ledc.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "esp_types.h"
  8. #include "freertos/FreeRTOS.h"
  9. #include "freertos/semphr.h"
  10. #include "esp_log.h"
  11. #include "esp_check.h"
  12. #include "soc/gpio_periph.h"
  13. #include "soc/ledc_periph.h"
  14. #include "esp_private/esp_clk.h"
  15. #include "soc/soc_caps.h"
  16. #include "hal/ledc_hal.h"
  17. #include "hal/gpio_hal.h"
  18. #include "driver/ledc.h"
  19. #include "esp_rom_gpio.h"
  20. #include "esp_rom_sys.h"
  21. #include "clk_ctrl_os.h"
  22. #include "esp_private/periph_ctrl.h"
  23. static __attribute__((unused)) const char *LEDC_TAG = "ledc";
  24. #define LEDC_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, LEDC_TAG, "%s", str)
  25. #define LEDC_ARG_CHECK(a, param) ESP_RETURN_ON_FALSE(a, ESP_ERR_INVALID_ARG, LEDC_TAG, param " argument is invalid")
  26. #define LEDC_CLK_NOT_FOUND 0
  27. typedef enum {
  28. LEDC_FSM_IDLE,
  29. LEDC_FSM_HW_FADE,
  30. LEDC_FSM_ISR_CAL,
  31. LEDC_FSM_KILLED_PENDING,
  32. } ledc_fade_fsm_t;
  33. typedef struct {
  34. ledc_mode_t speed_mode;
  35. ledc_duty_direction_t direction;
  36. uint32_t target_duty;
  37. int cycle_num;
  38. int scale;
  39. ledc_fade_mode_t mode;
  40. SemaphoreHandle_t ledc_fade_sem;
  41. SemaphoreHandle_t ledc_fade_mux;
  42. #if CONFIG_SPIRAM_USE_MALLOC
  43. StaticQueue_t ledc_fade_sem_storage;
  44. #endif
  45. ledc_cb_t ledc_fade_callback;
  46. void *cb_user_arg;
  47. volatile ledc_fade_fsm_t fsm;
  48. } ledc_fade_t;
  49. typedef struct {
  50. ledc_hal_context_t ledc_hal; /*!< LEDC hal context*/
  51. } ledc_obj_t;
  52. static ledc_obj_t *p_ledc_obj[LEDC_SPEED_MODE_MAX] = {0};
  53. static ledc_fade_t *s_ledc_fade_rec[LEDC_SPEED_MODE_MAX][LEDC_CHANNEL_MAX];
  54. static ledc_isr_handle_t s_ledc_fade_isr_handle = NULL;
  55. static portMUX_TYPE ledc_spinlock = portMUX_INITIALIZER_UNLOCKED;
  56. #define LEDC_VAL_NO_CHANGE (-1)
  57. #define LEDC_DUTY_NUM_MAX LEDC_LL_DUTY_NUM_MAX // Maximum steps per hardware fade
  58. #define LEDC_DUTY_DECIMAL_BIT_NUM (4)
  59. #define LEDC_TIMER_DIV_NUM_MAX (0x3FFFF)
  60. #define LEDC_FADE_TOO_SLOW_STR "LEDC FADE TOO SLOW"
  61. #define LEDC_FADE_TOO_FAST_STR "LEDC FADE TOO FAST"
  62. #define DIM(array) (sizeof(array)/sizeof(*array))
  63. #define LEDC_IS_DIV_INVALID(div) ((div) <= LEDC_LL_FRACTIONAL_MAX || (div) > LEDC_TIMER_DIV_NUM_MAX)
  64. static __attribute__((unused)) const char *LEDC_NOT_INIT = "LEDC is not initialized";
  65. static __attribute__((unused)) const char *LEDC_FADE_SERVICE_ERR_STR = "LEDC fade service not installed";
  66. static __attribute__((unused)) const char *LEDC_FADE_INIT_ERROR_STR = "LEDC fade channel init error, not enough memory or service not installed";
  67. //This value will be calibrated when in use.
  68. static uint32_t s_ledc_slow_clk_8M = 0;
  69. static const ledc_slow_clk_sel_t s_glb_clks[] = LEDC_LL_GLOBAL_CLOCKS;
  70. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  71. static const struct { ledc_clk_src_t clk; uint32_t freq; } s_timer_specific_clks[] = LEDC_LL_TIMER_SPECIFIC_CLOCKS;
  72. #endif
  73. static void ledc_ls_timer_update(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  74. {
  75. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  76. ledc_hal_ls_timer_update(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  77. }
  78. }
  79. static IRAM_ATTR void ledc_ls_channel_update(ledc_mode_t speed_mode, ledc_channel_t channel)
  80. {
  81. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  82. ledc_hal_ls_channel_update(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  83. }
  84. }
  85. //We know that CLK8M is about 8M, but don't know the actual value. So we need to do a calibration.
  86. static bool ledc_slow_clk_calibrate(void)
  87. {
  88. if (periph_rtc_dig_clk8m_enable()) {
  89. s_ledc_slow_clk_8M = periph_rtc_dig_clk8m_get_freq();
  90. #if CONFIG_IDF_TARGET_ESP32H2
  91. /* Workaround: Calibration cannot be done for CLK8M on H2, we just use its theoretic frequency */
  92. ESP_LOGD(LEDC_TAG, "Calibration cannot be performed, approximate CLK8M_CLK : %"PRIu32" Hz", s_ledc_slow_clk_8M);
  93. #else
  94. ESP_LOGD(LEDC_TAG, "Calibrate CLK8M_CLK : %"PRIu32" Hz", s_ledc_slow_clk_8M);
  95. #endif
  96. return true;
  97. }
  98. ESP_LOGE(LEDC_TAG, "Calibrate CLK8M_CLK failed");
  99. return false;
  100. }
  101. static uint32_t ledc_get_src_clk_freq(ledc_clk_cfg_t clk_cfg)
  102. {
  103. uint32_t src_clk_freq = 0;
  104. if (clk_cfg == LEDC_USE_RTC8M_CLK) {
  105. src_clk_freq = s_ledc_slow_clk_8M;
  106. #if SOC_LEDC_SUPPORT_APB_CLOCK
  107. } else if (clk_cfg == LEDC_USE_APB_CLK) {
  108. src_clk_freq = esp_clk_apb_freq();
  109. #endif
  110. #if SOC_LEDC_SUPPORT_PLL_DIV_CLOCK
  111. } else if (clk_cfg == LEDC_USE_PLL_DIV_CLK) {
  112. src_clk_freq = LEDC_LL_PLL_DIV_CLK_FREQ;
  113. #endif
  114. #if SOC_LEDC_SUPPORT_REF_TICK
  115. } else if (clk_cfg == LEDC_USE_REF_TICK) {
  116. src_clk_freq = REF_CLK_FREQ;
  117. #endif
  118. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  119. } else if (clk_cfg == LEDC_USE_XTAL_CLK) {
  120. src_clk_freq = esp_clk_xtal_freq();
  121. #endif
  122. }
  123. return src_clk_freq;
  124. }
  125. /* Retrieve the clock frequency for global clocks only */
  126. static uint32_t ledc_get_glb_clk_freq(ledc_slow_clk_sel_t clk_cfg)
  127. {
  128. uint32_t src_clk_freq = 0;
  129. switch (clk_cfg) {
  130. #if SOC_LEDC_SUPPORT_APB_CLOCK
  131. case LEDC_SLOW_CLK_APB:
  132. src_clk_freq = esp_clk_apb_freq();
  133. break;
  134. #endif
  135. #if SOC_LEDC_SUPPORT_PLL_DIV_CLOCK
  136. case LEDC_SLOW_CLK_PLL_DIV:
  137. src_clk_freq = LEDC_LL_PLL_DIV_CLK_FREQ;
  138. break;
  139. #endif
  140. case LEDC_SLOW_CLK_RTC8M:
  141. src_clk_freq = s_ledc_slow_clk_8M;
  142. break;
  143. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  144. case LEDC_SLOW_CLK_XTAL:
  145. src_clk_freq = esp_clk_xtal_freq();
  146. break;
  147. #endif
  148. }
  149. return src_clk_freq;
  150. }
  151. static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_intr_type_t type)
  152. {
  153. if (type == LEDC_INTR_FADE_END) {
  154. ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  155. } else {
  156. ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  157. }
  158. return ESP_OK;
  159. }
  160. static void _ledc_fade_hw_acquire(ledc_mode_t mode, ledc_channel_t channel)
  161. {
  162. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  163. if (fade) {
