rmt_legacy.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdlib.h>
  7. #include <string.h>
  8. #include <sys/lock.h>
  9. #include <sys/cdefs.h>
  10. #include "esp_compiler.h"
  11. #include "esp_intr_alloc.h"
  12. #include "esp_log.h"
  13. #include "esp_check.h"
  14. #include "driver/gpio.h"
  15. #include "esp_private/periph_ctrl.h"
  16. #include "driver/rmt_types_legacy.h"
  17. #include "freertos/FreeRTOS.h"
  18. #include "freertos/task.h"
  19. #include "freertos/semphr.h"
  20. #include "freertos/ringbuf.h"
  21. #include "soc/soc_memory_layout.h"
  22. #include "soc/rmt_periph.h"
  23. #include "soc/rmt_struct.h"
  24. #include "esp_private/esp_clk.h"
  25. #include "hal/rmt_hal.h"
  26. #include "hal/rmt_ll.h"
  27. #include "hal/gpio_hal.h"
  28. #include "esp_rom_gpio.h"
  29. #define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR"
  30. #define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR"
  31. #define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR"
  32. #define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR"
  33. #define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR"
  34. #define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR"
  35. #define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW"
  36. #define RMT_GPIO_ERROR_STR "RMT GPIO ERROR"
  37. #define RMT_MODE_ERROR_STR "RMT MODE ERROR"
  38. #define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR"
  39. #define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR"
  40. #define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR"
  41. #define RMT_PSRAM_BUFFER_WARN_STR "Using buffer allocated from psram"
  42. #define RMT_TRANSLATOR_NULL_STR "RMT translator is null"
  43. #define RMT_TRANSLATOR_UNINIT_STR "RMT translator not init"
  44. #define RMT_PARAM_ERR_STR "RMT param error"
  45. static const char *TAG = "rmt(legacy)";
  46. // Spinlock for protecting concurrent register-level access only
  47. #define RMT_ENTER_CRITICAL() portENTER_CRITICAL_SAFE(&(rmt_contex.rmt_spinlock))
  48. #define RMT_EXIT_CRITICAL() portEXIT_CRITICAL_SAFE(&(rmt_contex.rmt_spinlock))
  49. #define RMT_RX_CHANNEL_ENCODING_START (SOC_RMT_CHANNELS_PER_GROUP-SOC_RMT_TX_CANDIDATES_PER_GROUP)
  50. #define RMT_TX_CHANNEL_ENCODING_END (SOC_RMT_TX_CANDIDATES_PER_GROUP-1)
  51. #define RMT_IS_RX_CHANNEL(channel) ((channel) >= RMT_RX_CHANNEL_ENCODING_START)
  52. #define RMT_IS_TX_CHANNEL(channel) ((channel) <= RMT_TX_CHANNEL_ENCODING_END)
  53. #define RMT_DECODE_RX_CHANNEL(encode_chan) ((encode_chan - RMT_RX_CHANNEL_ENCODING_START))
  54. #define RMT_ENCODE_RX_CHANNEL(decode_chan) ((decode_chan + RMT_RX_CHANNEL_ENCODING_START))
  55. typedef struct {
  56. rmt_hal_context_t hal;
  57. _lock_t rmt_driver_isr_lock;
  58. portMUX_TYPE rmt_spinlock; // Mutex lock for protecting concurrent register/unregister of RMT channels' ISR
  59. rmt_isr_handle_t rmt_driver_intr_handle;
  60. rmt_tx_end_callback_t rmt_tx_end_callback;// Event called when transmission is ended
  61. uint8_t rmt_driver_channels; // Bitmask of installed drivers' channels
  62. bool rmt_module_enabled;
  63. uint32_t synchro_channel_mask; // Bitmap of channels already added in the synchronous group
  64. } rmt_contex_t;
  65. typedef struct {
  66. size_t tx_offset;
  67. size_t tx_len_rem;
  68. size_t tx_sub_len;
  69. bool translator;
  70. bool wait_done; //Mark whether wait tx done.
  71. bool loop_autostop; // mark whether loop auto-stop is enabled
  72. rmt_channel_t channel;
  73. const rmt_item32_t *tx_data;
  74. SemaphoreHandle_t tx_sem;
  75. #if CONFIG_SPIRAM_USE_MALLOC
  76. int intr_alloc_flags;
  77. StaticSemaphore_t tx_sem_buffer;
  78. #endif
  79. rmt_item32_t *tx_buf;
  80. RingbufHandle_t rx_buf;
  81. #if SOC_RMT_SUPPORT_RX_PINGPONG
  82. rmt_item32_t *rx_item_buf;
  83. uint32_t rx_item_buf_size;
  84. uint32_t rx_item_len;
  85. int rx_item_start_idx;
  86. #endif
  87. sample_to_rmt_t sample_to_rmt;
  88. void *tx_context;
  89. size_t sample_size_remain;
  90. const uint8_t *sample_cur;
  91. } rmt_obj_t;
  92. static rmt_contex_t rmt_contex = {
  93. .hal.regs = &RMT,
  94. .rmt_spinlock = portMUX_INITIALIZER_UNLOCKED,
  95. .rmt_driver_intr_handle = NULL,
  96. .rmt_tx_end_callback = {
  97. .function = NULL,
  98. },
  99. .rmt_driver_channels = 0,
  100. .rmt_module_enabled = false,
  101. .synchro_channel_mask = 0
  102. };
  103. static rmt_obj_t *p_rmt_obj[RMT_CHANNEL_MAX] = {0};
  104. #if SOC_RMT_CHANNEL_CLK_INDEPENDENT
  105. static uint32_t s_rmt_source_clock_hz[RMT_CHANNEL_MAX];
  106. #else
  107. static uint32_t s_rmt_source_clock_hz;
  108. #endif
  109. // RMTMEM address is declared in <target>.peripherals.ld
  110. extern rmt_mem_t RMTMEM;
  111. //Enable RMT module
  112. static void rmt_module_enable(void)
  113. {
  114. RMT_ENTER_CRITICAL();
  115. if (rmt_contex.rmt_module_enabled == false) {
  116. periph_module_reset(rmt_periph_signals.groups[0].module);
  117. periph_module_enable(rmt_periph_signals.groups[0].module);
  118. rmt_contex.rmt_module_enabled = true;
  119. }
  120. RMT_EXIT_CRITICAL();
  121. }
  122. //Disable RMT module
  123. static void rmt_module_disable(void)
  124. {
  125. RMT_ENTER_CRITICAL();
  126. if (rmt_contex.rmt_module_enabled == true) {
  127. periph_module_disable(rmt_periph_signals.groups[0].module);
  128. rmt_contex.rmt_module_enabled = false;
  129. }
  130. RMT_EXIT_CRITICAL();
  131. }
  132. esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt)
  133. {
  134. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  135. RMT_ENTER_CRITICAL();
  136. if (RMT_IS_RX_CHANNEL(channel)) {
  137. rmt_ll_rx_set_channel_clock_div(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), div_cnt);
  138. } else {
  139. rmt_ll_tx_set_channel_clock_div(rmt_contex.hal.regs, channel, div_cnt);
  140. }
  141. RMT_EXIT_CRITICAL();
  142. return ESP_OK;
  143. }
  144. esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t *div_cnt)
  145. {
  146. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  147. ESP_RETURN_ON_FALSE(div_cnt, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR);
  148. RMT_ENTER_CRITICAL();
  149. if (RMT_IS_RX_CHANNEL(channel)) {
  150. *div_cnt = (uint8_t)rmt_ll_rx_get_channel_clock_div(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  151. } else {
  152. *div_cnt = (uint8_t)rmt_ll_tx_get_channel_clock_div(rmt_contex.hal.regs, channel);
  153. }
  154. RMT_EXIT_CRITICAL();
  155. return ESP_OK;
  156. }
  157. esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh)
  158. {
  159. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  160. RMT_ENTER_CRITICAL();
  161. rmt_ll_rx_set_idle_thres(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), thresh);
  162. RMT_EXIT_CRITICAL();
  163. return ESP_OK;
  164. }
  165. esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)
  166. {
  167. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  168. ESP_RETURN_ON_FALSE(thresh, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR);
  169. RMT_ENTER_CRITICAL();
  170. *thresh = (uint16_t)rmt_ll_rx_get_idle_thres(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  171. RMT_EXIT_CRITICAL();
  172. return ESP_OK;
  173. }
  174. esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num)
  175. {
  176. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  177. ESP_RETURN_ON_FALSE(rmt_mem_num <= RMT_CHANNEL_MAX - channel, ESP_ERR_INVALID_ARG, TAG, RMT_MEM_CNT_ERROR_STR);
  178. RMT_ENTER_CRITICAL();
