test_spi_master.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460
  1. /*
  2. * SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /*
  7. Tests for the spi_master device driver
  8. */
  9. #include <esp_types.h>
  10. #include <stdio.h>
  11. #include <stdlib.h>
  12. #include <malloc.h>
  13. #include <string.h>
  14. #include "freertos/FreeRTOS.h"
  15. #include "freertos/task.h"
  16. #include "freertos/semphr.h"
  17. #include "freertos/queue.h"
  18. #include "unity.h"
  19. #include "driver/spi_master.h"
  20. #include "driver/spi_slave.h"
  21. #include "esp_heap_caps.h"
  22. #include "esp_log.h"
  23. #include "soc/spi_periph.h"
  24. #include "test_utils.h"
  25. #include "test/test_common_spi.h"
  26. #include "soc/gpio_periph.h"
  27. #include "sdkconfig.h"
  28. #include "esp_private/cache_utils.h"
  29. #include "soc/soc_memory_layout.h"
  30. #include "esp_private/spi_common_internal.h"
  31. #include "esp_private/esp_clk.h"
  32. #include "test_utils.h"
  33. const static char TAG[] = "test_spi";
  34. // There is no input-only pin on esp32c3 and esp32s3
  35. #define TEST_SOC_HAS_INPUT_ONLY_PINS (!DISABLED_FOR_TARGETS(ESP32C3, ESP32S3, ESP32C2))
  36. static void check_spi_pre_n_for(int clk, int pre, int n)
  37. {
  38. spi_device_handle_t handle;
  39. spi_device_interface_config_t devcfg = {
  40. .command_bits = 0,
  41. .address_bits = 0,
  42. .dummy_bits = 0,
  43. .clock_speed_hz = clk,
  44. .duty_cycle_pos = 128,
  45. .mode = 0,
  46. .spics_io_num = PIN_NUM_CS,
  47. .queue_size = 3
  48. };
  49. char sendbuf[16] = "";
  50. spi_transaction_t t;
  51. memset(&t, 0, sizeof(t));
  52. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle));
  53. t.length = 16 * 8;
  54. t.tx_buffer = sendbuf;
  55. TEST_ESP_OK(spi_device_transmit(handle, &t));
  56. spi_dev_t *hw = spi_periph_signal[TEST_SPI_HOST].hw;
  57. printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, hw->clock.clkdiv_pre + 1, hw->clock.clkcnt_n + 1);
  58. TEST_ASSERT(hw->clock.clkcnt_n + 1 == n);
  59. TEST_ASSERT(hw->clock.clkdiv_pre + 1 == pre);
  60. TEST_ESP_OK(spi_bus_remove_device(handle));
  61. }
  62. #define TEST_CLK_TIMES 8
  63. /**
  64. * In this test, SPI Clock Calculation:
  65. * Fspi = Fclk_spi_mst / (pre + n)
  66. *
  67. * For each item:
  68. * {freq, pre, n}
  69. */
  70. #define TEST_CLK_PARAM_APB_80 {{1, SOC_SPI_MAX_PRE_DIVIDER, 64}, {100000, 16, 50}, {333333, 4, 60}, {800000, 2, 50}, {900000, 2, 44}, {8000000, 1, 10}, {20000000, 1, 4}, {26000000, 1, 3} }
  71. #define TEST_CLK_PARAM_APB_40 {{1, SOC_SPI_MAX_PRE_DIVIDER, 64}, {100000, 8, 50}, {333333, 2, 60}, {800000, 1, 50}, {900000, 1, 44}, {8000000, 1, 5}, {10000000, 1, 4}, {20000000, 1, 2} }
  72. TEST_CASE("SPI Master clockdiv calculation routines", "[spi]")
  73. {
  74. spi_bus_config_t buscfg = {
  75. .mosi_io_num = PIN_NUM_MOSI,
  76. .miso_io_num = PIN_NUM_MISO,
  77. .sclk_io_num = PIN_NUM_CLK,
  78. .quadwp_io_num = -1,
  79. .quadhd_io_num = -1
  80. };
  81. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
  82. uint32_t apb_freq_hz = esp_clk_apb_freq();
  83. if (apb_freq_hz == (80 * 1000 * 1000)) {
  84. uint32_t clk_param[TEST_CLK_TIMES][3] = TEST_CLK_PARAM_APB_80;
  85. for (int i = 0; i < TEST_CLK_TIMES; i++) {