  164. xSemaphoreTake(fade->ledc_fade_sem, portMAX_DELAY);
  165. portENTER_CRITICAL(&ledc_spinlock);
  166. ledc_enable_intr_type(mode, channel, LEDC_INTR_DISABLE);
  167. portEXIT_CRITICAL(&ledc_spinlock);
  168. }
  169. }
  170. static void _ledc_fade_hw_release(ledc_mode_t mode, ledc_channel_t channel)
  171. {
  172. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  173. if (fade) {
  174. xSemaphoreGive(fade->ledc_fade_sem);
  175. }
  176. }
  177. static void _ledc_op_lock_acquire(ledc_mode_t mode, ledc_channel_t channel)
  178. {
  179. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  180. if (fade) {
  181. xSemaphoreTake(fade->ledc_fade_mux, portMAX_DELAY);
  182. }
  183. }
  184. static void _ledc_op_lock_release(ledc_mode_t mode, ledc_channel_t channel)
  185. {
  186. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  187. if (fade) {
  188. xSemaphoreGive(fade->ledc_fade_mux);
  189. }
  190. }
  191. static uint32_t ledc_get_max_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  192. {
  193. // The arguments are checked before internally calling this function.
  194. uint32_t max_duty;
  195. ledc_hal_get_max_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &max_duty);
  196. return max_duty;
  197. }
  198. esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider, uint32_t duty_resolution,
  199. ledc_clk_src_t clk_src)
  200. {
  201. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  202. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  203. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  204. portENTER_CRITICAL(&ledc_spinlock);
  205. ledc_hal_set_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clock_divider);
  206. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  207. /* Clock source can only be configured on boards which support timer-specific
  208. * source clock. */
  209. ledc_hal_set_clock_source(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clk_src);
  210. #endif
  211. ledc_hal_set_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, duty_resolution);
  212. ledc_ls_timer_update(speed_mode, timer_sel);
  213. portEXIT_CRITICAL(&ledc_spinlock);
  214. return ESP_OK;
  215. }
  216. static IRAM_ATTR esp_err_t ledc_duty_config(ledc_mode_t speed_mode, ledc_channel_t channel, int hpoint_val,
  217. int duty_val, ledc_duty_direction_t duty_direction, uint32_t duty_num, uint32_t duty_cycle, uint32_t duty_scale)
  218. {
  219. if (hpoint_val >= 0) {
  220. ledc_hal_set_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, hpoint_val);
  221. }
  222. if (duty_val >= 0) {
  223. ledc_hal_set_duty_int_part(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_val);
  224. }
  225. ledc_hal_set_duty_direction(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_direction);
  226. ledc_hal_set_duty_num(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_num);
  227. ledc_hal_set_duty_cycle(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_cycle);
  228. ledc_hal_set_duty_scale(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_scale);
  229. ledc_ls_channel_update(speed_mode, channel);
  230. return ESP_OK;
  231. }
  232. esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_timer_t timer_sel)
  233. {
  234. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  235. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  236. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  237. portENTER_CRITICAL(&ledc_spinlock);
  238. ledc_hal_bind_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, timer_sel);
  239. ledc_ls_channel_update(speed_mode, channel);
  240. portEXIT_CRITICAL(&ledc_spinlock);
  241. return ESP_OK;
  242. }
  243. esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  244. {
  245. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  246. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  247. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  248. portENTER_CRITICAL(&ledc_spinlock);
  249. ledc_hal_timer_rst(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  250. portEXIT_CRITICAL(&ledc_spinlock);
  251. return ESP_OK;
  252. }
  253. esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  254. {
  255. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  256. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  257. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  258. portENTER_CRITICAL(&ledc_spinlock);
  259. ledc_hal_timer_pause(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  260. portEXIT_CRITICAL(&ledc_spinlock);
  261. return ESP_OK;
  262. }
  263. esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  264. {
  265. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  266. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  267. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  268. portENTER_CRITICAL(&ledc_spinlock);
  269. ledc_hal_timer_resume(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  270. portEXIT_CRITICAL(&ledc_spinlock);
  271. return ESP_OK;
  272. }
  273. esp_err_t ledc_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, ledc_isr_handle_t *handle)
  274. {
  275. esp_err_t ret;
  276. LEDC_ARG_CHECK(fn, "fn");
  277. portENTER_CRITICAL(&ledc_spinlock);
  278. ret = esp_intr_alloc(ETS_LEDC_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  279. portEXIT_CRITICAL(&ledc_spinlock);
  280. return ret;
  281. }
  282. static inline uint32_t ledc_calculate_divisor(uint32_t src_clk_freq, int freq_hz, uint32_t precision)
  283. {
  284. /**
  285. * In order to find the right divisor, we need to divide the source clock
  286. * frequency by the desired frequency. However, two things to note here:
  287. * - The lowest LEDC_LL_FRACTIONAL_BITS bits of the result are the FRACTIONAL
  288. * part. The higher bits represent the integer part, this is why we need
  289. * to right shift the source frequency.
  290. * - The `precision` parameter represents the granularity of the clock. It
  291. * **must** be a power of 2. It means that the resulted divisor is
  292. * a multiplier of `precision`.
  293. *
  294. * Let's take a concrete example, we need to generate a 5KHz clock out of
  295. * a 80MHz clock (APB).
  296. * If the precision is 1024 (10 bits), the resulted multiplier is:
  297. * (80000000 << 8) / (5000 * 1024) = 4000 (0xfa0)
  298. * Let's ignore the fractional part to simplify the explanation, so we get
  299. * a result of 15 (0xf).