  179. if (RMT_IS_RX_CHANNEL(channel)) {
  180. rmt_ll_rx_set_mem_blocks(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), rmt_mem_num);
  181. } else {
  182. rmt_ll_tx_set_mem_blocks(rmt_contex.hal.regs, channel, rmt_mem_num);
  183. }
  184. RMT_EXIT_CRITICAL();
  185. return ESP_OK;
  186. }
  187. esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t *rmt_mem_num)
  188. {
  189. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  190. ESP_RETURN_ON_FALSE(rmt_mem_num, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR);
  191. RMT_ENTER_CRITICAL();
  192. if (RMT_IS_RX_CHANNEL(channel)) {
  193. *rmt_mem_num = (uint8_t)rmt_ll_rx_get_mem_blocks(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  194. } else {
  195. *rmt_mem_num = (uint8_t)rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel);
  196. }
  197. RMT_EXIT_CRITICAL();
  198. return ESP_OK;
  199. }
  200. esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level,
  201. rmt_carrier_level_t carrier_level)
  202. {
  203. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  204. ESP_RETURN_ON_FALSE(carrier_level < RMT_CARRIER_LEVEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CARRIER_ERROR_STR);
  205. RMT_ENTER_CRITICAL();
  206. rmt_ll_tx_set_carrier_high_low_ticks(rmt_contex.hal.regs, channel, high_level, low_level);
  207. rmt_ll_tx_set_carrier_level(rmt_contex.hal.regs, channel, carrier_level);
  208. rmt_ll_tx_enable_carrier_modulation(rmt_contex.hal.regs, channel, carrier_en);
  209. RMT_EXIT_CRITICAL();
  210. return ESP_OK;
  211. }
  212. esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)
  213. {
  214. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  215. RMT_ENTER_CRITICAL();
  216. rmt_ll_power_down_mem(rmt_contex.hal.regs, pd_en);
  217. RMT_EXIT_CRITICAL();
  218. return ESP_OK;
  219. }
  220. esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool *pd_en)
  221. {
  222. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  223. RMT_ENTER_CRITICAL();
  224. *pd_en = rmt_ll_is_mem_powered_down(rmt_contex.hal.regs);
  225. RMT_EXIT_CRITICAL();
  226. return ESP_OK;
  227. }
  228. esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst)
  229. {
  230. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  231. RMT_ENTER_CRITICAL();
  232. if (tx_idx_rst) {
  233. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel);
  234. }
  235. rmt_ll_clear_interrupt_status(rmt_contex.hal.regs, RMT_LL_EVENT_TX_DONE(channel));
  236. // enable tx end interrupt in non-loop mode
  237. if (!rmt_ll_tx_is_loop_enabled(rmt_contex.hal.regs, channel)) {
  238. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_DONE(channel), true);
  239. } else {
  240. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  241. rmt_ll_tx_reset_loop_count(rmt_contex.hal.regs, channel);
  242. rmt_ll_tx_enable_loop_count(rmt_contex.hal.regs, channel, true);
  243. rmt_ll_clear_interrupt_status(rmt_contex.hal.regs, RMT_LL_EVENT_TX_LOOP_END(channel));
  244. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_LOOP_END(channel), true);
  245. #endif
  246. }
  247. rmt_ll_tx_start(rmt_contex.hal.regs, channel);
  248. RMT_EXIT_CRITICAL();
  249. return ESP_OK;
  250. }
  251. esp_err_t rmt_tx_stop(rmt_channel_t channel)
  252. {
  253. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  254. RMT_ENTER_CRITICAL();
  255. #if SOC_RMT_SUPPORT_TX_ASYNC_STOP
  256. rmt_ll_tx_stop(rmt_contex.hal.regs, channel);
  257. #else
  258. // write ending marker to stop the TX channel
  259. RMTMEM.chan[channel].data32[0].val = 0;
  260. #endif
  261. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel);
  262. RMT_EXIT_CRITICAL();
  263. return ESP_OK;
  264. }
  265. #if SOC_RMT_SUPPORT_RX_PINGPONG
  266. esp_err_t rmt_set_rx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
  267. {
  268. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  269. if (en) {
  270. uint32_t item_block_len = rmt_ll_rx_get_mem_blocks(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)) * RMT_MEM_ITEM_NUM;
  271. ESP_RETURN_ON_FALSE(evt_thresh <= item_block_len, ESP_ERR_INVALID_ARG, TAG, "RMT EVT THRESH ERR");
  272. RMT_ENTER_CRITICAL();
  273. rmt_ll_rx_set_limit(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), evt_thresh);
  274. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_THRES(RMT_DECODE_RX_CHANNEL(channel)), true);
  275. RMT_EXIT_CRITICAL();
  276. } else {
  277. RMT_ENTER_CRITICAL();
  278. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_THRES(RMT_DECODE_RX_CHANNEL(channel)), false);
  279. RMT_EXIT_CRITICAL();
  280. }
  281. return ESP_OK;
  282. }
  283. #endif
  284. esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)
  285. {
  286. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  287. RMT_ENTER_CRITICAL();
  288. rmt_ll_rx_enable(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), false);
  289. if (rx_idx_rst) {
  290. rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  291. }
  292. rmt_ll_clear_interrupt_status(rmt_contex.hal.regs, RMT_LL_EVENT_RX_DONE(RMT_DECODE_RX_CHANNEL(channel)));
  293. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_DONE(RMT_DECODE_RX_CHANNEL(channel)), true);
  294. #if SOC_RMT_SUPPORT_RX_PINGPONG
  295. const uint32_t item_block_len = rmt_ll_rx_get_mem_blocks(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)) * RMT_MEM_ITEM_NUM;
  296. p_rmt_obj[channel]->rx_item_start_idx = 0;
  297. p_rmt_obj[channel]->rx_item_len = 0;
  298. rmt_set_rx_thr_intr_en(channel, true, item_block_len / 2);
  299. #endif
  300. rmt_ll_rx_enable(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), true);
  301. RMT_EXIT_CRITICAL();
  302. return ESP_OK;
  303. }
  304. esp_err_t rmt_rx_stop(rmt_channel_t channel)
  305. {
  306. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  307. RMT_ENTER_CRITICAL();
  308. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_DONE(RMT_DECODE_RX_CHANNEL(channel)), false);
  309. rmt_ll_rx_enable(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), false);
  310. rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  311. #if SOC_RMT_SUPPORT_RX_PINGPONG
  312. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_THRES(RMT_DECODE_RX_CHANNEL(channel)), false);
  313. #endif
  314. RMT_EXIT_CRITICAL();
  315. return ESP_OK;
  316. }
  317. esp_err_t rmt_tx_memory_reset(rmt_channel_t channel)
  318. {
  319. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  320. RMT_ENTER_CRITICAL();
  321. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel);
  322. RMT_EXIT_CRITICAL();
  323. return ESP_OK;
  324. }
  325. esp_err_t rmt_rx_memory_reset(rmt_channel_t channel)
  326. {
  327. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  328. RMT_ENTER_CRITICAL();
  329. rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  330. RMT_EXIT_CRITICAL();
  331. return ESP_OK;
  332. }
  333. esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner)
  334. {
  335. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  336. ESP_RETURN_ON_FALSE(owner < RMT_MEM_OWNER_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_MEM_OWNER_ERROR_STR);
  337. RMT_ENTER_CRITICAL();
  338. rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), owner);
  339. RMT_EXIT_CRITICAL();
  340. return ESP_OK;
  341. }
  342. esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t *owner)
  343. {
  344. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  345. ESP_RETURN_ON_FALSE(owner, ESP_ERR_INVALID_ARG, TAG, RMT_MEM_OWNER_ERROR_STR);
  346. RMT_ENTER_CRITICAL();
