gptimer.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540
  1. /*
  2. * SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdlib.h>
  7. #include <sys/lock.h>
  8. #include "sdkconfig.h"
  9. #if CONFIG_GPTIMER_ENABLE_DEBUG_LOG
  10. // The local log level must be defined before including esp_log.h
  11. // Set the maximum log level for this source file
  12. #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
  13. #endif
  14. #include "freertos/FreeRTOS.h"
  15. #include "esp_attr.h"
  16. #include "esp_err.h"
  17. #include "esp_heap_caps.h"
  18. #include "esp_intr_alloc.h"
  19. #include "esp_log.h"
  20. #include "esp_check.h"
  21. #include "esp_pm.h"
  22. #include "driver/gptimer.h"
  23. #include "hal/timer_types.h"
  24. #include "hal/timer_hal.h"
  25. #include "hal/timer_ll.h"
  26. #include "soc/timer_periph.h"
  27. #include "esp_memory_utils.h"
  28. #include "esp_private/periph_ctrl.h"
  29. #include "esp_private/esp_clk.h"
  30. // If ISR handler is allowed to run whilst cache is disabled,
  31. // Make sure all the code and related variables used by the handler are in the SRAM
  32. #if CONFIG_GPTIMER_ISR_IRAM_SAFE || CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM
  33. #define GPTIMER_MEM_ALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
  34. #else
  35. #define GPTIMER_MEM_ALLOC_CAPS MALLOC_CAP_DEFAULT
  36. #endif
  37. #if CONFIG_GPTIMER_ISR_IRAM_SAFE
  38. #define GPTIMER_INTR_ALLOC_FLAGS (ESP_INTR_FLAG_IRAM | ESP_INTR_FLAG_INTRDISABLED)
  39. #else
  40. #define GPTIMER_INTR_ALLOC_FLAGS ESP_INTR_FLAG_INTRDISABLED
  41. #endif
  42. #define GPTIMER_PM_LOCK_NAME_LEN_MAX 16
  43. static const char *TAG = "gptimer";
  44. typedef struct gptimer_platform_t gptimer_platform_t;
  45. typedef struct gptimer_group_t gptimer_group_t;
  46. typedef struct gptimer_t gptimer_t;
  47. struct gptimer_platform_t {
  48. _lock_t mutex; // platform level mutex lock
  49. gptimer_group_t *groups[SOC_TIMER_GROUPS]; // timer group pool
  50. int group_ref_counts[SOC_TIMER_GROUPS]; // reference count used to protect group install/uninstall
  51. };
  52. struct gptimer_group_t {
  53. int group_id;
  54. portMUX_TYPE spinlock; // to protect per-group register level concurrent access
  55. gptimer_t *timers[SOC_TIMER_GROUP_TIMERS_PER_GROUP];
  56. };
  57. typedef enum {
  58. GPTIMER_FSM_INIT,
  59. GPTIMER_FSM_ENABLE,
  60. } gptimer_fsm_t;
  61. struct gptimer_t {
  62. gptimer_group_t *group;
  63. int timer_id;
  64. uint32_t resolution_hz;
  65. uint64_t reload_count;
  66. uint64_t alarm_count;
  67. gptimer_count_direction_t direction;
  68. timer_hal_context_t hal;
  69. gptimer_fsm_t fsm;
  70. intr_handle_t intr;
  71. portMUX_TYPE spinlock; // to protect per-timer resources concurent accessed by task and ISR handler
  72. gptimer_alarm_cb_t on_alarm;
  73. void *user_ctx;
  74. esp_pm_lock_handle_t pm_lock; // power management lock
  75. #if CONFIG_PM_ENABLE
  76. char pm_lock_name[GPTIMER_PM_LOCK_NAME_LEN_MAX]; // pm lock name
  77. #endif
  78. struct {
  79. uint32_t intr_shared: 1;
  80. uint32_t auto_reload_on_alarm: 1;
  81. uint32_t alarm_en: 1;
  82. } flags;
  83. };
  84. // gptimer driver platform, it's always a singleton
  85. static gptimer_platform_t s_platform;
  86. static gptimer_group_t *gptimer_acquire_group_handle(int group_id);
  87. static void gptimer_release_group_handle(gptimer_group_t *group);
  88. static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_source_t src_clk, uint32_t resolution_hz);
  89. static void gptimer_default_isr(void *args);
  90. static esp_err_t gptimer_register_to_group(gptimer_t *timer)
  91. {
  92. gptimer_group_t *group = NULL;