  300. * This can be interpreted as: every 15 "precision" ticks, the resulted
  301. * clock will go high, where one precision tick is made out of 1024 source
  302. * clock ticks.
  303. * Thus, every `15 * 1024` source clock ticks, the resulted clock will go
  304. * high.
  305. *
  306. * NOTE: We are also going to round up the value when necessary, thanks to:
  307. * (freq_hz * precision) / 2
  308. */
  309. return ( ( (uint64_t) src_clk_freq << LEDC_LL_FRACTIONAL_BITS ) + ((freq_hz * precision) / 2 ) )
  310. / (freq_hz * precision);
  311. }
  312. static inline uint32_t ledc_auto_global_clk_divisor(int freq_hz, uint32_t precision, ledc_slow_clk_sel_t* clk_target)
  313. {
  314. uint32_t ret = LEDC_CLK_NOT_FOUND;
  315. uint32_t clk_freq = 0;
  316. /* This function will go through all the following clock sources to look
  317. * for a valid divisor which generates the requested frequency. */
  318. for (int i = 0; i < DIM(s_glb_clks); i++) {
  319. /* Before calculating the divisor, we need to have the RTC frequency.
  320. * If it hasn't been measured yet, try calibrating it now. */
  321. if (s_glb_clks[i] == LEDC_SLOW_CLK_RTC8M && s_ledc_slow_clk_8M == 0 && !ledc_slow_clk_calibrate()) {
  322. ESP_LOGD(LEDC_TAG, "Unable to retrieve RTC clock frequency, skipping it\n");
  323. continue;
  324. }
  325. clk_freq = ledc_get_glb_clk_freq(s_glb_clks[i]);
  326. uint32_t div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision);
  327. /* If the divisor is valid, we can return this value. */
  328. if (!LEDC_IS_DIV_INVALID(div_param)) {
  329. *clk_target = s_glb_clks[i];
  330. ret = div_param;
  331. break;
  332. }
  333. }
  334. return ret;
  335. }
  336. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  337. static inline uint32_t ledc_auto_timer_specific_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
  338. ledc_clk_src_t* clk_source)
  339. {
  340. uint32_t ret = LEDC_CLK_NOT_FOUND;
  341. for (int i = 0; i < DIM(s_timer_specific_clks); i++) {
  342. uint32_t div_param = ledc_calculate_divisor(s_timer_specific_clks[i].freq, freq_hz, precision);
  343. /* If the divisor is valid, we can return this value. */
  344. if (!LEDC_IS_DIV_INVALID(div_param)) {
  345. *clk_source = s_timer_specific_clks[i].clk;
  346. ret = div_param;
  347. break;
  348. }
  349. }
  350. #if SOC_LEDC_SUPPORT_HS_MODE
  351. /* On board that support LEDC high-speed mode, APB clock becomes a timer-
  352. * specific clock when in high speed mode. Check if it is necessary here
  353. * to test APB. */
  354. if (speed_mode == LEDC_HIGH_SPEED_MODE && ret == LEDC_CLK_NOT_FOUND) {
  355. /* No divider was found yet, try with APB! */
  356. uint32_t div_param = ledc_calculate_divisor(esp_clk_apb_freq(), freq_hz, precision);
  357. if (!LEDC_IS_DIV_INVALID(div_param)) {
  358. *clk_source = LEDC_APB_CLK;
  359. ret = div_param;
  360. }
  361. }
  362. #endif
  363. return ret;
  364. }
  365. #endif
  366. /**
  367. * @brief Try to find the clock with its divisor giving the frequency requested
  368. * by the caller.
  369. */
  370. static uint32_t ledc_auto_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
  371. ledc_clk_src_t* clk_source, ledc_slow_clk_sel_t* clk_target)
  372. {
  373. uint32_t ret = LEDC_CLK_NOT_FOUND;
  374. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  375. /* If the SoC presents timer-specific clock(s), try to achieve the given frequency
  376. * thanks to it/them.
  377. * clk_source parameter will returned by this function. */
  378. uint32_t div_param_timer = ledc_auto_timer_specific_clk_divisor(speed_mode, freq_hz, precision, clk_source);
  379. if (div_param_timer != LEDC_CLK_NOT_FOUND) {
  380. /* The dividor is valid, no need try any other clock, return directly. */
  381. ret = div_param_timer;
  382. }
  383. #endif
  384. /* On ESP32, only low speed channel can use the global clocks. For other
  385. * chips, there are no high speed channels. */
  386. if (ret == LEDC_CLK_NOT_FOUND && speed_mode == LEDC_LOW_SPEED_MODE) {
  387. uint32_t div_param_global = ledc_auto_global_clk_divisor(freq_hz, precision, clk_target);
  388. if (div_param_global != LEDC_CLK_NOT_FOUND) {
  389. *clk_source = LEDC_SCLK;
  390. ret = div_param_global;
  391. }
  392. }
  393. return ret;
  394. }
  395. static ledc_slow_clk_sel_t ledc_clk_cfg_to_global_clk(const ledc_clk_cfg_t clk_cfg)
  396. {
  397. ledc_slow_clk_sel_t glb_clk;
  398. switch (clk_cfg) {
  399. #if SOC_LEDC_SUPPORT_APB_CLOCK
  400. case LEDC_USE_APB_CLK:
  401. glb_clk = LEDC_SLOW_CLK_APB;
  402. break;
  403. #endif
  404. #if SOC_LEDC_SUPPORT_PLL_DIV_CLOCK
  405. case LEDC_USE_PLL_DIV_CLK:
  406. glb_clk = LEDC_SLOW_CLK_PLL_DIV;
  407. break;
  408. #endif
  409. case LEDC_USE_RTC8M_CLK:
  410. glb_clk = LEDC_SLOW_CLK_RTC8M;
  411. break;
  412. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  413. case LEDC_USE_XTAL_CLK:
  414. glb_clk = LEDC_SLOW_CLK_XTAL;
  415. break;
  416. #endif
  417. #if SOC_LEDC_SUPPORT_REF_TICK
  418. case LEDC_USE_REF_TICK:
  419. #endif
  420. default:
  421. /* We should not get here, REF_TICK is NOT a global clock,
  422. * it is a timer-specific clock. */
  423. abort();
  424. }
  425. return glb_clk;
  426. }
  427. extern void esp_sleep_periph_use_8m(bool use_or_not);
  428. /**
  429. * @brief Function setting the LEDC timer divisor with the given source clock,
  430. * frequency and resolution. If the clock configuration passed is
  431. * LEDC_AUTO_CLK, the clock will be determined automatically (if possible).