  347. *owner = (rmt_mem_owner_t)rmt_ll_rx_get_mem_owner(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  348. RMT_EXIT_CRITICAL();
  349. return ESP_OK;
  350. }
  351. esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en)
  352. {
  353. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  354. RMT_ENTER_CRITICAL();
  355. rmt_ll_tx_enable_loop(rmt_contex.hal.regs, channel, loop_en);
  356. RMT_EXIT_CRITICAL();
  357. return ESP_OK;
  358. }
  359. esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool *loop_en)
  360. {
  361. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  362. RMT_ENTER_CRITICAL();
  363. *loop_en = rmt_ll_tx_is_loop_enabled(rmt_contex.hal.regs, channel);
  364. RMT_EXIT_CRITICAL();
  365. return ESP_OK;
  366. }
  367. esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh)
  368. {
  369. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  370. RMT_ENTER_CRITICAL();
  371. rmt_ll_rx_enable_filter(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), rx_filter_en);
  372. rmt_ll_rx_set_filter_thres(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), thresh);
  373. RMT_EXIT_CRITICAL();
  374. return ESP_OK;
  375. }
  376. esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk)
  377. {
  378. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  379. RMT_ENTER_CRITICAL();
  380. // `rmt_clock_source_t` and `rmt_source_clk_t` are binary compatible, as the underlying enum entries come from the same `soc_module_clk_t`
  381. rmt_ll_set_group_clock_src(rmt_contex.hal.regs, channel, (rmt_clock_source_t)base_clk, 1, 0, 0);
  382. RMT_EXIT_CRITICAL();
  383. return ESP_OK;
  384. }
  385. esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t *src_clk)
  386. {
  387. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  388. RMT_ENTER_CRITICAL();
  389. // `rmt_clock_source_t` and `rmt_source_clk_t` are binary compatible, as the underlying enum entries come from the same `soc_module_clk_t`
  390. *src_clk = (rmt_source_clk_t)rmt_ll_get_group_clock_src(rmt_contex.hal.regs, channel);
  391. RMT_EXIT_CRITICAL();
  392. return ESP_OK;
  393. }
  394. esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level)
  395. {
  396. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  397. ESP_RETURN_ON_FALSE(level < RMT_IDLE_LEVEL_MAX, ESP_ERR_INVALID_ARG, TAG, "RMT IDLE LEVEL ERR");
  398. RMT_ENTER_CRITICAL();
  399. rmt_ll_tx_fix_idle_level(rmt_contex.hal.regs, channel, level, idle_out_en);
  400. RMT_EXIT_CRITICAL();
  401. return ESP_OK;
  402. }
  403. esp_err_t rmt_get_idle_level(rmt_channel_t channel, bool *idle_out_en, rmt_idle_level_t *level)
  404. {
  405. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  406. RMT_ENTER_CRITICAL();
  407. *idle_out_en = rmt_ll_tx_is_idle_enabled(rmt_contex.hal.regs, channel);
  408. *level = rmt_ll_tx_get_idle_level(rmt_contex.hal.regs, channel);
  409. RMT_EXIT_CRITICAL();
  410. return ESP_OK;
  411. }
  412. esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t *status)
  413. {
  414. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  415. RMT_ENTER_CRITICAL();
  416. if (RMT_IS_RX_CHANNEL(channel)) {
  417. *status = rmt_ll_rx_get_status_word(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  418. } else {
  419. *status = rmt_ll_tx_get_status_word(rmt_contex.hal.regs, channel);
  420. }
  421. RMT_EXIT_CRITICAL();
  422. return ESP_OK;
  423. }
  424. esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)
  425. {
  426. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  427. RMT_ENTER_CRITICAL();
  428. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_DONE(RMT_DECODE_RX_CHANNEL(channel)), en);
  429. RMT_EXIT_CRITICAL();
  430. return ESP_OK;
  431. }
  432. esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)
  433. {
  434. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  435. RMT_ENTER_CRITICAL();
  436. if (RMT_IS_RX_CHANNEL(channel)) {
  437. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_ERROR(RMT_DECODE_RX_CHANNEL(channel)), en);
  438. } else {
  439. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_ERROR(channel), en);
  440. }
  441. RMT_EXIT_CRITICAL();
  442. return ESP_OK;
  443. }
  444. esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en)
  445. {
  446. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  447. RMT_ENTER_CRITICAL();
  448. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_DONE(channel), en);
  449. RMT_EXIT_CRITICAL();
  450. return ESP_OK;
  451. }
  452. esp_err_t rmt_set_tx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
  453. {
  454. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  455. if (en) {
  456. uint32_t item_block_len = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel) * RMT_MEM_ITEM_NUM;
  457. ESP_RETURN_ON_FALSE(evt_thresh <= item_block_len, ESP_ERR_INVALID_ARG, TAG, "RMT EVT THRESH ERR");
  458. RMT_ENTER_CRITICAL();
  459. rmt_ll_tx_set_limit(rmt_contex.hal.regs, channel, evt_thresh);
  460. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_THRES(channel), true);
  461. RMT_EXIT_CRITICAL();
  462. } else {
  463. RMT_ENTER_CRITICAL();
  464. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_THRES(channel), false);
  465. RMT_EXIT_CRITICAL();
  466. }
  467. return ESP_OK;
  468. }
  469. esp_err_t rmt_set_gpio(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num, bool invert_signal)
  470. {
  471. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  472. ESP_RETURN_ON_FALSE(mode < RMT_MODE_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_MODE_ERROR_STR);
  473. ESP_RETURN_ON_FALSE(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) ||
  474. (GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))), ESP_ERR_INVALID_ARG, TAG, RMT_GPIO_ERROR_STR);
  475. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  476. if (mode == RMT_MODE_TX) {
  477. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  478. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  479. esp_rom_gpio_connect_out_signal(gpio_num, rmt_periph_signals.groups[0].channels[channel].tx_sig, invert_signal, 0);
  480. } else {
  481. ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  482. gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
  483. esp_rom_gpio_connect_in_signal(gpio_num, rmt_periph_signals.groups[0].channels[channel].rx_sig, invert_signal);
  484. }
  485. return ESP_OK;
  486. }
  487. static bool rmt_is_channel_number_valid(rmt_channel_t channel, uint8_t mode)
  488. {
  489. // RX mode
  490. if (mode == RMT_MODE_RX) {
  491. return RMT_IS_RX_CHANNEL(channel) && (channel < RMT_CHANNEL_MAX);
  492. }
  493. // TX mode
  494. return (channel >= 0) && RMT_IS_TX_CHANNEL(channel);
  495. }
  496. static esp_err_t rmt_internal_config(rmt_dev_t *dev, const rmt_config_t *rmt_param)
  497. {
  498. uint8_t mode = rmt_param->rmt_mode;
  499. uint8_t channel = rmt_param->channel;
  500. uint8_t gpio_num = rmt_param->gpio_num;
  501. uint8_t mem_cnt = rmt_param->mem_block_num;
  502. uint8_t clk_div = rmt_param->clk_div;
  503. uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz;
  504. bool carrier_en = rmt_param->tx_config.carrier_en;
  505. uint32_t rmt_source_clk_hz;
  506. ESP_RETURN_ON_FALSE(rmt_is_channel_number_valid(channel, mode), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  507. ESP_RETURN_ON_FALSE(mem_cnt + channel <= SOC_RMT_CHANNELS_PER_GROUP && mem_cnt > 0, ESP_ERR_INVALID_ARG, TAG, RMT_MEM_CNT_ERROR_STR);
  508. ESP_RETURN_ON_FALSE(clk_div > 0, ESP_ERR_INVALID_ARG, TAG, RMT_CLK_DIV_ERROR_STR);