  93. int timer_id = -1;
  94. for (int i = 0; i < SOC_TIMER_GROUPS; i++) {
  95. group = gptimer_acquire_group_handle(i);
  96. ESP_RETURN_ON_FALSE(group, ESP_ERR_NO_MEM, TAG, "no mem for group (%d)", i);
  97. // loop to search free timer in the group
  98. portENTER_CRITICAL(&group->spinlock);
  99. for (int j = 0; j < SOC_TIMER_GROUP_TIMERS_PER_GROUP; j++) {
  100. if (!group->timers[j]) {
  101. timer_id = j;
  102. group->timers[j] = timer;
  103. break;
  104. }
  105. }
  106. portEXIT_CRITICAL(&group->spinlock);
  107. if (timer_id < 0) {
  108. gptimer_release_group_handle(group);
  109. group = NULL;
  110. } else {
  111. timer->timer_id = timer_id;
  112. timer->group = group;
  113. break;;
  114. }
  115. }
  116. ESP_RETURN_ON_FALSE(timer_id != -1, ESP_ERR_NOT_FOUND, TAG, "no free timer");
  117. return ESP_OK;
  118. }
  119. static void gptimer_unregister_from_group(gptimer_t *timer)
  120. {
  121. gptimer_group_t *group = timer->group;
  122. int timer_id = timer->timer_id;
  123. portENTER_CRITICAL(&group->spinlock);
  124. group->timers[timer_id] = NULL;
  125. portEXIT_CRITICAL(&group->spinlock);
  126. // timer has a reference on group, release it now
  127. gptimer_release_group_handle(group);
  128. }
  129. static esp_err_t gptimer_destory(gptimer_t *timer)
  130. {
  131. if (timer->pm_lock) {
  132. ESP_RETURN_ON_ERROR(esp_pm_lock_delete(timer->pm_lock), TAG, "delete pm_lock failed");
  133. }
  134. if (timer->intr) {
  135. ESP_RETURN_ON_ERROR(esp_intr_free(timer->intr), TAG, "delete interrupt service failed");
  136. }
  137. if (timer->group) {
  138. gptimer_unregister_from_group(timer);
  139. }
  140. free(timer);
  141. return ESP_OK;
  142. }
  143. esp_err_t gptimer_new_timer(const gptimer_config_t *config, gptimer_handle_t *ret_timer)
  144. {
  145. #if CONFIG_GPTIMER_ENABLE_DEBUG_LOG
  146. esp_log_level_set(TAG, ESP_LOG_DEBUG);
  147. #endif
  148. esp_err_t ret = ESP_OK;
  149. gptimer_t *timer = NULL;
  150. ESP_GOTO_ON_FALSE(config && ret_timer, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
  151. ESP_GOTO_ON_FALSE(config->resolution_hz, ESP_ERR_INVALID_ARG, err, TAG, "invalid timer resolution:%"PRIu32, config->resolution_hz);
  152. timer = heap_caps_calloc(1, sizeof(gptimer_t), GPTIMER_MEM_ALLOC_CAPS);
  153. ESP_GOTO_ON_FALSE(timer, ESP_ERR_NO_MEM, err, TAG, "no mem for gptimer");
  154. // register timer to the group (because one group can have several timers)
  155. ESP_GOTO_ON_ERROR(gptimer_register_to_group(timer), err, TAG, "register timer failed");
  156. gptimer_group_t *group = timer->group;
  157. int group_id = group->group_id;
  158. int timer_id = timer->timer_id;
  159. // initialize HAL layer
  160. timer_hal_init(&timer->hal, group_id, timer_id);
  161. // stop counter, alarm, auto-reload
  162. timer_ll_enable_counter(timer->hal.dev, timer_id, false);
  163. timer_ll_enable_auto_reload(timer->hal.dev, timer_id, false);
  164. timer_ll_enable_alarm(timer->hal.dev, timer_id, false);
  165. // select clock source, set clock resolution
  166. ESP_GOTO_ON_ERROR(gptimer_select_periph_clock(timer, config->clk_src, config->resolution_hz), err, TAG, "set periph clock failed");
  167. // initialize counter value to zero
  168. timer_hal_set_counter_value(&timer->hal, 0);
  169. // set counting direction
  170. timer_ll_set_count_direction(timer->hal.dev, timer_id, config->direction);
  171. // interrupt register is shared by all timers in the same group
  172. portENTER_CRITICAL(&group->spinlock);
  173. timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id), false); // disable interrupt
  174. timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id)); // clear pending interrupt event