  432. */
  433. static esp_err_t ledc_set_timer_div(ledc_mode_t speed_mode, ledc_timer_t timer_num, ledc_clk_cfg_t clk_cfg, int freq_hz, int duty_resolution)
  434. {
  435. uint32_t div_param = 0;
  436. const uint32_t precision = ( 0x1 << duty_resolution );
  437. /* The clock sources are not initialized on purpose. To produce compiler warning if used but the selector functions
  438. * don't set them properly. */
  439. /* Timer-specific mux. Set to timer-specific clock or LEDC_SCLK if a global clock is used. */
  440. ledc_clk_src_t timer_clk_src;
  441. /* Global clock mux. Should be set when LEDC_SCLK is used in LOW_SPEED_MODE. Otherwise left uninitialized. */
  442. ledc_slow_clk_sel_t glb_clk;
  443. if (clk_cfg == LEDC_AUTO_CLK) {
  444. /* User hasn't specified the speed, we should try to guess it. */
  445. div_param = ledc_auto_clk_divisor(speed_mode, freq_hz, precision, &timer_clk_src, &glb_clk);
  446. } else if (clk_cfg == LEDC_USE_RTC8M_CLK) {
  447. /* User specified source clock(RTC8M_CLK) for low speed channel.
  448. * Make sure the speed mode is correct. */
  449. ESP_RETURN_ON_FALSE((speed_mode == LEDC_LOW_SPEED_MODE), ESP_ERR_INVALID_ARG, LEDC_TAG, "RTC clock can only be used in low speed mode");
  450. /* Before calculating the divisor, we need to have the RTC frequency.
  451. * If it hasn't been measured yet, try calibrating it now. */
  452. if(s_ledc_slow_clk_8M == 0 && ledc_slow_clk_calibrate() == false) {
  453. goto error;
  454. }
  455. /* Set the global clock source */
  456. timer_clk_src = LEDC_SCLK;
  457. glb_clk = LEDC_SLOW_CLK_RTC8M;
  458. /* We have the RTC clock frequency now. */
  459. div_param = ledc_calculate_divisor(s_ledc_slow_clk_8M, freq_hz, precision);
  460. if (LEDC_IS_DIV_INVALID(div_param)) {
  461. div_param = LEDC_CLK_NOT_FOUND;
  462. }
  463. } else {
  464. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  465. if (LEDC_LL_IS_TIMER_SPECIFIC_CLOCK(speed_mode, clk_cfg)) {
  466. /* Currently we can convert a timer-specific clock to a source clock that
  467. * easily because their values are identical in the enumerations (on purpose)
  468. * If we decide to change the values in the future, we should consider defining
  469. * a macro/function to convert timer-specific clock to clock source .*/
  470. timer_clk_src = (ledc_clk_src_t) clk_cfg;
  471. } else
  472. #endif
  473. {
  474. timer_clk_src = LEDC_SCLK;
  475. glb_clk = ledc_clk_cfg_to_global_clk(clk_cfg);
  476. }
  477. uint32_t src_clk_freq = ledc_get_src_clk_freq(clk_cfg);
  478. div_param = ledc_calculate_divisor(src_clk_freq, freq_hz, precision);
  479. if (LEDC_IS_DIV_INVALID(div_param)) {
  480. div_param = LEDC_CLK_NOT_FOUND;
  481. }
  482. }
  483. if (div_param == LEDC_CLK_NOT_FOUND) {
  484. goto error;
  485. }
  486. /* The following debug message makes more sense for AUTO mode. */
  487. ESP_LOGD(LEDC_TAG, "Using clock source %d (in %s mode), divisor: 0x%"PRIx32,
  488. timer_clk_src, (speed_mode == LEDC_LOW_SPEED_MODE ? "slow" : "fast"), div_param);
  489. /* The following block configures the global clock.
  490. * Thus, in theory, this only makes sense when configuring the LOW_SPEED timer and the source clock is LEDC_SCLK (as
  491. * HIGH_SPEED timers won't be clocked by the global clock). However, there are some limitations due to HW design.
  492. */
  493. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  494. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  495. /* On ESP32 and ESP32-S2, when the source clock of LOW_SPEED timer is a timer-specific one (i.e. REF_TICK), the
  496. * global clock MUST be set to APB_CLK. For HIGH_SPEED timers, this is not necessary.
  497. */
  498. if (timer_clk_src != LEDC_SCLK) {
  499. glb_clk = LEDC_SLOW_CLK_APB;
  500. }
  501. #else
  502. /* On later chips, there is only one type of timer/channel (referred as LOW_SPEED in the code), which can only be
  503. * clocked by the global clock. So there's no limitation on the global clock, except that it must be set.
  504. */
  505. assert(timer_clk_src == LEDC_SCLK);
  506. #endif
  507. ESP_LOGD(LEDC_TAG, "In slow speed mode, global clk set: %d", glb_clk);
  508. /* keep ESP_PD_DOMAIN_RTC8M on during light sleep */
  509. esp_sleep_periph_use_8m(glb_clk == LEDC_SLOW_CLK_RTC8M);
  510. portENTER_CRITICAL(&ledc_spinlock);
  511. ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), glb_clk);
  512. portEXIT_CRITICAL(&ledc_spinlock);
  513. }
  514. /* The divisor is correct, we can write in the hardware. */
  515. ledc_timer_set(speed_mode, timer_num, div_param, duty_resolution, timer_clk_src);
  516. return ESP_OK;
  517. error:
  518. ESP_LOGE(LEDC_TAG, "requested frequency and duty resolution can not be achieved, try reducing freq_hz or duty_resolution. div_param=%"PRIu32, div_param);
  519. return ESP_FAIL;
  520. }
  521. esp_err_t ledc_timer_config(const ledc_timer_config_t *timer_conf)
  522. {
  523. LEDC_ARG_CHECK(timer_conf != NULL, "timer_conf");
  524. uint32_t freq_hz = timer_conf->freq_hz;
  525. uint32_t duty_resolution = timer_conf->duty_resolution;
  526. uint32_t timer_num = timer_conf->timer_num;
  527. uint32_t speed_mode = timer_conf->speed_mode;
  528. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  529. LEDC_ARG_CHECK(!((timer_conf->clk_cfg == LEDC_USE_RTC8M_CLK) && (speed_mode != LEDC_LOW_SPEED_MODE)), "Only low speed channel support RTC8M_CLK");
  530. periph_module_enable(PERIPH_LEDC_MODULE);
  531. if (freq_hz == 0 || duty_resolution == 0 || duty_resolution >= LEDC_TIMER_BIT_MAX) {
  532. ESP_LOGE(LEDC_TAG, "freq_hz=%"PRIu32" duty_resolution=%"PRIu32, freq_hz, duty_resolution);
  533. return ESP_ERR_INVALID_ARG;
  534. }
  535. if (timer_num > LEDC_TIMER_3) {
  536. ESP_LOGE(LEDC_TAG, "invalid timer #%"PRIu32, timer_num);
  537. return ESP_ERR_INVALID_ARG;
  538. }
  539. if (p_ledc_obj[speed_mode] == NULL) {
  540. p_ledc_obj[speed_mode] = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  541. if (p_ledc_obj[speed_mode] == NULL) {
  542. return ESP_ERR_NO_MEM;
  543. }
