(pc_offset, imm_value) { .b = { \
- .imm = imm_value, \
- .cmp = BS_CMP_LE, \
- .offset = abs(pc_offset), \
- .sign = (pc_offset >= 0) ? 0 : 1, \
- .sub_opcode = SUB_OPCODE_BS, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch relative if stage_cnt register is greater than or equal to the immediate value.
- *
- * pc_offset is expressed in words, and can be from -127 to 127
- * imm_value is a 16-bit value to compare R0 against
- */
- #define I_BSGE(pc_offset, imm_value) { .b = { \
- .imm = imm_value, \
- .cmp = BS_CMP_GE, \
- .offset = abs(pc_offset), \
- .sign = (pc_offset >= 0) ? 0 : 1, \
- .sub_opcode = SUB_OPCODE_BS, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch relative if stage_cnt register is less than the immediate value.
- *
- * pc_offset is expressed in words, and can be from -127 to 127
- * imm_value is a 16-bit value to compare R0 against
- */
- #define I_BSL(pc_offset, imm_value) { .b = { \
- .imm = imm_value, \
- .cmp = BS_CMP_L, \
- .offset = abs(pc_offset), \
- .sign = (pc_offset >= 0) ? 0 : 1, \
- .sub_opcode = SUB_OPCODE_BS, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Addition: dest = src1 + src2
- */
- #define I_ADDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src1, \
- .treg = reg_src2, \
- .unused1 = 0, \
- .sel = ALU_SEL_ADD, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Subtraction: dest = src1 - src2
- */
- #define I_SUBR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src1, \
- .treg = reg_src2, \
- .unused1 = 0, \
- .sel = ALU_SEL_SUB, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical AND: dest = src1 & src2
- */
- #define I_ANDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src1, \
- .treg = reg_src2, \
- .unused1 = 0, \
- .sel = ALU_SEL_AND, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical OR: dest = src1 | src2
- */
- #define I_ORR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src1, \
- .treg = reg_src2, \
- .unused1 = 0, \
- .sel = ALU_SEL_OR, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Copy: dest = src
- */
- #define I_MOVR(reg_dest, reg_src) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .treg = 0, \
- .unused1 = 0, \
- .sel = ALU_SEL_MOV, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical shift left: dest = src << shift
- */
- #define I_LSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .treg = reg_shift, \
- .unused1 = 0, \
- .sel = ALU_SEL_LSH, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical shift right: dest = src >> shift
- */
- #define I_RSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .treg = reg_shift, \
- .unused1 = 0, \
- .sel = ALU_SEL_RSH, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Add register and an immediate value: dest = src1 + imm
- */
- #define I_ADDI(reg_dest, reg_src, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .imm = imm_, \
- .unused1 = 0, \
- .sel = ALU_SEL_ADD, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Subtract register and an immediate value: dest = src - imm
- */
- #define I_SUBI(reg_dest, reg_src, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .imm = imm_, \
- .unused1 = 0, \
- .sel = ALU_SEL_SUB, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical AND register and an immediate value: dest = src & imm
- */
- #define I_ANDI(reg_dest, reg_src, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .imm = imm_, \
- .unused1 = 0, \
- .sel = ALU_SEL_AND, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical OR register and an immediate value: dest = src | imm
- */
- #define I_ORI(reg_dest, reg_src, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .imm = imm_, \
- .unused1 = 0, \
- .sel = ALU_SEL_OR, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Copy an immediate value into register: dest = imm
- */
- #define I_MOVI(reg_dest, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = 0, \
- .imm = imm_, \
- .unused1 = 0, \
- .sel = ALU_SEL_MOV, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical shift left register value by an immediate: dest = src << imm
- */
- #define I_LSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .imm = imm_, \
- .unused1 = 0, \
- .sel = ALU_SEL_LSH, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical shift right register value by an immediate: dest = val >> imm
- */
- #define I_RSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .imm = imm_, \
- .unused1 = 0, \
- .sel = ALU_SEL_RSH, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Increment stage_cnt register by an immediate: stage_cnt = stage_cnt + imm
- */
- #define I_STAGE_INC(reg_dest, reg_src, imm_) { .alu_cnt = { \
- .unused1 = 0, \
- .imm = imm_, \
- .unused2 = 0, \
- .sel = ALU_SEL_STAGE_INC, \
- .unused3 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_CNT, \
- .opcode = OPCODE_ALU } }
- /**
- * Decrement stage_cnt register by an immediate: stage_cnt = stage_cnt - imm
- */
- #define I_STAGE_DEC(reg_dest, reg_src, imm_) { .alu_cnt = { \
- .unused1 = 0, \
- .imm = imm_, \
- .unused2 = 0, \
- .sel = ALU_SEL_STAGE_DEC, \
- .unused3 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_CNT, \
- .opcode = OPCODE_ALU } }
- /**
- * Reset stage_cnt register by an immediate: stage_cnt = 0
- */
- #define I_STAGE_RST(reg_dest, reg_src, imm_) { .alu_cnt = { \
- .unused1 = 0, \
- .imm = imm_, \
- .unused2 = 0, \
- .sel = ALU_SEL_STAGE_RST, \
- .unused3 = 0, \
- .sub_opcode = SUB_OPCODE_ALU_CNT, \
- .opcode = OPCODE_ALU } }
- /**
- * Define a label with number label_num.
- *
- * This is a macro which doesn't generate a real instruction.
- * The token generated by this macro is removed by ulp_process_macros_and_load
- * function. Label defined using this macro can be used in branch macros defined
- * below.
- */
- #define M_LABEL(label_num) { .macro = { \
- .label = label_num, \
- .unused = 0, \
- .sub_opcode = SUB_OPCODE_MACRO_LABEL, \
- .opcode = OPCODE_MACRO } }
- /**
- * Token macro used by M_B and M_BX macros. Not to be used directly.
- */
- #define M_BRANCH(label_num) { .macro = { \
- .label = label_num, \
- .unused = 0, \
- .sub_opcode = SUB_OPCODE_MACRO_BRANCH, \
- .opcode = OPCODE_MACRO } }
- /**
- * Macro: branch to label label_num if R0 is less than immediate value.
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BL(label_num, imm_value) \
- M_BRANCH(label_num), \
- I_BL(0, imm_value)
- /**
- * Macro: branch to label label_num if R0 is greater than immediate value
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BG(label_num, imm_value) \
- M_BRANCH(label_num), \
- I_BG(0, imm_value)
- /**
- * Macro: branch to label label_num if R0 equal to the immediate value
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BE(label_num, imm_value) \
- M_BRANCH(label_num), \
- I_BE(0, imm_value)
- /**
- * Macro: unconditional branch to label
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BX(label_num) \
- M_BRANCH(label_num), \
- I_BXI(0)
- /**
- * Macro: branch to label if ALU result is zero
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BXZ(label_num) \
- M_BRANCH(label_num), \
- I_BXZI(0)
- /**
- * Macro: branch to label if ALU overflow
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BXF(label_num) \
- M_BRANCH(label_num), \
- I_BXFI(0)
- #ifdef __cplusplus
- }
- #endif
|