  509. if (mode == RMT_MODE_TX) {
  510. ESP_RETURN_ON_FALSE(!carrier_en || carrier_freq_hz > 0, ESP_ERR_INVALID_ARG, TAG, "RMT carrier frequency can't be zero");
  511. }
  512. RMT_ENTER_CRITICAL();
  513. rmt_ll_enable_mem_access_nonfifo(dev, true);
  514. if (rmt_param->flags & RMT_CHANNEL_FLAGS_AWARE_DFS) {
  515. // [clk_tree] TODO: refactor the following code by clk_tree API
  516. #if SOC_RMT_SUPPORT_XTAL
  517. // clock src: XTAL_CLK
  518. rmt_source_clk_hz = esp_clk_xtal_freq();
  519. rmt_ll_set_group_clock_src(dev, channel, (rmt_clock_source_t)RMT_BASECLK_XTAL, 1, 0, 0);
  520. #elif SOC_RMT_SUPPORT_REF_TICK
  521. // clock src: REF_CLK
  522. rmt_source_clk_hz = REF_CLK_FREQ;
  523. rmt_ll_set_group_clock_src(dev, channel, (rmt_clock_source_t)RMT_BASECLK_REF, 1, 0, 0);
  524. #endif
  525. } else {
  526. // fallback to use default clock source
  527. rmt_source_clk_hz = APB_CLK_FREQ;
  528. rmt_ll_set_group_clock_src(dev, channel, (rmt_clock_source_t)RMT_BASECLK_DEFAULT, 1, 0, 0);
  529. }
  530. RMT_EXIT_CRITICAL();
  531. #if SOC_RMT_CHANNEL_CLK_INDEPENDENT
  532. s_rmt_source_clock_hz[channel] = rmt_source_clk_hz;
  533. #else
  534. if (s_rmt_source_clock_hz && rmt_source_clk_hz != s_rmt_source_clock_hz) {
  535. ESP_LOGW(TAG, "RMT clock source has been configured to %"PRIu32" by other channel, now reconfigure it to %"PRIu32, s_rmt_source_clock_hz, rmt_source_clk_hz);
  536. }
  537. s_rmt_source_clock_hz = rmt_source_clk_hz;
  538. #endif
  539. ESP_LOGD(TAG, "rmt_source_clk_hz: %"PRIu32, rmt_source_clk_hz);
  540. if (mode == RMT_MODE_TX) {
  541. uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent;
  542. uint8_t carrier_level = rmt_param->tx_config.carrier_level;
  543. uint8_t idle_level = rmt_param->tx_config.idle_level;
  544. RMT_ENTER_CRITICAL();
  545. rmt_ll_tx_set_channel_clock_div(dev, channel, clk_div);
  546. rmt_ll_tx_set_mem_blocks(dev, channel, mem_cnt);
  547. rmt_ll_tx_reset_pointer(dev, channel);
  548. rmt_ll_tx_enable_loop(dev, channel, rmt_param->tx_config.loop_en);
  549. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  550. if (rmt_param->tx_config.loop_en) {
  551. rmt_ll_tx_set_loop_count(dev, channel, rmt_param->tx_config.loop_count);
  552. }
  553. #endif
  554. /* always enable tx ping-pong */
  555. rmt_ll_tx_enable_wrap(dev, channel, true);
  556. /*Set idle level */
  557. rmt_ll_tx_fix_idle_level(dev, channel, idle_level, rmt_param->tx_config.idle_output_en);
  558. /*Set carrier*/
  559. rmt_ll_tx_enable_carrier_modulation(dev, channel, carrier_en);
  560. if (carrier_en) {
  561. uint32_t duty_div, duty_h, duty_l;
  562. duty_div = rmt_source_clk_hz / carrier_freq_hz;
  563. duty_h = duty_div * carrier_duty_percent / 100;
  564. duty_l = duty_div - duty_h;
  565. rmt_ll_tx_set_carrier_level(dev, channel, carrier_level);
  566. rmt_ll_tx_set_carrier_high_low_ticks(dev, channel, duty_h, duty_l);
  567. } else {
  568. rmt_ll_tx_set_carrier_level(dev, channel, 0);
  569. }
  570. RMT_EXIT_CRITICAL();
  571. ESP_LOGD(TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %"PRIu32"|Div %u|Carrier_Hz %"PRIu32"|Duty %u",
  572. channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent);
  573. } else if (RMT_MODE_RX == mode) {
  574. uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh;
  575. uint16_t threshold = rmt_param->rx_config.idle_threshold;
  576. RMT_ENTER_CRITICAL();
  577. rmt_ll_rx_set_channel_clock_div(dev, RMT_DECODE_RX_CHANNEL(channel), clk_div);
  578. rmt_ll_rx_set_mem_blocks(dev, RMT_DECODE_RX_CHANNEL(channel), mem_cnt);
  579. rmt_ll_rx_reset_pointer(dev, RMT_DECODE_RX_CHANNEL(channel));
  580. rmt_ll_rx_set_mem_owner(dev, RMT_DECODE_RX_CHANNEL(channel), RMT_LL_MEM_OWNER_HW);
  581. /*Set idle threshold*/
  582. rmt_ll_rx_set_idle_thres(dev, RMT_DECODE_RX_CHANNEL(channel), threshold);
  583. /* Set RX filter */
  584. rmt_ll_rx_set_filter_thres(dev, RMT_DECODE_RX_CHANNEL(channel), filter_cnt);
  585. rmt_ll_rx_enable_filter(dev, RMT_DECODE_RX_CHANNEL(channel), rmt_param->rx_config.filter_en);
  586. #if SOC_RMT_SUPPORT_RX_PINGPONG
  587. /* always enable rx ping-pong */
  588. rmt_ll_rx_enable_wrap(dev, RMT_DECODE_RX_CHANNEL(channel), true);
  589. #endif
  590. #if SOC_RMT_SUPPORT_RX_DEMODULATION
  591. rmt_ll_rx_enable_carrier_demodulation(dev, RMT_DECODE_RX_CHANNEL(channel), rmt_param->rx_config.rm_carrier);
  592. if (rmt_param->rx_config.rm_carrier) {
  593. uint32_t duty_total = rmt_source_clk_hz / rmt_ll_rx_get_channel_clock_div(dev, RMT_DECODE_RX_CHANNEL(channel)) / rmt_param->rx_config.carrier_freq_hz;
  594. uint32_t duty_high = duty_total * rmt_param->rx_config.carrier_duty_percent / 100;
  595. // there could be residual in timing the carrier pulse, so double enlarge the theoretical value
  596. rmt_ll_rx_set_carrier_high_low_ticks(dev, RMT_DECODE_RX_CHANNEL(channel), duty_high * 2, (duty_total - duty_high) * 2);
  597. rmt_ll_rx_set_carrier_level(dev, RMT_DECODE_RX_CHANNEL(channel), rmt_param->rx_config.carrier_level);
  598. }
  599. #endif
  600. RMT_EXIT_CRITICAL();
  601. ESP_LOGD(TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %"PRIu32"|Div %u|Thresold %u|Filter %u",
  602. channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt);
  603. }
  604. return ESP_OK;
  605. }
  606. esp_err_t rmt_config(const rmt_config_t *rmt_param)
  607. {
  608. rmt_module_enable();
  609. ESP_RETURN_ON_ERROR(rmt_set_gpio(rmt_param->channel, rmt_param->rmt_mode, rmt_param->gpio_num, rmt_param->flags & RMT_CHANNEL_FLAGS_INVERT_SIG), TAG, "set gpio for RMT driver failed");
  610. ESP_RETURN_ON_ERROR(rmt_internal_config(&RMT, rmt_param), TAG, "initialize RMT driver failed");
  611. return ESP_OK;
  612. }
  613. static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, const rmt_item32_t *item,
  614. uint16_t item_num, uint16_t mem_offset)
  615. {
  616. uint32_t *from = (uint32_t *)item;
  617. volatile uint32_t *to = (volatile uint32_t *)&RMTMEM.chan[channel].data32[0].val;
  618. to += mem_offset;
  619. while (item_num--) {
  620. *to++ = *from++;
  621. }
  622. }
  623. esp_err_t rmt_fill_tx_items(rmt_channel_t channel, const rmt_item32_t *item, uint16_t item_num, uint16_t mem_offset)
  624. {
  625. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), (0), TAG, RMT_CHANNEL_ERROR_STR);
  626. ESP_RETURN_ON_FALSE(item, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR);
  627. ESP_RETURN_ON_FALSE(item_num > 0, ESP_ERR_INVALID_ARG, TAG, RMT_DRIVER_LENGTH_ERROR_STR);
  628. uint8_t mem_cnt = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel);
  629. ESP_RETURN_ON_FALSE(mem_cnt * RMT_MEM_ITEM_NUM >= item_num, ESP_ERR_INVALID_ARG, TAG, RMT_WR_MEM_OVF_ERROR_STR);
  630. rmt_fill_memory(channel, item, item_num, mem_offset);
  631. return ESP_OK;
  632. }
  633. esp_err_t rmt_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, rmt_isr_handle_t *handle)
  634. {
  635. ESP_RETURN_ON_FALSE(fn, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR);
  636. ESP_RETURN_ON_FALSE(rmt_contex.rmt_driver_channels == 0, ESP_FAIL, TAG, "RMT driver installed, can not install generic ISR handler");
  637. return esp_intr_alloc(rmt_periph_signals.groups[0].irq, intr_alloc_flags, fn, arg, handle);
  638. }
  639. esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle)
  640. {
  641. return esp_intr_free(handle);
  642. }
  643. static void IRAM_ATTR rmt_driver_isr_default(void *arg)
  644. {
  645. uint32_t status = 0;
  646. rmt_item32_t *addr = NULL;
  647. uint8_t channel = 0;