  544. ledc_hal_init(&(p_ledc_obj[speed_mode]->ledc_hal), speed_mode);
  545. }
  546. esp_err_t ret = ledc_set_timer_div(speed_mode, timer_num, timer_conf->clk_cfg, freq_hz, duty_resolution);
  547. if (ret == ESP_OK) {
  548. /* Reset the timer. */
  549. ledc_timer_rst(speed_mode, timer_num);
  550. }
  551. return ret;
  552. }
  553. esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc_channel)
  554. {
  555. LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
  556. LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
  557. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  558. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  559. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  560. esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, 0, 0);
  561. return ESP_OK;
  562. }
  563. esp_err_t ledc_channel_config(const ledc_channel_config_t *ledc_conf)
  564. {
  565. LEDC_ARG_CHECK(ledc_conf, "ledc_conf");
  566. uint32_t speed_mode = ledc_conf->speed_mode;
  567. int gpio_num = ledc_conf->gpio_num;
  568. uint32_t ledc_channel = ledc_conf->channel;
  569. uint32_t timer_select = ledc_conf->timer_sel;
  570. uint32_t intr_type = ledc_conf->intr_type;
  571. uint32_t duty = ledc_conf->duty;
  572. uint32_t hpoint = ledc_conf->hpoint;
  573. bool output_invert = ledc_conf->flags.output_invert;
  574. LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
  575. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  576. LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
  577. LEDC_ARG_CHECK(timer_select < LEDC_TIMER_MAX, "timer_select");
  578. LEDC_ARG_CHECK(intr_type < LEDC_INTR_MAX, "intr_type");
  579. periph_module_enable(PERIPH_LEDC_MODULE);
  580. esp_err_t ret = ESP_OK;
  581. if (p_ledc_obj[speed_mode] == NULL) {
  582. p_ledc_obj[speed_mode] = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  583. if (p_ledc_obj[speed_mode] == NULL) {
  584. return ESP_ERR_NO_MEM;
  585. }
  586. ledc_hal_init(&(p_ledc_obj[speed_mode]->ledc_hal), speed_mode);
  587. }
  588. /*set channel parameters*/
  589. /* channel parameters decide how the waveform looks like in one period*/
  590. /* set channel duty and hpoint value, duty range is (0 ~ ((2 ** duty_resolution) - 1)), max hpoint value is 0xfffff*/
  591. ledc_set_duty_with_hpoint(speed_mode, ledc_channel, duty, hpoint);
  592. /*update duty settings*/
  593. ledc_update_duty(speed_mode, ledc_channel);
  594. /*bind the channel with the timer*/
  595. ledc_bind_channel_timer(speed_mode, ledc_channel, timer_select);
  596. /*set interrupt type*/
  597. portENTER_CRITICAL(&ledc_spinlock);
  598. ledc_enable_intr_type(speed_mode, ledc_channel, intr_type);
  599. portEXIT_CRITICAL(&ledc_spinlock);
  600. ESP_LOGD(LEDC_TAG, "LEDC_PWM CHANNEL %"PRIu32"|GPIO %02u|Duty %04"PRIu32"|Time %"PRIu32,
  601. ledc_channel, gpio_num, duty, timer_select);
  602. /*set LEDC signal in gpio matrix*/
  603. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  604. gpio_set_level(gpio_num, output_invert);
  605. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  606. esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, output_invert, 0);
  607. return ret;
  608. }
  609. static void _ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  610. {
  611. ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  612. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  613. ledc_ls_channel_update(speed_mode, channel);
  614. }
  615. esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  616. {
  617. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  618. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  619. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  620. portENTER_CRITICAL(&ledc_spinlock);
  621. _ledc_update_duty(speed_mode, channel);
  622. portEXIT_CRITICAL(&ledc_spinlock);
  623. return ESP_OK;
  624. }
  625. esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level)
  626. {
  627. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  628. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  629. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  630. portENTER_CRITICAL(&ledc_spinlock);
  631. ledc_hal_set_idle_level(&(p_ledc_obj[speed_mode]->ledc_hal), channel, idle_level);
  632. ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  633. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  634. ledc_ls_channel_update(speed_mode, channel);
  635. portEXIT_CRITICAL(&ledc_spinlock);
  636. return ESP_OK;
  637. }
  638. esp_err_t ledc_set_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, ledc_duty_direction_t fade_direction,
  639. uint32_t step_num, uint32_t duty_cyle_num, uint32_t duty_scale)
  640. {
  641. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  642. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  643. LEDC_ARG_CHECK(fade_direction < LEDC_DUTY_DIR_MAX, "fade_direction");
  644. LEDC_ARG_CHECK(step_num <= LEDC_LL_DUTY_NUM_MAX, "step_num");
  645. LEDC_ARG_CHECK(duty_cyle_num <= LEDC_LL_DUTY_CYCLE_MAX, "duty_cycle_num");
  646. LEDC_ARG_CHECK(duty_scale <= LEDC_LL_DUTY_SCALE_MAX, "duty_scale");
  647. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  648. _ledc_fade_hw_acquire(speed_mode, channel);
  649. portENTER_CRITICAL(&ledc_spinlock);
  650. ledc_duty_config(speed_mode,
  651. channel, //uint32_t chan_num,
  652. LEDC_VAL_NO_CHANGE,
  653. duty, //uint32_t duty_val,
  654. fade_direction, //uint32_t increase,
  655. step_num, //uint32_t duty_num,
  656. duty_cyle_num, //uint32_t duty_cycle,
  657. duty_scale //uint32_t duty_scale
  658. );
  659. portEXIT_CRITICAL(&ledc_spinlock);
  660. _ledc_fade_hw_release(speed_mode, channel);
  661. return ESP_OK;
  662. }
  663. esp_err_t ledc_set_duty_with_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
  664. {
  665. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  666. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  667. LEDC_ARG_CHECK(hpoint <= LEDC_LL_HPOINT_VAL_MAX, "hpoint");
  668. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  669. /* The channel configuration should not be changed before the fade operation is done. */