  175. portEXIT_CRITICAL(&group->spinlock);
  176. // initialize other members of timer
  177. timer->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
  178. timer->fsm = GPTIMER_FSM_INIT; // put the timer into init state
  179. timer->direction = config->direction;
  180. timer->flags.intr_shared = config->flags.intr_shared;
  181. ESP_LOGD(TAG, "new gptimer (%d,%d) at %p, resolution=%"PRIu32"Hz", group_id, timer_id, timer, timer->resolution_hz);
  182. *ret_timer = timer;
  183. return ESP_OK;
  184. err:
  185. if (timer) {
  186. gptimer_destory(timer);
  187. }
  188. return ret;
  189. }
  190. esp_err_t gptimer_del_timer(gptimer_handle_t timer)
  191. {
  192. ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  193. ESP_RETURN_ON_FALSE(timer->fsm == GPTIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state");
  194. gptimer_group_t *group = timer->group;
  195. int group_id = group->group_id;
  196. int timer_id = timer->timer_id;
  197. ESP_LOGD(TAG, "del timer (%d,%d)", group_id, timer_id);
  198. // recycle memory resource
  199. ESP_RETURN_ON_ERROR(gptimer_destory(timer), TAG, "destory gptimer failed");
  200. return ESP_OK;
  201. }
  202. esp_err_t gptimer_set_raw_count(gptimer_handle_t timer, unsigned long long value)
  203. {
  204. ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  205. portENTER_CRITICAL_SAFE(&timer->spinlock);
  206. timer_hal_set_counter_value(&timer->hal, value);
  207. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  208. return ESP_OK;
  209. }
  210. esp_err_t gptimer_get_raw_count(gptimer_handle_t timer, unsigned long long *value)
  211. {
  212. ESP_RETURN_ON_FALSE_ISR(timer && value, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  213. portENTER_CRITICAL_SAFE(&timer->spinlock);
  214. *value = timer_hal_capture_and_get_counter_value(&timer->hal);
  215. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  216. return ESP_OK;
  217. }
  218. esp_err_t gptimer_register_event_callbacks(gptimer_handle_t timer, const gptimer_event_callbacks_t *cbs, void *user_data)
  219. {
  220. gptimer_group_t *group = NULL;
  221. ESP_RETURN_ON_FALSE(timer && cbs, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  222. group = timer->group;
  223. int group_id = group->group_id;
  224. int timer_id = timer->timer_id;
  225. #if CONFIG_GPTIMER_ISR_IRAM_SAFE
  226. if (cbs->on_alarm) {
  227. ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_alarm), ESP_ERR_INVALID_ARG, TAG, "on_alarm callback not in IRAM");
  228. }
  229. if (user_data) {
  230. ESP_RETURN_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM");
  231. }
  232. #endif
  233. // lazy install interrupt service
  234. if (!timer->intr) {
  235. ESP_RETURN_ON_FALSE(timer->fsm == GPTIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state");
  236. // if user wants to control the interrupt allocation more precisely, we can expose more flags in `gptimer_config_t`
  237. int isr_flags = timer->flags.intr_shared ? ESP_INTR_FLAG_SHARED | GPTIMER_INTR_ALLOC_FLAGS : GPTIMER_INTR_ALLOC_FLAGS;
  238. ESP_RETURN_ON_ERROR(esp_intr_alloc_intrstatus(timer_group_periph_signals.groups[group_id].timer_irq_id[timer_id], isr_flags,
  239. (uint32_t)timer_ll_get_intr_status_reg(timer->hal.dev), TIMER_LL_EVENT_ALARM(timer_id),
  240. gptimer_default_isr, timer, &timer->intr), TAG, "install interrupt service failed");
  241. }
  242. // enable/disable GPTimer interrupt events
  243. portENTER_CRITICAL(&group->spinlock);
  244. timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id), cbs->on_alarm != NULL); // enable timer interrupt
  245. portEXIT_CRITICAL(&group->spinlock);