  648. rmt_hal_context_t *hal = (rmt_hal_context_t *)arg;
  649. portBASE_TYPE HPTaskAwoken = pdFALSE;
  650. // Tx end interrupt
  651. status = rmt_ll_get_tx_end_interrupt_status(hal->regs);
  652. while (status) {
  653. channel = __builtin_ffs(status) - 1;
  654. status &= ~(1 << channel);
  655. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  656. if (p_rmt) {
  657. xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
  658. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel);
  659. p_rmt->tx_data = NULL;
  660. p_rmt->tx_len_rem = 0;
  661. p_rmt->tx_offset = 0;
  662. p_rmt->tx_sub_len = 0;
  663. p_rmt->sample_cur = NULL;
  664. p_rmt->translator = false;
  665. if (rmt_contex.rmt_tx_end_callback.function) {
  666. rmt_contex.rmt_tx_end_callback.function(channel, rmt_contex.rmt_tx_end_callback.arg);
  667. }
  668. }
  669. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_DONE(channel));
  670. }
  671. // Tx thres interrupt
  672. status = rmt_ll_get_tx_thres_interrupt_status(hal->regs);
  673. while (status) {
  674. channel = __builtin_ffs(status) - 1;
  675. status &= ~(1 << channel);
  676. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  677. if (p_rmt) {
  678. if (p_rmt->translator) {
  679. if (p_rmt->sample_size_remain > 0) {
  680. size_t translated_size = 0;
  681. p_rmt->sample_to_rmt((void *)p_rmt->sample_cur,
  682. p_rmt->tx_buf,
  683. p_rmt->sample_size_remain,
  684. p_rmt->tx_sub_len,
  685. &translated_size,
  686. &p_rmt->tx_len_rem);
  687. p_rmt->sample_size_remain -= translated_size;
  688. p_rmt->sample_cur += translated_size;
  689. p_rmt->tx_data = p_rmt->tx_buf;
  690. } else {
  691. p_rmt->sample_cur = NULL;
  692. p_rmt->translator = false;
  693. }
  694. }
  695. const rmt_item32_t *pdata = p_rmt->tx_data;
  696. size_t len_rem = p_rmt->tx_len_rem;
  697. rmt_idle_level_t idle_level = rmt_ll_tx_get_idle_level(hal->regs, channel);
  698. rmt_item32_t stop_data = (rmt_item32_t) {
  699. .level0 = idle_level,
  700. .duration0 = 0,
  701. };
  702. if (len_rem >= p_rmt->tx_sub_len) {
  703. rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset);
  704. p_rmt->tx_data += p_rmt->tx_sub_len;
  705. p_rmt->tx_len_rem -= p_rmt->tx_sub_len;
  706. } else if (len_rem == 0) {
  707. rmt_fill_memory(channel, &stop_data, 1, p_rmt->tx_offset);
  708. } else {
  709. rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset);
  710. rmt_fill_memory(channel, &stop_data, 1, p_rmt->tx_offset + len_rem);
  711. p_rmt->tx_data += len_rem;
  712. p_rmt->tx_len_rem -= len_rem;
  713. }
  714. if (p_rmt->tx_offset == 0) {
  715. p_rmt->tx_offset = p_rmt->tx_sub_len;
  716. } else {
  717. p_rmt->tx_offset = 0;
  718. }
  719. }
  720. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_THRES(channel));
  721. }
  722. // Rx end interrupt
  723. status = rmt_ll_get_rx_end_interrupt_status(hal->regs);
  724. while (status) {
  725. channel = __builtin_ffs(status) - 1;
  726. status &= ~(1 << channel);
  727. rmt_obj_t *p_rmt = p_rmt_obj[RMT_ENCODE_RX_CHANNEL(channel)];
  728. if (p_rmt) {
  729. rmt_ll_rx_enable(rmt_contex.hal.regs, channel, false);
  730. int item_len = rmt_ll_rx_get_memory_writer_offset(rmt_contex.hal.regs, channel);
  731. rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, channel, RMT_LL_MEM_OWNER_SW);
  732. if (p_rmt->rx_buf) {
  733. addr = (rmt_item32_t *)RMTMEM.chan[RMT_ENCODE_RX_CHANNEL(channel)].data32;
  734. #if SOC_RMT_SUPPORT_RX_PINGPONG
  735. if (item_len > p_rmt->rx_item_start_idx) {
  736. item_len = item_len - p_rmt->rx_item_start_idx;
  737. }
  738. memcpy((void *)(p_rmt->rx_item_buf + p_rmt->rx_item_len), (void *)(addr + p_rmt->rx_item_start_idx), item_len * 4);
  739. p_rmt->rx_item_len += item_len;
  740. BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void *)(p_rmt->rx_item_buf), p_rmt->rx_item_len * 4, &HPTaskAwoken);
  741. #else
  742. BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void *)addr, item_len * 4, &HPTaskAwoken);
  743. #endif
  744. if (res == pdFALSE) {
  745. ESP_DRAM_LOGE(TAG, "RMT RX BUFFER FULL");
  746. }
  747. } else {
  748. ESP_DRAM_LOGE(TAG, "RMT RX BUFFER ERROR");
  749. }
  750. #if SOC_RMT_SUPPORT_RX_PINGPONG
  751. p_rmt->rx_item_start_idx = 0;
  752. p_rmt->rx_item_len = 0;
  753. memset((void *)p_rmt->rx_item_buf, 0, p_rmt->rx_item_buf_size);
  754. #endif
  755. rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, channel);
  756. rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, channel, RMT_LL_MEM_OWNER_HW);
  757. rmt_ll_rx_enable(rmt_contex.hal.regs, channel, true);
  758. }
  759. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_DONE(channel));
  760. }
  761. #if SOC_RMT_SUPPORT_RX_PINGPONG
  762. // Rx thres interrupt
  763. status = rmt_ll_get_rx_thres_interrupt_status(hal->regs);
  764. while (status) {
  765. channel = __builtin_ffs(status) - 1;
  766. status &= ~(1 << channel);
  767. rmt_obj_t *p_rmt = p_rmt_obj[RMT_ENCODE_RX_CHANNEL(channel)];
  768. int mem_item_size = rmt_ll_rx_get_mem_blocks(rmt_contex.hal.regs, channel) * RMT_MEM_ITEM_NUM;
  769. int rx_thres_lim = rmt_ll_rx_get_limit(rmt_contex.hal.regs, channel);
  770. int item_len = (p_rmt->rx_item_start_idx == 0) ? rx_thres_lim : (mem_item_size - rx_thres_lim);
  771. if ((p_rmt->rx_item_len + item_len) < (p_rmt->rx_item_buf_size / 4)) {
  772. rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, channel, RMT_LL_MEM_OWNER_SW);
  773. memcpy((void *)(p_rmt->rx_item_buf + p_rmt->rx_item_len), (void *)(RMTMEM.chan[RMT_ENCODE_RX_CHANNEL(channel)].data32 + p_rmt->rx_item_start_idx), item_len * 4);
  774. rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, channel, RMT_LL_MEM_OWNER_HW);
  775. p_rmt->rx_item_len += item_len;
  776. p_rmt->rx_item_start_idx += item_len;
  777. if (p_rmt->rx_item_start_idx >= mem_item_size) {
  778. p_rmt->rx_item_start_idx = 0;
  779. }
  780. } else {
  781. ESP_DRAM_LOGE(TAG, "---RX buffer too small: %d", sizeof(p_rmt->rx_item_buf));
  782. }
  783. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_THRES(channel));
  784. }
  785. #endif
  786. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  787. // loop count interrupt
  788. status = rmt_ll_get_tx_loop_interrupt_status(hal->regs);
  789. while (status) {
  790. channel = __builtin_ffs(status) - 1;
  791. status &= ~(1 << channel);
  792. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  793. if (p_rmt) {
  794. if (p_rmt->loop_autostop) {
  795. #ifndef SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP
  796. // hardware doesn't support automatically stop output so driver should stop output here (possibility already overshotted several us)
  797. rmt_ll_tx_stop(rmt_contex.hal.regs, channel);
  798. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel);
  799. #endif
  800. }
  801. xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
  802. if (rmt_contex.rmt_tx_end_callback.function) {
  803. rmt_contex.rmt_tx_end_callback.function(channel, rmt_contex.rmt_tx_end_callback.arg);
  804. }
  805. }
  806. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_LOOP_END(channel));
  807. }
  808. #endif
  809. // RX Err interrupt
  810. status = rmt_ll_get_rx_err_interrupt_status(hal->regs);
  811. while (status) {
  812. channel = __builtin_ffs(status) - 1;
  813. status &= ~(1 << channel);
  814. rmt_obj_t *p_rmt = p_rmt_obj[RMT_ENCODE_RX_CHANNEL(channel)];
  815. if (p_rmt) {
  816. // Reset the receiver's write/read addresses to prevent endless err interrupts.