  670. _ledc_fade_hw_acquire(speed_mode, channel);
  671. portENTER_CRITICAL(&ledc_spinlock);
  672. ledc_duty_config(speed_mode,
  673. channel, //uint32_t chan_num,
  674. hpoint, //uint32_t hpoint_val,
  675. duty, //uint32_t duty_val,
  676. 1, //uint32_t increase,
  677. 0, //uint32_t duty_num,
  678. 0, //uint32_t duty_cycle,
  679. 0 //uint32_t duty_scale
  680. );
  681. portEXIT_CRITICAL(&ledc_spinlock);
  682. _ledc_fade_hw_release(speed_mode, channel);
  683. return ESP_OK;
  684. }
  685. esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty)
  686. {
  687. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  688. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  689. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  690. /* The channel configuration should not be changed before the fade operation is done. */
  691. _ledc_fade_hw_acquire(speed_mode, channel);
  692. portENTER_CRITICAL(&ledc_spinlock);
  693. ledc_duty_config(speed_mode,
  694. channel, //uint32_t chan_num,
  695. LEDC_VAL_NO_CHANGE,
  696. duty, //uint32_t duty_val,
  697. 1, //uint32_t increase,
  698. 0, //uint32_t duty_num,
  699. 0, //uint32_t duty_cycle,
  700. 0 //uint32_t duty_scale
  701. );
  702. portEXIT_CRITICAL(&ledc_spinlock);
  703. _ledc_fade_hw_release(speed_mode, channel);
  704. return ESP_OK;
  705. }
  706. uint32_t ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  707. {
  708. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  709. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  710. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  711. uint32_t duty = 0;
  712. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty);
  713. return duty;
  714. }
  715. int ledc_get_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel)
  716. {
  717. LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode argument is invalid", LEDC_ERR_VAL);
  718. LEDC_CHECK(channel < LEDC_CHANNEL_MAX, "channel argument is invalid", LEDC_ERR_VAL);
  719. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  720. uint32_t hpoint = 0;
  721. ledc_hal_get_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &hpoint);
  722. return hpoint;
  723. }
  724. esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz)
  725. {
  726. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  727. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  728. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  729. ledc_clk_cfg_t clk_cfg = LEDC_AUTO_CLK;
  730. uint32_t duty_resolution = 0;
  731. ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
  732. ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
  733. return ledc_set_timer_div(speed_mode, timer_num, clk_cfg, freq_hz, duty_resolution);
  734. }
  735. uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num)
  736. {
  737. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  738. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  739. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  740. portENTER_CRITICAL(&ledc_spinlock);
  741. uint32_t clock_divider = 0;
  742. uint32_t duty_resolution = 0;
  743. ledc_clk_cfg_t clk_cfg = LEDC_AUTO_CLK;
  744. ledc_hal_get_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clock_divider);
  745. ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
  746. ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
  747. uint32_t precision = (0x1 << duty_resolution);
  748. uint32_t src_clk_freq = ledc_get_src_clk_freq(clk_cfg);
  749. portEXIT_CRITICAL(&ledc_spinlock);
  750. if (clock_divider == 0) {
  751. ESP_LOGW(LEDC_TAG, "LEDC timer not configured, call ledc_timer_config to set timer frequency");
  752. return 0;
  753. }
  754. return ((uint64_t) src_clk_freq << 8) / precision / clock_divider;
  755. }
  756. static inline void ledc_calc_fade_end_channel(uint32_t *fade_end_status, uint32_t *channel)
  757. {
  758. uint32_t i = __builtin_ffs((*fade_end_status)) - 1;
  759. (*fade_end_status) &= ~(1 << i);
  760. *channel = i;
  761. }
  762. void IRAM_ATTR ledc_fade_isr(void *arg)
  763. {
  764. bool cb_yield = false;
  765. portBASE_TYPE HPTaskAwoken = pdFALSE;
  766. uint32_t speed_mode = 0;
  767. uint32_t channel = 0;
  768. uint32_t intr_status = 0;
  769. ledc_fade_fsm_t state;
  770. for (speed_mode = 0; speed_mode < LEDC_SPEED_MODE_MAX; speed_mode++) {
  771. if (p_ledc_obj[speed_mode] == NULL) {
  772. continue;
  773. }
  774. ledc_hal_get_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), &intr_status);
  775. while (intr_status) {
  776. ledc_calc_fade_end_channel(&intr_status, &channel);
  777. // clear interrupt
  778. ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  779. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  780. //fade object not initialized yet.
  781. continue;
  782. }
  783. // Switch fade state to ISR_CAL if current state is HW_FADE
  784. bool already_stopped = false;
  785. portENTER_CRITICAL_ISR(&ledc_spinlock);
  786. state = s_ledc_fade_rec[speed_mode][channel]->fsm;
  787. assert(state != LEDC_FSM_ISR_CAL && state != LEDC_FSM_KILLED_PENDING);
  788. if (state == LEDC_FSM_HW_FADE) {
  789. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_ISR_CAL;
  790. } else if (state == LEDC_FSM_IDLE) {
  791. // interrupt seen, but has already been stopped by task
  792. already_stopped = true;
  793. }
  794. portEXIT_CRITICAL_ISR(&ledc_spinlock);
  795. if (already_stopped) {
  796. continue;
  797. }
  798. bool set_to_idle = false;
  799. int cycle = 0;
  800. int delta = 0;
  801. int step = 0;
  802. int next_duty = 0;
  803. uint32_t duty_cur = 0;
  804. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  805. uint32_t duty_tar = s_ledc_fade_rec[speed_mode][channel]->target_duty;
  806. int scale = s_ledc_fade_rec[speed_mode][channel]->scale;
  807. if (duty_cur == duty_tar || scale == 0) {
  808. // Target duty has reached
  809. set_to_idle = true;
  810. } else {
  811. // Calculate new duty config parameters
  812. delta = (s_ledc_fade_rec[speed_mode][channel]->direction == LEDC_DUTY_DIR_DECREASE) ?