  86. check_spi_pre_n_for(clk_param[i][0], clk_param[i][1], clk_param[i][2]);
  87. }
  88. } else {
  89. TEST_ASSERT(apb_freq_hz == (40 * 1000 * 1000));
  90. uint32_t clk_param[TEST_CLK_TIMES][3] = TEST_CLK_PARAM_APB_40;
  91. for (int i = 0; i < TEST_CLK_TIMES; i++) {
  92. check_spi_pre_n_for(clk_param[i][0], clk_param[i][1], clk_param[i][2]);
  93. }
  94. }
  95. TEST_ESP_OK(spi_bus_free(TEST_SPI_HOST));
  96. }
  97. static spi_device_handle_t setup_spi_bus_loopback(int clkspeed, bool dma)
  98. {
  99. spi_bus_config_t buscfg = {
  100. .mosi_io_num = PIN_NUM_MOSI,
  101. .miso_io_num = PIN_NUM_MOSI,
  102. .sclk_io_num = PIN_NUM_CLK,
  103. .quadwp_io_num = -1,
  104. .quadhd_io_num = -1,
  105. .max_transfer_sz = 4096 * 3
  106. };
  107. spi_device_interface_config_t devcfg = {
  108. .command_bits = 0,
  109. .address_bits = 0,
  110. .dummy_bits = 0,
  111. .clock_speed_hz = clkspeed,
  112. .duty_cycle_pos = 128,
  113. .mode = 0,
  114. .spics_io_num = PIN_NUM_CS,
  115. .queue_size = 3,
  116. };
  117. spi_device_handle_t handle;
  118. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, dma ? SPI_DMA_CH_AUTO : 0));
  119. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle));
  120. //connect MOSI to two devices breaks the output, fix it.
  121. spitest_gpio_output_sel(PIN_NUM_MOSI, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  122. printf("Bus/dev inited.\n");
  123. return handle;
  124. }
  125. static int spi_test(spi_device_handle_t handle, int num_bytes)
  126. {
  127. esp_err_t ret;
  128. int x;
  129. bool success = true;
  130. srand(num_bytes);
  131. char *sendbuf = heap_caps_malloc((num_bytes + 3) & (~3), MALLOC_CAP_DMA);
  132. char *recvbuf = heap_caps_malloc((num_bytes + 3) & (~3), MALLOC_CAP_DMA);
  133. for (x = 0; x < num_bytes; x++) {
  134. sendbuf[x] = rand() & 0xff;
  135. recvbuf[x] = 0x55;
  136. }
  137. spi_transaction_t t;
  138. memset(&t, 0, sizeof(t));
  139. t.length = num_bytes * 8;
  140. t.tx_buffer = sendbuf;
  141. t.rx_buffer = recvbuf;
  142. t.addr = 0xA00000000000000FL;
  143. t.cmd = 0x55;
  144. printf("Transmitting %d bytes...\n", num_bytes);
  145. ret = spi_device_transmit(handle, &t);
  146. TEST_ASSERT(ret == ESP_OK);
  147. srand(num_bytes);
  148. for (x = 0; x < num_bytes; x++) {
  149. if (sendbuf[x] != (rand() & 0xff)) {
  150. printf("Huh? Sendbuf corrupted at byte %d\n", x);
  151. TEST_ASSERT(0);
  152. }
  153. if (sendbuf[x] != recvbuf[x]) {
  154. break;
  155. }
  156. }
  157. if (x != num_bytes) {
  158. int from = x - 16;
  159. if (from < 0) {
  160. from = 0;
  161. }
  162. success = false;
  163. printf("Error at %d! Sent vs recved: (starting from %d)\n", x, from);
  164. for (int i = 0; i < 32; i++) {
  165. if (i + from < num_bytes) {
  166. printf("%02X ", sendbuf[from + i]);
  167. }
  168. }
  169. printf("\n");
  170. for (int i = 0; i < 32; i++) {
  171. if (i + from < num_bytes) {
  172. printf("%02X ", recvbuf[from + i]);
  173. }
  174. }
  175. printf("\n");
  176. }
  177. if (success) {
  178. printf("Success!\n");
  179. }
  180. free(sendbuf);
  181. free(recvbuf);
  182. return success;
  183. }
  184. TEST_CASE("SPI Master test", "[spi]")
  185. {
  186. bool success = true;