  817. rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, channel);
  818. ESP_DRAM_LOGD(TAG, "RMT RX channel %d error", channel);
  819. ESP_DRAM_LOGD(TAG, "status: 0x%08x", rmt_ll_rx_get_status_word(rmt_contex.hal.regs, channel));
  820. }
  821. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_ERROR(channel));
  822. }
  823. // TX Err interrupt
  824. status = rmt_ll_get_tx_err_interrupt_status(hal->regs);
  825. while (status) {
  826. channel = __builtin_ffs(status) - 1;
  827. status &= ~(1 << channel);
  828. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  829. if (p_rmt) {
  830. // Reset the transmitter's write/read addresses to prevent endless err interrupts.
  831. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel);
  832. ESP_DRAM_LOGD(TAG, "RMT TX channel %d error", channel);
  833. ESP_DRAM_LOGD(TAG, "status: 0x%08x", rmt_ll_tx_get_status_word(rmt_contex.hal.regs, channel));
  834. }
  835. rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_ERROR(channel));
  836. }
  837. if (HPTaskAwoken == pdTRUE) {
  838. portYIELD_FROM_ISR();
  839. }
  840. }
  841. esp_err_t rmt_driver_uninstall(rmt_channel_t channel)
  842. {
  843. esp_err_t err = ESP_OK;
  844. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  845. ESP_RETURN_ON_FALSE(rmt_contex.rmt_driver_channels & BIT(channel), ESP_ERR_INVALID_STATE, TAG, "No RMT driver for this channel");
  846. if (p_rmt_obj[channel] == NULL) {
  847. return ESP_OK;
  848. }
  849. //Avoid blocking here(when the interrupt is disabled and do not wait tx done).
  850. if (p_rmt_obj[channel]->wait_done) {
  851. xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
  852. }
  853. RMT_ENTER_CRITICAL();
  854. // check channel's working mode
  855. if (p_rmt_obj[channel]->rx_buf) {
  856. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_MASK(RMT_DECODE_RX_CHANNEL(channel)) | RMT_LL_EVENT_RX_ERROR(RMT_DECODE_RX_CHANNEL(channel)), false);
  857. } else {
  858. rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_MASK(channel) | RMT_LL_EVENT_TX_ERROR(channel), false);
  859. }
  860. RMT_EXIT_CRITICAL();
  861. _lock_acquire_recursive(&(rmt_contex.rmt_driver_isr_lock));
  862. rmt_contex.rmt_driver_channels &= ~BIT(channel);
  863. if (rmt_contex.rmt_driver_channels == 0) {
  864. rmt_module_disable();
  865. // all channels have driver disabled
  866. err = rmt_isr_deregister(rmt_contex.rmt_driver_intr_handle);
  867. rmt_contex.rmt_driver_intr_handle = NULL;
  868. }
  869. _lock_release_recursive(&(rmt_contex.rmt_driver_isr_lock));
  870. if (err != ESP_OK) {
  871. return err;
  872. }
  873. if (p_rmt_obj[channel]->tx_sem) {
  874. vSemaphoreDelete(p_rmt_obj[channel]->tx_sem);
  875. p_rmt_obj[channel]->tx_sem = NULL;
  876. }
  877. if (p_rmt_obj[channel]->rx_buf) {
  878. vRingbufferDelete(p_rmt_obj[channel]->rx_buf);
  879. p_rmt_obj[channel]->rx_buf = NULL;
  880. }
  881. if (p_rmt_obj[channel]->tx_buf) {
  882. free(p_rmt_obj[channel]->tx_buf);
  883. p_rmt_obj[channel]->tx_buf = NULL;
  884. }
  885. if (p_rmt_obj[channel]->sample_to_rmt) {
  886. p_rmt_obj[channel]->sample_to_rmt = NULL;
  887. }
  888. #if SOC_RMT_SUPPORT_RX_PINGPONG
  889. if (p_rmt_obj[channel]->rx_item_buf) {
  890. free(p_rmt_obj[channel]->rx_item_buf);
  891. p_rmt_obj[channel]->rx_item_buf = NULL;
  892. p_rmt_obj[channel]->rx_item_buf_size = 0;
  893. }
  894. #endif
  895. free(p_rmt_obj[channel]);
  896. p_rmt_obj[channel] = NULL;
  897. return ESP_OK;
  898. }
  899. esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int intr_alloc_flags)
  900. {
  901. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  902. ESP_RETURN_ON_FALSE((rmt_contex.rmt_driver_channels & BIT(channel)) == 0, ESP_ERR_INVALID_STATE, TAG, "RMT driver already installed for channel");
  903. esp_err_t err = ESP_OK;
  904. if (p_rmt_obj[channel]) {
  905. ESP_LOGD(TAG, "RMT driver already installed");
  906. return ESP_ERR_INVALID_STATE;
  907. }
  908. #if CONFIG_RINGBUF_PLACE_ISR_FUNCTIONS_INTO_FLASH
  909. if (intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
  910. ESP_LOGE(TAG, "ringbuf ISR functions in flash, but used in IRAM interrupt");
  911. return ESP_ERR_INVALID_ARG;
  912. }
  913. #endif
  914. #if !CONFIG_SPIRAM_USE_MALLOC
  915. p_rmt_obj[channel] = calloc(1, sizeof(rmt_obj_t));
  916. #else
  917. if (!(intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
  918. p_rmt_obj[channel] = calloc(1, sizeof(rmt_obj_t));
  919. } else {
  920. p_rmt_obj[channel] = heap_caps_calloc(1, sizeof(rmt_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  921. }
  922. #endif
  923. if (p_rmt_obj[channel] == NULL) {
  924. ESP_LOGE(TAG, "RMT driver malloc error");
  925. return ESP_ERR_NO_MEM;
  926. }
  927. p_rmt_obj[channel]->tx_len_rem = 0;
  928. p_rmt_obj[channel]->tx_data = NULL;
  929. p_rmt_obj[channel]->channel = channel;
  930. p_rmt_obj[channel]->tx_offset = 0;
  931. p_rmt_obj[channel]->tx_sub_len = 0;
  932. p_rmt_obj[channel]->wait_done = false;
  933. p_rmt_obj[channel]->loop_autostop = false;
  934. p_rmt_obj[channel]->translator = false;
  935. p_rmt_obj[channel]->sample_to_rmt = NULL;
  936. if (p_rmt_obj[channel]->tx_sem == NULL) {
  937. #if !CONFIG_SPIRAM_USE_MALLOC
  938. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  939. #else
  940. p_rmt_obj[channel]->intr_alloc_flags = intr_alloc_flags;
  941. if (!(intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
  942. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  943. } else {
  944. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinaryStatic(&p_rmt_obj[channel]->tx_sem_buffer);
  945. }
  946. #endif
  947. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  948. }
  949. if (p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) {
  950. p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT);
  951. }
  952. #if SOC_RMT_SUPPORT_RX_PINGPONG
  953. if (p_rmt_obj[channel]->rx_item_buf == NULL && rx_buf_size > 0) {
  954. #if !CONFIG_SPIRAM_USE_MALLOC
  955. p_rmt_obj[channel]->rx_item_buf = calloc(1, rx_buf_size);
  956. #else
  957. if (!(p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
  958. p_rmt_obj[channel]->rx_item_buf = calloc(1, rx_buf_size);
  959. } else {
  960. p_rmt_obj[channel]->rx_item_buf = heap_caps_calloc(1, rx_buf_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  961. }
  962. #endif
  963. if (p_rmt_obj[channel]->rx_item_buf == NULL) {
  964. ESP_LOGE(TAG, "RMT malloc fail");
  965. return ESP_FAIL;
  966. }
  967. p_rmt_obj[channel]->rx_item_buf_size = rx_buf_size;
  968. }
  969. #endif
  970. _lock_acquire_recursive(&(rmt_contex.rmt_driver_isr_lock));
  971. if (rmt_contex.rmt_driver_channels == 0) {
  972. // first RMT channel using driver
