| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- # SPDX-FileCopyrightText: 2018-2022 Espressif Systems (Shanghai) CO LTD
- # SPDX-License-Identifier: Apache-2.0
- #
- # APIs for interpreting and creating protobuf packets for
- # protocomm endpoint with security type protocomm_security1
- import proto
- from cryptography.hazmat.backends import default_backend
- from cryptography.hazmat.primitives import hashes, serialization
- from cryptography.hazmat.primitives.asymmetric.x25519 import X25519PrivateKey, X25519PublicKey
- from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
- from utils import long_to_bytes, str_to_bytes
- from .security import Security
- def a_xor_b(a: bytes, b: bytes) -> bytes:
- return b''.join(long_to_bytes(a[i] ^ b[i]) for i in range(0, len(b)))
- # Enum for state of protocomm_security1 FSM
- class security_state:
- REQUEST1 = 0
- RESPONSE1_REQUEST2 = 1
- RESPONSE2 = 2
- FINISHED = 3
- class Security1(Security):
- def __init__(self, pop, verbose):
- # Initialize state of the security1 FSM
- self.session_state = security_state.REQUEST1
- self.pop = str_to_bytes(pop)
- self.verbose = verbose
- Security.__init__(self, self.security1_session)
- def security1_session(self, response_data):
- # protocomm security1 FSM which interprets/forms
- # protobuf packets according to present state of session
- if (self.session_state == security_state.REQUEST1):
- self.session_state = security_state.RESPONSE1_REQUEST2
- return self.setup0_request()
- elif (self.session_state == security_state.RESPONSE1_REQUEST2):
- self.session_state = security_state.RESPONSE2
- self.setup0_response(response_data)
- return self.setup1_request()
- elif (self.session_state == security_state.RESPONSE2):
- self.session_state = security_state.FINISHED
- self.setup1_response(response_data)
- return None
- print('Unexpected state')
- return None
- def __generate_key(self):
- # Generate private and public key pair for client
- self.client_private_key = X25519PrivateKey.generate()
- self.client_public_key = self.client_private_key.public_key().public_bytes(
- encoding=serialization.Encoding.Raw,
- format=serialization.PublicFormat.Raw)
- def _print_verbose(self, data):
- if (self.verbose):
- print(f'\x1b[32;20m++++ {data} ++++\x1b[0m')
- def setup0_request(self):
- # Form SessionCmd0 request packet using client public key
- setup_req = proto.session_pb2.SessionData()
- setup_req.sec_ver = proto.session_pb2.SecScheme1
- self.__generate_key()
- setup_req.sec1.sc0.client_pubkey = self.client_public_key
- self._print_verbose(f'Client Public Key:\t0x{self.client_public_key.hex()}')
- return setup_req.SerializeToString().decode('latin-1')
- def setup0_response(self, response_data):
- # Interpret SessionResp0 response packet
- setup_resp = proto.session_pb2.SessionData()
- setup_resp.ParseFromString(str_to_bytes(response_data))
- self._print_verbose('Security version:\t' + str(setup_resp.sec_ver))
- if setup_resp.sec_ver != proto.session_pb2.SecScheme1:
- raise RuntimeError('Incorrect security scheme')
- self.device_public_key = setup_resp.sec1.sr0.device_pubkey
- # Device random is the initialization vector
- device_random = setup_resp.sec1.sr0.device_random
- self._print_verbose(f'Device Public Key:\t0x{self.device_public_key.hex()}')
- self._print_verbose(f'Device Random:\t0x{device_random.hex()}')
- # Calculate Curve25519 shared key using Client private key and Device public key
- sharedK = self.client_private_key.exchange(X25519PublicKey.from_public_bytes(self.device_public_key))
- self._print_verbose(f'Shared Key:\t0x{sharedK.hex()}')
- # If PoP is provided, XOR SHA256 of PoP with the previously
- # calculated Shared Key to form the actual Shared Key
- if len(self.pop) > 0:
- # Calculate SHA256 of PoP
- h = hashes.Hash(hashes.SHA256(), backend=default_backend())
- h.update(self.pop)
- digest = h.finalize()
- # XOR with and update Shared Key
- sharedK = a_xor_b(sharedK, digest)
- self._print_verbose(f'Updated Shared Key (Shared key XORed with PoP):\t0x{sharedK.hex()}')
- # Initialize the encryption engine with Shared Key and initialization vector
- cipher = Cipher(algorithms.AES(sharedK), modes.CTR(device_random), backend=default_backend())
- self.cipher = cipher.encryptor()
- def setup1_request(self):
- # Form SessionCmd1 request packet using encrypted device public key
- setup_req = proto.session_pb2.SessionData()
- setup_req.sec_ver = proto.session_pb2.SecScheme1
- setup_req.sec1.msg = proto.sec1_pb2.Session_Command1
- # Encrypt device public key and attach to the request packet
- client_verify = self.cipher.update(self.device_public_key)
- self._print_verbose(f'Client Proof:\t0x{client_verify.hex()}')
- setup_req.sec1.sc1.client_verify_data = client_verify
- return setup_req.SerializeToString().decode('latin-1')
- def setup1_response(self, response_data):
- # Interpret SessionResp1 response packet
- setup_resp = proto.session_pb2.SessionData()
- setup_resp.ParseFromString(str_to_bytes(response_data))
- # Ensure security scheme matches
- if setup_resp.sec_ver == proto.session_pb2.SecScheme1:
- # Read encrypyed device verify string
- device_verify = setup_resp.sec1.sr1.device_verify_data
- self._print_verbose(f'Device Proof:\t0x{device_verify.hex()}')
- # Decrypt the device verify string
- enc_client_pubkey = self.cipher.update(setup_resp.sec1.sr1.device_verify_data)
- # Match decryped string with client public key
- if enc_client_pubkey != self.client_public_key:
- raise RuntimeError('Failed to verify device!')
- else:
- raise RuntimeError('Unsupported security protocol')
- def encrypt_data(self, data):
- return self.cipher.update(data)
- def decrypt_data(self, data):
- return self.cipher.update(data)
|