  813. (duty_cur - duty_tar) : (duty_tar - duty_cur);
  814. if (delta > scale) {
  815. next_duty = duty_cur;
  816. step = (delta / scale > LEDC_DUTY_NUM_MAX) ? LEDC_DUTY_NUM_MAX : (delta / scale);
  817. cycle = s_ledc_fade_rec[speed_mode][channel]->cycle_num;
  818. } else {
  819. next_duty = duty_tar;
  820. step = 1;
  821. cycle = 1;
  822. scale = 0;
  823. }
  824. }
  825. bool finished = false;
  826. portENTER_CRITICAL_ISR(&ledc_spinlock);
  827. state = s_ledc_fade_rec[speed_mode][channel]->fsm;
  828. assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_HW_FADE);
  829. if (set_to_idle || state == LEDC_FSM_KILLED_PENDING) {
  830. // Either fade has completed or has been killed, skip HW duty config
  831. finished = true;
  832. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE;
  833. } else if (state == LEDC_FSM_ISR_CAL) {
  834. // Loading new fade to start
  835. ledc_duty_config(speed_mode,
  836. channel,
  837. LEDC_VAL_NO_CHANGE,
  838. next_duty,
  839. s_ledc_fade_rec[speed_mode][channel]->direction,
  840. step,
  841. cycle,
  842. scale);
  843. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_HW_FADE;
  844. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  845. }
  846. portEXIT_CRITICAL_ISR(&ledc_spinlock);
  847. if (finished) {
  848. xSemaphoreGiveFromISR(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, &HPTaskAwoken);
  849. ledc_cb_t fade_cb = s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback;
  850. if (fade_cb) {
  851. ledc_cb_param_t param = {
  852. .event = LEDC_FADE_END_EVT,
  853. .speed_mode = speed_mode,
  854. .channel = channel,
  855. .duty = duty_cur
  856. };
  857. cb_yield |= fade_cb(&param, s_ledc_fade_rec[speed_mode][channel]->cb_user_arg);
  858. }
  859. }
  860. }
  861. }
  862. if (HPTaskAwoken == pdTRUE || cb_yield) {
  863. portYIELD_FROM_ISR();
  864. }
  865. }
  866. static esp_err_t ledc_fade_channel_deinit(ledc_mode_t speed_mode, ledc_channel_t channel)
  867. {
  868. if (s_ledc_fade_rec[speed_mode][channel]) {
  869. if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux) {
  870. vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux);
  871. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = NULL;
  872. }
  873. if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
  874. vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
  875. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = NULL;
  876. }
  877. free(s_ledc_fade_rec[speed_mode][channel]);
  878. s_ledc_fade_rec[speed_mode][channel] = NULL;
  879. }
  880. return ESP_OK;
  881. }
  882. static esp_err_t ledc_fade_channel_init_check(ledc_mode_t speed_mode, ledc_channel_t channel)
  883. {
  884. if (s_ledc_fade_isr_handle == NULL) {
  885. ESP_LOGE(LEDC_TAG, "Fade service not installed, call ledc_fade_func_install");
  886. return ESP_FAIL;
  887. }
  888. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  889. #if CONFIG_SPIRAM_USE_MALLOC
  890. s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) heap_caps_calloc(1, sizeof(ledc_fade_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  891. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  892. ledc_fade_channel_deinit(speed_mode, channel);
  893. return ESP_ERR_NO_MEM;
  894. }
  895. memset(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage, 0, sizeof(StaticQueue_t));
  896. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinaryStatic(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage);
  897. #else
  898. s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) calloc(1, sizeof(ledc_fade_t));
  899. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  900. ledc_fade_channel_deinit(speed_mode, channel);
  901. return ESP_ERR_NO_MEM;
  902. }
  903. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinary();
  904. #endif
  905. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = xSemaphoreCreateMutex();
  906. xSemaphoreGive(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
  907. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE;
  908. }
  909. if (s_ledc_fade_rec[speed_mode][channel]
  910. && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux
  911. && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
  912. return ESP_OK;
  913. } else {
  914. ledc_fade_channel_deinit(speed_mode, channel);
  915. return ESP_FAIL;
  916. }
  917. }
  918. static esp_err_t _ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int scale, int cycle_num)
  919. {
  920. portENTER_CRITICAL(&ledc_spinlock);
  921. uint32_t duty_cur = 0;
  922. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  923. // When duty == max_duty, meanwhile, if scale == 1 and fade_down == 1, counter would overflow.
  924. if (duty_cur == ledc_get_max_duty(speed_mode, channel)) {
  925. duty_cur -= 1;
  926. }
  927. s_ledc_fade_rec[speed_mode][channel]->speed_mode = speed_mode;
  928. s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty;
  929. s_ledc_fade_rec[speed_mode][channel]->cycle_num = cycle_num;
  930. s_ledc_fade_rec[speed_mode][channel]->scale = scale;
  931. int step_num = 0;
  932. int dir = LEDC_DUTY_DIR_DECREASE;
  933. if (scale > 0) {
  934. if (duty_cur > target_duty) {
  935. s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_DECREASE;
  936. step_num = (duty_cur - target_duty) / scale;
  937. step_num = step_num > LEDC_DUTY_NUM_MAX ? LEDC_DUTY_NUM_MAX : step_num;
  938. } else {
  939. s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_INCREASE;
  940. dir = LEDC_DUTY_DIR_INCREASE;
  941. step_num = (target_duty - duty_cur) / scale;
  942. step_num = step_num > LEDC_DUTY_NUM_MAX ? LEDC_DUTY_NUM_MAX : step_num;
  943. }
  944. }
  945. portEXIT_CRITICAL(&ledc_spinlock);
  946. if (scale > 0 && step_num > 0) {
  947. portENTER_CRITICAL(&ledc_spinlock);
  948. ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, duty_cur, dir, step_num, cycle_num, scale);
  949. portEXIT_CRITICAL(&ledc_spinlock);
  950. ESP_LOGD(LEDC_TAG, "cur duty: %"PRIu32"; target: %"PRIu32", step: %d, cycle: %d; scale: %d; dir: %d\n",
  951. duty_cur, target_duty, step_num, cycle_num, scale, dir);
  952. } else {
  953. portENTER_CRITICAL(&ledc_spinlock);
  954. ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, target_duty, dir, 0, 1, 0);
  955. portEXIT_CRITICAL(&ledc_spinlock);
  956. ESP_LOGD(LEDC_TAG, "Set to target duty: %"PRIu32, target_duty);
  957. }
  958. return ESP_OK;
  959. }
  960. static esp_err_t _ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
  961. {
  962. ledc_timer_t timer_sel;
  963. uint32_t duty_cur = 0;
  964. ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel);
  965. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  966. uint32_t freq = ledc_get_freq(speed_mode, timer_sel);
  967. uint32_t duty_delta = target_duty > duty_cur ? target_duty - duty_cur : duty_cur - target_duty;
  968. if (duty_delta == 0) {
  969. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
  970. }
  971. uint32_t total_cycles = max_fade_time_ms * freq / 1000;
  972. if (total_cycles == 0) {
  973. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  974. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
  975. }
  976. int scale, cycle_num;
  977. if (total_cycles > duty_delta) {
  978. scale = 1;
  979. cycle_num = total_cycles / duty_delta;
  980. if (cycle_num > LEDC_LL_DUTY_NUM_MAX) {
  981. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR);
  982. cycle_num = LEDC_LL_DUTY_NUM_MAX;
  983. }
  984. } else {
  985. cycle_num = 1;
  986. scale = duty_delta / total_cycles;
  987. if (scale > LEDC_LL_DUTY_SCALE_MAX) {
  988. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  989. scale = LEDC_LL_DUTY_SCALE_MAX;
  990. }
  991. }
  992. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  993. }
  994. static void _ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
  995. {
  996. ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel];
  997. fade->mode = fade_mode;
  998. // Clear interrupt status of channel
  999. ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  1000. // Enable interrupt for channel
  1001. portENTER_CRITICAL(&ledc_spinlock);
  1002. ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_FADE_END);
  1003. // Set fade state to HW_FADE state for starting the fade
  1004. assert(fade->fsm == LEDC_FSM_IDLE);
  1005. fade->fsm = LEDC_FSM_HW_FADE;
  1006. portEXIT_CRITICAL(&ledc_spinlock);