  246. timer->on_alarm = cbs->on_alarm;
  247. timer->user_ctx = user_data;
  248. return ESP_OK;
  249. }
  250. esp_err_t gptimer_set_alarm_action(gptimer_handle_t timer, const gptimer_alarm_config_t *config)
  251. {
  252. ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  253. if (config) {
  254. // When auto_reload is enabled, alarm_count should not be equal to reload_count
  255. bool valid_auto_reload = !config->flags.auto_reload_on_alarm || config->alarm_count != config->reload_count;
  256. ESP_RETURN_ON_FALSE_ISR(valid_auto_reload, ESP_ERR_INVALID_ARG, TAG, "reload count can't equal to alarm count");
  257. portENTER_CRITICAL_SAFE(&timer->spinlock);
  258. timer->reload_count = config->reload_count;
  259. timer->alarm_count = config->alarm_count;
  260. timer->flags.auto_reload_on_alarm = config->flags.auto_reload_on_alarm;
  261. timer->flags.alarm_en = true;
  262. timer_ll_set_reload_value(timer->hal.dev, timer->timer_id, config->reload_count);
  263. timer_ll_set_alarm_value(timer->hal.dev, timer->timer_id, config->alarm_count);
  264. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  265. } else {
  266. portENTER_CRITICAL_SAFE(&timer->spinlock);
  267. timer->flags.auto_reload_on_alarm = false;
  268. timer->flags.alarm_en = false;
  269. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  270. }
  271. portENTER_CRITICAL_SAFE(&timer->spinlock);
  272. timer_ll_enable_auto_reload(timer->hal.dev, timer->timer_id, timer->flags.auto_reload_on_alarm);
  273. timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en);
  274. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  275. return ESP_OK;
  276. }
  277. esp_err_t gptimer_enable(gptimer_handle_t timer)
  278. {
  279. ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  280. ESP_RETURN_ON_FALSE(timer->fsm == GPTIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state");
  281. // acquire power manager lock
  282. if (timer->pm_lock) {
  283. ESP_RETURN_ON_ERROR(esp_pm_lock_acquire(timer->pm_lock), TAG, "acquire pm_lock failed");
  284. }
  285. // enable interrupt service
  286. if (timer->intr) {
  287. ESP_RETURN_ON_ERROR(esp_intr_enable(timer->intr), TAG, "enable interrupt service failed");
  288. }
  289. timer->fsm = GPTIMER_FSM_ENABLE;
  290. return ESP_OK;
  291. }
  292. esp_err_t gptimer_disable(gptimer_handle_t timer)
  293. {
  294. ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  295. ESP_RETURN_ON_FALSE(timer->fsm == GPTIMER_FSM_ENABLE, ESP_ERR_INVALID_STATE, TAG, "timer not in enable state");
  296. // disable interrupt service
  297. if (timer->intr) {
  298. ESP_RETURN_ON_ERROR(esp_intr_disable(timer->intr), TAG, "disable interrupt service failed");
  299. }
  300. // release power manager lock
  301. if (timer->pm_lock) {
  302. ESP_RETURN_ON_ERROR(esp_pm_lock_release(timer->pm_lock), TAG, "release pm_lock failed");
  303. }
  304. timer->fsm = GPTIMER_FSM_INIT;
  305. return ESP_OK;
  306. }
  307. esp_err_t gptimer_start(gptimer_handle_t timer)
  308. {
  309. ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  310. ESP_RETURN_ON_FALSE_ISR(timer->fsm == GPTIMER_FSM_ENABLE, ESP_ERR_INVALID_STATE, TAG, "timer not enabled yet");
  311. portENTER_CRITICAL_SAFE(&timer->spinlock);
  312. timer_ll_enable_counter(timer->hal.dev, timer->timer_id, true);
  313. timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en);
  314. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  315. return ESP_OK;
  316. }
  317. esp_err_t gptimer_stop(gptimer_handle_t timer)
  318. {
  319. ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  320. ESP_RETURN_ON_FALSE_ISR(timer->fsm == GPTIMER_FSM_ENABLE, ESP_ERR_INVALID_STATE, TAG, "timer not enabled yet");