  973. err = rmt_isr_register(rmt_driver_isr_default, &rmt_contex.hal, intr_alloc_flags, &(rmt_contex.rmt_driver_intr_handle));
  974. }
  975. if (err == ESP_OK) {
  976. rmt_contex.rmt_driver_channels |= BIT(channel);
  977. }
  978. _lock_release_recursive(&(rmt_contex.rmt_driver_isr_lock));
  979. rmt_module_enable();
  980. if (RMT_IS_RX_CHANNEL(channel)) {
  981. rmt_hal_rx_channel_reset(&rmt_contex.hal, RMT_DECODE_RX_CHANNEL(channel));
  982. } else {
  983. rmt_hal_tx_channel_reset(&rmt_contex.hal, channel);
  984. }
  985. return err;
  986. }
  987. esp_err_t rmt_write_items(rmt_channel_t channel, const rmt_item32_t *rmt_item, int item_num, bool wait_tx_done)
  988. {
  989. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  990. ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR);
  991. ESP_RETURN_ON_FALSE(rmt_item, ESP_FAIL, TAG, RMT_ADDR_ERROR_STR);
  992. ESP_RETURN_ON_FALSE(item_num > 0, ESP_ERR_INVALID_ARG, TAG, RMT_DRIVER_LENGTH_ERROR_STR);
  993. uint32_t mem_blocks = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel);
  994. ESP_RETURN_ON_FALSE(mem_blocks + channel <= SOC_RMT_CHANNELS_PER_GROUP, ESP_ERR_INVALID_STATE, TAG, RMT_MEM_CNT_ERROR_STR);
  995. #if CONFIG_SPIRAM_USE_MALLOC
  996. if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
  997. if (!esp_ptr_internal(rmt_item)) {
  998. ESP_LOGE(TAG, RMT_PSRAM_BUFFER_WARN_STR);
  999. return ESP_ERR_INVALID_ARG;
  1000. }
  1001. }
  1002. #endif
  1003. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  1004. int item_block_len = mem_blocks * RMT_MEM_ITEM_NUM;
  1005. int item_sub_len = mem_blocks * RMT_MEM_ITEM_NUM / 2;
  1006. int len_rem = item_num;
  1007. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1008. // fill the memory block first
  1009. if (item_num >= item_block_len) {
  1010. rmt_fill_memory(channel, rmt_item, item_block_len, 0);
  1011. len_rem -= item_block_len;
  1012. rmt_set_tx_loop_mode(channel, false);
  1013. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  1014. p_rmt->tx_data = rmt_item + item_block_len;
  1015. p_rmt->tx_len_rem = len_rem;
  1016. p_rmt->tx_offset = 0;
  1017. p_rmt->tx_sub_len = item_sub_len;
  1018. } else {
  1019. rmt_fill_memory(channel, rmt_item, len_rem, 0);
  1020. rmt_idle_level_t idle_level = rmt_ll_tx_get_idle_level(rmt_contex.hal.regs, channel);
  1021. rmt_item32_t stop_data = (rmt_item32_t) {
  1022. .level0 = idle_level,
  1023. .duration0 = 0,
  1024. };
  1025. rmt_fill_memory(channel, &stop_data, 1, len_rem);
  1026. p_rmt->tx_len_rem = 0;
  1027. }
  1028. rmt_tx_start(channel, true);
  1029. p_rmt->wait_done = wait_tx_done;
  1030. if (wait_tx_done) {
  1031. // wait loop done
  1032. if (rmt_ll_tx_is_loop_enabled(rmt_contex.hal.regs, channel)) {
  1033. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  1034. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1035. xSemaphoreGive(p_rmt->tx_sem);
  1036. #endif
  1037. } else {
  1038. // wait tx end
  1039. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1040. xSemaphoreGive(p_rmt->tx_sem);
  1041. }
  1042. }
  1043. return ESP_OK;
  1044. }
  1045. esp_err_t rmt_wait_tx_done(rmt_channel_t channel, TickType_t wait_time)
  1046. {
  1047. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1048. ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR);
  1049. if (xSemaphoreTake(p_rmt_obj[channel]->tx_sem, wait_time) == pdTRUE) {
  1050. p_rmt_obj[channel]->wait_done = false;
  1051. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  1052. return ESP_OK;
  1053. } else {
  1054. if (wait_time != 0) {
  1055. // Don't emit error message if just polling.
  1056. ESP_LOGE(TAG, "Timeout on wait_tx_done");
  1057. }
  1058. return ESP_ERR_TIMEOUT;
  1059. }
  1060. }
  1061. esp_err_t rmt_get_ringbuf_handle(rmt_channel_t channel, RingbufHandle_t *buf_handle)
  1062. {
  1063. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1064. ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR);
  1065. ESP_RETURN_ON_FALSE(buf_handle, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR);
  1066. *buf_handle = p_rmt_obj[channel]->rx_buf;
  1067. return ESP_OK;
  1068. }
  1069. rmt_tx_end_callback_t rmt_register_tx_end_callback(rmt_tx_end_fn_t function, void *arg)
  1070. {
  1071. rmt_tx_end_callback_t previous = rmt_contex.rmt_tx_end_callback;
  1072. rmt_contex.rmt_tx_end_callback.function = function;
  1073. rmt_contex.rmt_tx_end_callback.arg = arg;
  1074. return previous;
  1075. }
  1076. esp_err_t rmt_translator_init(rmt_channel_t channel, sample_to_rmt_t fn)
  1077. {
  1078. ESP_RETURN_ON_FALSE(fn, ESP_ERR_INVALID_ARG, TAG, RMT_TRANSLATOR_NULL_STR);
  1079. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1080. ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR);
  1081. uint32_t mem_blocks = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel);
  1082. ESP_RETURN_ON_FALSE(mem_blocks + channel <= SOC_RMT_CHANNELS_PER_GROUP, ESP_ERR_INVALID_STATE, TAG, RMT_MEM_CNT_ERROR_STR);
  1083. const uint32_t block_size = mem_blocks * RMT_MEM_ITEM_NUM * sizeof(rmt_item32_t);
  1084. if (p_rmt_obj[channel]->tx_buf == NULL) {
  1085. #if !CONFIG_SPIRAM_USE_MALLOC
  1086. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
  1087. #else
  1088. if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
  1089. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
  1090. } else {
  1091. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)heap_caps_calloc(1, block_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  1092. }
  1093. #endif
  1094. if (p_rmt_obj[channel]->tx_buf == NULL) {
  1095. ESP_LOGE(TAG, "RMT translator buffer create fail");
  1096. return ESP_FAIL;
  1097. }
  1098. }
  1099. p_rmt_obj[channel]->sample_to_rmt = fn;
  1100. p_rmt_obj[channel]->tx_context = NULL;
  1101. p_rmt_obj[channel]->sample_size_remain = 0;
  1102. p_rmt_obj[channel]->sample_cur = NULL;
  1103. ESP_LOGD(TAG, "RMT translator init done");
  1104. return ESP_OK;
  1105. }
  1106. esp_err_t rmt_translator_set_context(rmt_channel_t channel, void *context)
  1107. {
  1108. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1109. ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR);
  1110. p_rmt_obj[channel]->tx_context = context;
  1111. return ESP_OK;
  1112. }
  1113. esp_err_t rmt_translator_get_context(const size_t *item_num, void **context)
  1114. {
  1115. ESP_RETURN_ON_FALSE(item_num && context, ESP_ERR_INVALID_ARG, TAG, "invalid arguments");
  1116. // the address of tx_len_rem is directlly passed to the callback,
  1117. // so it's possible to get the object address from that
  1118. rmt_obj_t *obj = __containerof(item_num, rmt_obj_t, tx_len_rem);
  1119. *context = obj->tx_context;
  1120. return ESP_OK;
  1121. }