  1007. // Trigger the fade
  1008. ledc_update_duty(speed_mode, channel);
  1009. if (fade_mode == LEDC_FADE_WAIT_DONE) {
  1010. // Waiting for fade done
  1011. _ledc_fade_hw_acquire(speed_mode, channel);
  1012. // Release hardware to support next time fade configure
  1013. _ledc_fade_hw_release(speed_mode, channel);
  1014. }
  1015. }
  1016. esp_err_t ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
  1017. {
  1018. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1019. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1020. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1021. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1022. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1023. _ledc_fade_hw_acquire(speed_mode, channel);
  1024. _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
  1025. _ledc_fade_hw_release(speed_mode, channel);
  1026. return ESP_OK;
  1027. }
  1028. esp_err_t ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num)
  1029. {
  1030. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1031. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1032. LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_LL_DUTY_SCALE_MAX), "fade scale");
  1033. LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_LL_DUTY_CYCLE_MAX), "cycle_num");
  1034. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1035. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1036. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1037. _ledc_fade_hw_acquire(speed_mode, channel);
  1038. _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  1039. _ledc_fade_hw_release(speed_mode, channel);
  1040. return ESP_OK;
  1041. }
  1042. esp_err_t ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
  1043. {
  1044. LEDC_CHECK(s_ledc_fade_rec[speed_mode][channel] != NULL, LEDC_FADE_SERVICE_ERR_STR, ESP_ERR_INVALID_STATE);
  1045. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1046. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1047. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1048. _ledc_fade_hw_acquire(speed_mode, channel);
  1049. _ledc_fade_start(speed_mode, channel, fade_mode);
  1050. return ESP_OK;
  1051. }
  1052. // ESP32 does not support this functionality, fade cannot be overwritten with new duty config
  1053. #if SOC_LEDC_SUPPORT_FADE_STOP
  1054. esp_err_t ledc_fade_stop(ledc_mode_t speed_mode, ledc_channel_t channel)
  1055. {
  1056. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1057. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1058. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1059. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1060. ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel];
  1061. ledc_fade_fsm_t state = fade->fsm;
  1062. bool wait_for_idle = false;
  1063. assert(state != LEDC_FSM_KILLED_PENDING);
  1064. if (state == LEDC_FSM_IDLE) {
  1065. // if there is no fade going on, do nothing
  1066. return ESP_OK;
  1067. }
  1068. // Fade state is either HW_FADE or ISR_CAL (there is a fade in process)
  1069. portENTER_CRITICAL(&ledc_spinlock);
  1070. // Disable ledc channel interrupt first
  1071. ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_DISABLE);
  1072. // Config duty to the duty cycle at this moment
  1073. uint32_t duty_cur = ledc_get_duty(speed_mode, channel);
  1074. ledc_duty_config(speed_mode,
  1075. channel, //uint32_t chan_num,
  1076. LEDC_VAL_NO_CHANGE,
  1077. duty_cur, //uint32_t duty_val,
  1078. 1, //uint32_t increase,
  1079. 0, //uint32_t duty_num,
  1080. 0, //uint32_t duty_cycle,
  1081. 0 //uint32_t duty_scale
  1082. );
  1083. _ledc_update_duty(speed_mode, channel);
  1084. state = fade->fsm;
  1085. assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_KILLED_PENDING);
  1086. if (state == LEDC_FSM_HW_FADE) {
  1087. fade->fsm = LEDC_FSM_IDLE;
  1088. } else if (state == LEDC_FSM_ISR_CAL) {
  1089. fade->fsm = LEDC_FSM_KILLED_PENDING;
  1090. wait_for_idle = true;
  1091. }
  1092. portEXIT_CRITICAL(&ledc_spinlock);
  1093. if (wait_for_idle) {
  1094. // Wait for ISR return, which gives the semaphore and switchs state to IDLE
  1095. _ledc_fade_hw_acquire(speed_mode, channel);
  1096. assert(fade->fsm == LEDC_FSM_IDLE);
  1097. }
  1098. _ledc_fade_hw_release(speed_mode, channel);
  1099. return ESP_OK;
  1100. }
  1101. #endif
  1102. esp_err_t ledc_fade_func_install(int intr_alloc_flags)
  1103. {
  1104. //OR intr_alloc_flags with ESP_INTR_FLAG_IRAM because the fade isr is in IRAM
  1105. return ledc_isr_register(ledc_fade_isr, NULL, intr_alloc_flags | ESP_INTR_FLAG_IRAM, &s_ledc_fade_isr_handle);
  1106. }
  1107. void ledc_fade_func_uninstall(void)
  1108. {
  1109. if (s_ledc_fade_isr_handle) {
  1110. esp_intr_free(s_ledc_fade_isr_handle);
  1111. s_ledc_fade_isr_handle = NULL;
  1112. }
  1113. int channel, mode;
  1114. for (mode = 0; mode < LEDC_SPEED_MODE_MAX; mode++) {
  1115. for (channel = 0; channel < LEDC_CHANNEL_MAX; channel++) {
  1116. ledc_fade_channel_deinit(mode, channel);
  1117. }
  1118. }
  1119. return;
  1120. }
  1121. esp_err_t ledc_cb_register(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_cbs_t *cbs, void *user_arg)
  1122. {
  1123. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1124. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1125. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1126. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1127. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback = cbs->fade_cb;
  1128. s_ledc_fade_rec[speed_mode][channel]->cb_user_arg = user_arg;
  1129. return ESP_OK;
  1130. }
  1131. /*
  1132. * The functions below are thread-safe version of APIs for duty and fade control.
  1133. * These APIs can be called from different tasks.
  1134. */
  1135. esp_err_t ledc_set_duty_and_update(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
  1136. {
  1137. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1138. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1139. LEDC_ARG_CHECK(duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1140. LEDC_ARG_CHECK(hpoint <= LEDC_LL_HPOINT_VAL_MAX, "hpoint");
  1141. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1142. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1143. _ledc_fade_hw_acquire(speed_mode, channel);
  1144. portENTER_CRITICAL(&ledc_spinlock);
  1145. ledc_duty_config(speed_mode, channel, hpoint, duty, 1, 0, 0, 0);
  1146. _ledc_update_duty(speed_mode, channel);
  1147. portEXIT_CRITICAL(&ledc_spinlock);
  1148. _ledc_fade_hw_release(speed_mode, channel);
  1149. return ESP_OK;
  1150. }
  1151. esp_err_t ledc_set_fade_time_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t max_fade_time_ms, ledc_fade_mode_t fade_mode)
  1152. {
  1153. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1154. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1155. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1156. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1157. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1158. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1159. _ledc_op_lock_acquire(speed_mode, channel);
  1160. _ledc_fade_hw_acquire(speed_mode, channel);
  1161. _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
  1162. _ledc_fade_start(speed_mode, channel, fade_mode);
  1163. _ledc_op_lock_release(speed_mode, channel);
  1164. return ESP_OK;
  1165. }
  1166. esp_err_t ledc_set_fade_step_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num, ledc_fade_mode_t fade_mode)
  1167. {
  1168. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1169. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1170. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1171. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1172. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1173. LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_LL_DUTY_SCALE_MAX), "fade scale");
  1174. LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_LL_DUTY_CYCLE_MAX), "cycle_num");
  1175. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1176. _ledc_op_lock_acquire(speed_mode, channel);
  1177. _ledc_fade_hw_acquire(speed_mode, channel);
  1178. _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  1179. _ledc_fade_start(speed_mode, channel, fade_mode);
  1180. _ledc_op_lock_release(speed_mode, channel);
  1181. return ESP_OK;
  1182. }