  321. // disable counter, alarm, auto-reload
  322. portENTER_CRITICAL_SAFE(&timer->spinlock);
  323. timer_ll_enable_counter(timer->hal.dev, timer->timer_id, false);
  324. timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, false);
  325. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  326. return ESP_OK;
  327. }
  328. static gptimer_group_t *gptimer_acquire_group_handle(int group_id)
  329. {
  330. bool new_group = false;
  331. gptimer_group_t *group = NULL;
  332. // prevent install timer group concurrently
  333. _lock_acquire(&s_platform.mutex);
  334. if (!s_platform.groups[group_id]) {
  335. group = heap_caps_calloc(1, sizeof(gptimer_group_t), GPTIMER_MEM_ALLOC_CAPS);
  336. if (group) {
  337. new_group = true;
  338. s_platform.groups[group_id] = group;
  339. // initialize timer group members
  340. group->group_id = group_id;
  341. group->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
  342. // enable APB access timer registers
  343. periph_module_enable(timer_group_periph_signals.groups[group_id].module);
  344. }
  345. } else {
  346. group = s_platform.groups[group_id];
  347. }
  348. if (group) {
  349. // someone acquired the group handle means we have a new object that refer to this group
  350. s_platform.group_ref_counts[group_id]++;
  351. }
  352. _lock_release(&s_platform.mutex);
  353. if (new_group) {
  354. ESP_LOGD(TAG, "new group (%d) @%p", group_id, group);
  355. }
  356. return group;
  357. }
  358. static void gptimer_release_group_handle(gptimer_group_t *group)
  359. {
  360. int group_id = group->group_id;
  361. bool do_deinitialize = false;
  362. _lock_acquire(&s_platform.mutex);
  363. s_platform.group_ref_counts[group_id]--;
  364. if (s_platform.group_ref_counts[group_id] == 0) {
  365. assert(s_platform.groups[group_id]);
  366. do_deinitialize = true;
  367. s_platform.groups[group_id] = NULL;
  368. // Theoretically we need to disable the peripheral clock for the timer group
  369. // However, next time when we enable the peripheral again, the registers will be reset to default value, including the watchdog registers inside the group
  370. // Then the watchdog will go into reset state, e.g. the flash boot watchdog is enabled again and reset the system very soon
  371. // periph_module_disable(timer_group_periph_signals.groups[group_id].module);
  372. }
  373. _lock_release(&s_platform.mutex);
  374. if (do_deinitialize) {
  375. free(group);
  376. ESP_LOGD(TAG, "del group (%d)", group_id);
  377. }
  378. }
  379. static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_source_t src_clk, uint32_t resolution_hz)
  380. {
  381. unsigned int counter_src_hz = 0;
  382. esp_err_t ret = ESP_OK;
  383. int timer_id = timer->timer_id;
  384. // [clk_tree] TODO: replace the following switch table by clk_tree API
  385. switch (src_clk) {
  386. #if SOC_TIMER_GROUP_SUPPORT_APB
  387. case GPTIMER_CLK_SRC_APB:
  388. counter_src_hz = esp_clk_apb_freq();
  389. #if CONFIG_PM_ENABLE
  390. sprintf(timer->pm_lock_name, "gptimer_%d_%d", timer->group->group_id, timer_id); // e.g. gptimer_0_0
  391. ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, timer->pm_lock_name, &timer->pm_lock);
  392. ESP_RETURN_ON_ERROR(ret, TAG, "create APB_FREQ_MAX lock failed");
  393. ESP_LOGD(TAG, "install APB_FREQ_MAX lock for timer (%d,%d)", timer->group->group_id, timer_id);
  394. #endif
  395. break;
  396. #endif // SOC_TIMER_GROUP_SUPPORT_APB
  397. #if SOC_TIMER_GROUP_SUPPORT_PLL_F40M
  398. case GPTIMER_CLK_SRC_PLL_F40M:
  399. counter_src_hz = 40 * 1000 * 1000;
  400. #if CONFIG_PM_ENABLE