  187. printf("Testing bus at 80KHz\n");
  188. spi_device_handle_t handle = setup_spi_bus_loopback(80000, true);
  189. success &= spi_test(handle, 16); //small
  190. success &= spi_test(handle, 21); //small, unaligned
  191. success &= spi_test(handle, 36); //aligned
  192. success &= spi_test(handle, 128); //aligned
  193. success &= spi_test(handle, 129); //unaligned
  194. success &= spi_test(handle, 4096 - 2); //multiple descs, edge case 1
  195. success &= spi_test(handle, 4096 - 1); //multiple descs, edge case 2
  196. success &= spi_test(handle, 4096 * 3); //multiple descs
  197. master_free_device_bus(handle);
  198. printf("Testing bus at 80KHz, non-DMA\n");
  199. handle = setup_spi_bus_loopback(80000, false);
  200. success &= spi_test(handle, 4); //aligned
  201. success &= spi_test(handle, 16); //small
  202. success &= spi_test(handle, 21); //small, unaligned
  203. success &= spi_test(handle, 32); //small
  204. success &= spi_test(handle, 47); //small, unaligned
  205. success &= spi_test(handle, 63); //small
  206. success &= spi_test(handle, 64); //small, unaligned
  207. master_free_device_bus(handle);
  208. printf("Testing bus at 26MHz\n");
  209. handle = setup_spi_bus_loopback(20000000, true);
  210. success &= spi_test(handle, 128); //DMA, aligned
  211. success &= spi_test(handle, 4096 * 3); //DMA, multiple descs
  212. master_free_device_bus(handle);
  213. printf("Testing bus at 900KHz\n");
  214. handle = setup_spi_bus_loopback(9000000, true);
  215. success &= spi_test(handle, 128); //DMA, aligned
  216. success &= spi_test(handle, 4096 * 3); //DMA, multiple descs
  217. master_free_device_bus(handle);
  218. TEST_ASSERT(success);
  219. }
  220. TEST_CASE("SPI Master test, interaction of multiple devs", "[spi]")
  221. {
  222. esp_err_t ret;
  223. bool success = true;
  224. spi_device_interface_config_t devcfg = {
  225. .command_bits = 0,
  226. .address_bits = 0,
  227. .dummy_bits = 0,
  228. .clock_speed_hz = 1000000,
  229. .duty_cycle_pos = 128,
  230. .mode = 0,
  231. .spics_io_num = PIN_NUM_CS,
  232. .queue_size = 3,
  233. };
  234. spi_device_handle_t handle1 = setup_spi_bus_loopback(80000, true);
  235. spi_device_handle_t handle2;
  236. spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle2);
  237. printf("Sending to dev 1\n");
  238. success &= spi_test(handle1, 7);
  239. printf("Sending to dev 1\n");
  240. success &= spi_test(handle1, 15);
  241. printf("Sending to dev 2\n");
  242. success &= spi_test(handle2, 15);
  243. printf("Sending to dev 1\n");
  244. success &= spi_test(handle1, 32);
  245. printf("Sending to dev 2\n");
  246. success &= spi_test(handle2, 32);
  247. printf("Sending to dev 1\n");
  248. success &= spi_test(handle1, 63);
  249. printf("Sending to dev 2\n");
  250. success &= spi_test(handle2, 63);
  251. printf("Sending to dev 1\n");
  252. success &= spi_test(handle1, 5000);
  253. printf("Sending to dev 2\n");
  254. success &= spi_test(handle2, 5000);
  255. ret = spi_bus_remove_device(handle2);
  256. TEST_ASSERT(ret == ESP_OK);
  257. master_free_device_bus(handle1);
  258. TEST_ASSERT(success);
  259. }
  260. #if TEST_SOC_HAS_INPUT_ONLY_PINS //There is no input-only pin, so this test could be ignored.