  1122. esp_err_t rmt_write_sample(rmt_channel_t channel, const uint8_t *src, size_t src_size, bool wait_tx_done)
  1123. {
  1124. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1125. ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR);
  1126. ESP_RETURN_ON_FALSE(p_rmt_obj[channel]->sample_to_rmt, ESP_FAIL, TAG, RMT_TRANSLATOR_UNINIT_STR);
  1127. uint32_t mem_blocks = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel);
  1128. ESP_RETURN_ON_FALSE(mem_blocks + channel <= SOC_RMT_CHANNELS_PER_GROUP, ESP_ERR_INVALID_STATE, TAG, RMT_MEM_CNT_ERROR_STR);
  1129. #if CONFIG_SPIRAM_USE_MALLOC
  1130. if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
  1131. if (!esp_ptr_internal(src)) {
  1132. ESP_LOGE(TAG, RMT_PSRAM_BUFFER_WARN_STR);
  1133. return ESP_ERR_INVALID_ARG;
  1134. }
  1135. }
  1136. #endif
  1137. size_t translated_size = 0;
  1138. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  1139. const uint32_t item_block_len = mem_blocks * RMT_MEM_ITEM_NUM;
  1140. const uint32_t item_sub_len = item_block_len / 2;
  1141. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1142. p_rmt->sample_to_rmt((void *)src, p_rmt->tx_buf, src_size, item_block_len, &translated_size, &p_rmt->tx_len_rem);
  1143. p_rmt->sample_size_remain = src_size - translated_size;
  1144. p_rmt->sample_cur = src + translated_size;
  1145. rmt_fill_memory(channel, p_rmt->tx_buf, p_rmt->tx_len_rem, 0);
  1146. if (p_rmt->tx_len_rem == item_block_len) {
  1147. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  1148. p_rmt->tx_data = p_rmt->tx_buf;
  1149. p_rmt->tx_offset = 0;
  1150. p_rmt->tx_sub_len = item_sub_len;
  1151. p_rmt->translator = true;
  1152. } else {
  1153. rmt_idle_level_t idle_level = rmt_ll_tx_get_idle_level(rmt_contex.hal.regs, channel);
  1154. rmt_item32_t stop_data = (rmt_item32_t) {
  1155. .level0 = idle_level,
  1156. .duration0 = 0,
  1157. };
  1158. rmt_fill_memory(channel, &stop_data, 1, p_rmt->tx_len_rem);
  1159. p_rmt->tx_len_rem = 0;
  1160. p_rmt->sample_cur = NULL;
  1161. p_rmt->translator = false;
  1162. }
  1163. rmt_tx_start(channel, true);
  1164. p_rmt->wait_done = wait_tx_done;
  1165. if (wait_tx_done) {
  1166. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1167. xSemaphoreGive(p_rmt->tx_sem);
  1168. }
  1169. return ESP_OK;
  1170. }
  1171. esp_err_t rmt_get_channel_status(rmt_channel_status_result_t *channel_status)
  1172. {
  1173. ESP_RETURN_ON_FALSE(channel_status, ESP_ERR_INVALID_ARG, TAG, RMT_PARAM_ERR_STR);
  1174. for (int i = 0; i < RMT_CHANNEL_MAX; i++) {
  1175. channel_status->status[i] = RMT_CHANNEL_UNINIT;
  1176. if (p_rmt_obj[i]) {
  1177. if (p_rmt_obj[i]->tx_sem) {
  1178. if (xSemaphoreTake(p_rmt_obj[i]->tx_sem, (TickType_t)0) == pdTRUE) {
  1179. channel_status->status[i] = RMT_CHANNEL_IDLE;
  1180. xSemaphoreGive(p_rmt_obj[i]->tx_sem);
  1181. } else {
  1182. channel_status->status[i] = RMT_CHANNEL_BUSY;
  1183. }
  1184. }
  1185. }
  1186. }
  1187. return ESP_OK;
  1188. }
  1189. esp_err_t rmt_get_counter_clock(rmt_channel_t channel, uint32_t *clock_hz)
  1190. {
  1191. ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1192. ESP_RETURN_ON_FALSE(clock_hz, ESP_ERR_INVALID_ARG, TAG, "parameter clock_hz can't be null");
  1193. RMT_ENTER_CRITICAL();
  1194. uint32_t rmt_source_clk_hz = 0;
  1195. #if SOC_RMT_CHANNEL_CLK_INDEPENDENT
  1196. rmt_source_clk_hz = s_rmt_source_clock_hz[channel];
  1197. #else
  1198. rmt_source_clk_hz = s_rmt_source_clock_hz;
  1199. #endif
  1200. if (RMT_IS_RX_CHANNEL(channel)) {
  1201. *clock_hz = rmt_source_clk_hz / rmt_ll_rx_get_channel_clock_div(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel));
  1202. } else {
  1203. *clock_hz = rmt_source_clk_hz / rmt_ll_tx_get_channel_clock_div(rmt_contex.hal.regs, channel);
  1204. }
  1205. RMT_EXIT_CRITICAL();
  1206. return ESP_OK;
  1207. }
  1208. #if SOC_RMT_SUPPORT_TX_SYNCHRO
  1209. esp_err_t rmt_add_channel_to_group(rmt_channel_t channel)
  1210. {
  1211. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1212. RMT_ENTER_CRITICAL();
  1213. rmt_ll_tx_enable_sync(rmt_contex.hal.regs, true);
  1214. rmt_contex.synchro_channel_mask |= (1 << channel);
  1215. rmt_ll_tx_sync_group_add_channels(rmt_contex.hal.regs, 1 << channel);
  1216. rmt_ll_tx_reset_channels_clock_div(rmt_contex.hal.regs, rmt_contex.synchro_channel_mask);
  1217. RMT_EXIT_CRITICAL();
  1218. return ESP_OK;
  1219. }
  1220. esp_err_t rmt_remove_channel_from_group(rmt_channel_t channel)
  1221. {
  1222. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1223. RMT_ENTER_CRITICAL();
  1224. rmt_contex.synchro_channel_mask &= ~(1 << channel);
  1225. rmt_ll_tx_sync_group_remove_channels(rmt_contex.hal.regs, 1 << channel);
  1226. if (rmt_contex.synchro_channel_mask == 0) {
  1227. rmt_ll_tx_enable_sync(rmt_contex.hal.regs, false);
  1228. }
  1229. RMT_EXIT_CRITICAL();
  1230. return ESP_OK;
  1231. }
  1232. #endif
  1233. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  1234. esp_err_t rmt_set_tx_loop_count(rmt_channel_t channel, uint32_t count)
  1235. {
  1236. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1237. ESP_RETURN_ON_FALSE(count <= RMT_LL_MAX_LOOP_COUNT_PER_BATCH, ESP_ERR_INVALID_ARG, TAG, "Invalid count value");
  1238. RMT_ENTER_CRITICAL();
  1239. rmt_ll_tx_set_loop_count(rmt_contex.hal.regs, channel, count);
  1240. RMT_EXIT_CRITICAL();
  1241. return ESP_OK;
  1242. }
  1243. esp_err_t rmt_enable_tx_loop_autostop(rmt_channel_t channel, bool en)
  1244. {
  1245. ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR);
  1246. p_rmt_obj[channel]->loop_autostop = en;
  1247. #if SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP
  1248. RMT_ENTER_CRITICAL();
  1249. rmt_ll_tx_enable_loop_autostop(rmt_contex.hal.regs, channel, en);
  1250. RMT_EXIT_CRITICAL();
  1251. #endif
  1252. return ESP_OK;
  1253. }
  1254. #endif
  1255. /**
  1256. * @brief This function will be called during start up, to check that this legacy RMT driver is not running along with the new driver
  1257. */
  1258. __attribute__((constructor))
  1259. static void check_rmt_legacy_driver_conflict(void)
  1260. {
  1261. // This function was declared as weak here. The new RMT driver has one implementation.
  1262. // So if the new RMT driver is not linked in, then `rmt_acquire_group_handle()` should be NULL at runtime.
  1263. extern __attribute__((weak)) void *rmt_acquire_group_handle(int group_id);
  1264. if ((void *)rmt_acquire_group_handle != NULL) {
  1265. ESP_EARLY_LOGE(TAG, "CONFLICT! driver_ng is not allowed to be used with the legacy driver");
  1266. abort();
  1267. }
  1268. ESP_EARLY_LOGW(TAG, "legacy driver is deprecated, please migrate to `driver/rmt_tx.h` and/or `driver/rmt_rx.h`");
  1269. }