  401. sprintf(timer->pm_lock_name, "gptimer_%d_%d", timer->group->group_id, timer_id); // e.g. gptimer_0_0
  402. // PLL_F40M will be turned off when DFS switches CPU clock source to XTAL
  403. ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, timer->pm_lock_name, &timer->pm_lock);
  404. ESP_RETURN_ON_ERROR(ret, TAG, "create APB_FREQ_MAX lock failed");
  405. ESP_LOGD(TAG, "install APB_FREQ_MAX lock for timer (%d,%d)", timer->group->group_id, timer_id);
  406. #endif
  407. break;
  408. #endif // SOC_TIMER_GROUP_SUPPORT_PLL_F40M
  409. #if SOC_TIMER_GROUP_SUPPORT_AHB
  410. case GPTIMER_CLK_SRC_AHB:
  411. // TODO: decide which kind of PM lock we should use for such clock
  412. counter_src_hz = 48 * 1000 * 1000;
  413. break;
  414. #endif // SOC_TIMER_GROUP_SUPPORT_AHB
  415. #if SOC_TIMER_GROUP_SUPPORT_XTAL
  416. case GPTIMER_CLK_SRC_XTAL:
  417. counter_src_hz = esp_clk_xtal_freq();
  418. break;
  419. #endif // SOC_TIMER_GROUP_SUPPORT_XTAL
  420. default:
  421. ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "clock source %d is not support", src_clk);
  422. break;
  423. }
  424. timer_ll_set_clock_source(timer->hal.dev, timer_id, src_clk);
  425. unsigned int prescale = counter_src_hz / resolution_hz; // potential resolution loss here
  426. timer_ll_set_clock_prescale(timer->hal.dev, timer_id, prescale);
  427. timer->resolution_hz = counter_src_hz / prescale; // this is the real resolution
  428. if (timer->resolution_hz != resolution_hz) {
  429. ESP_LOGW(TAG, "resolution lost, expect %"PRIu32", real %"PRIu32, resolution_hz, timer->resolution_hz);
  430. }
  431. return ret;
  432. }
  433. // Put the default ISR handler in the IRAM for better performance
  434. IRAM_ATTR static void gptimer_default_isr(void *args)
  435. {
  436. bool need_yield = false;
  437. gptimer_t *timer = (gptimer_t *)args;
  438. gptimer_group_t *group = timer->group;
  439. gptimer_alarm_cb_t on_alarm_cb = timer->on_alarm;
  440. uint32_t intr_status = timer_ll_get_intr_status(timer->hal.dev);
  441. if (intr_status & TIMER_LL_EVENT_ALARM(timer->timer_id)) {
  442. // Note: when alarm event happens, the alarm will be disabled automatically by hardware
  443. gptimer_alarm_event_data_t edata = {
  444. .count_value = timer_hal_capture_and_get_counter_value(&timer->hal),
  445. .alarm_value = timer->alarm_count,
  446. };
  447. portENTER_CRITICAL_ISR(&group->spinlock);
  448. timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id));
  449. // for auto-reload, we need to re-enable the alarm manually
  450. if (timer->flags.auto_reload_on_alarm) {
  451. timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, true);
  452. }
  453. portEXIT_CRITICAL_ISR(&group->spinlock);
  454. if (on_alarm_cb) {
  455. if (on_alarm_cb(timer, &edata, timer->user_ctx)) {
  456. need_yield = true;
  457. }
  458. }
  459. }
  460. if (need_yield) {
  461. portYIELD_FROM_ISR();
  462. }
  463. }
  464. ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  465. ///// The Following APIs are for internal use only (e.g. unit test) /////////////////////////////////////////////////
  466. ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  467. esp_err_t gptimer_get_intr_handle(gptimer_handle_t timer, intr_handle_t *ret_intr_handle)
  468. {
  469. ESP_RETURN_ON_FALSE(timer && ret_intr_handle, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  470. *ret_intr_handle = timer->intr;
  471. return ESP_OK;
  472. }
  473. esp_err_t gptimer_get_pm_lock(gptimer_handle_t timer, esp_pm_lock_handle_t *ret_pm_lock)
  474. {
  475. ESP_RETURN_ON_FALSE(timer && ret_pm_lock, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  476. *ret_pm_lock = timer->pm_lock;
  477. return ESP_OK;
  478. }