  261. static esp_err_t test_master_pins(int mosi, int miso, int sclk, int cs)
  262. {
  263. esp_err_t ret;
  264. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  265. cfg.mosi_io_num = mosi;
  266. cfg.miso_io_num = miso;
  267. cfg.sclk_io_num = sclk;
  268. spi_device_interface_config_t master_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  269. master_cfg.spics_io_num = cs;
  270. ret = spi_bus_initialize(TEST_SPI_HOST, &cfg, SPI_DMA_CH_AUTO);
  271. if (ret != ESP_OK) {
  272. return ret;
  273. }
  274. spi_device_handle_t spi;
  275. ret = spi_bus_add_device(TEST_SPI_HOST, &master_cfg, &spi);
  276. if (ret != ESP_OK) {
  277. spi_bus_free(TEST_SPI_HOST);
  278. return ret;
  279. }
  280. master_free_device_bus(spi);
  281. return ESP_OK;
  282. }
  283. static esp_err_t test_slave_pins(int mosi, int miso, int sclk, int cs)
  284. {
  285. esp_err_t ret;
  286. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  287. cfg.mosi_io_num = mosi;
  288. cfg.miso_io_num = miso;
  289. cfg.sclk_io_num = sclk;
  290. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  291. slave_cfg.spics_io_num = cs;
  292. ret = spi_slave_initialize(TEST_SLAVE_HOST, &cfg, &slave_cfg, SPI_DMA_CH_AUTO);
  293. if (ret != ESP_OK) {
  294. return ret;
  295. }
  296. spi_slave_free(TEST_SLAVE_HOST);
  297. return ESP_OK;
  298. }
  299. TEST_CASE("spi placed on input-only pins", "[spi]")
  300. {
  301. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  302. TEST_ASSERT(test_master_pins(INPUT_ONLY_PIN, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS) != ESP_OK);
  303. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, INPUT_ONLY_PIN, PIN_NUM_CLK, PIN_NUM_CS));
  304. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, INPUT_ONLY_PIN, PIN_NUM_CS) != ESP_OK);
  305. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, INPUT_ONLY_PIN) != ESP_OK);
  306. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  307. TEST_ESP_OK(test_slave_pins(INPUT_ONLY_PIN, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  308. TEST_ASSERT(test_slave_pins(PIN_NUM_MOSI, INPUT_ONLY_PIN, PIN_NUM_CLK, PIN_NUM_CS) != ESP_OK);
  309. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, INPUT_ONLY_PIN, PIN_NUM_CS));
  310. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, INPUT_ONLY_PIN));
  311. }
  312. //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  313. #endif //#if TEST_SOC_HAS_INPUT_ONLY_PINS
  314. TEST_CASE("spi bus setting with different pin configs", "[spi]")
  315. {
  316. spi_bus_config_t cfg;
  317. uint32_t flags_o;
  318. uint32_t flags_expected;
  319. ESP_LOGI(TAG, "test 6 iomux output pins...");
  320. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_IOMUX_PINS | SPICOMMON_BUSFLAG_QUAD;
  321. cfg = (spi_bus_config_t) {
  322. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  323. .max_transfer_sz = 8, .flags = flags_expected
  324. };
  325. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  326. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  327. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  328. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  329. ESP_LOGI(TAG, "test 4 iomux output pins...");
  330. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_IOMUX_PINS | SPICOMMON_BUSFLAG_DUAL;
  331. cfg = (spi_bus_config_t) {
  332. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  333. .max_transfer_sz = 8, .flags = flags_expected
  334. };
  335. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  336. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  337. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  338. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  339. ESP_LOGI(TAG, "test 6 output pins...");
  340. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_QUAD | SPICOMMON_BUSFLAG_GPIO_PINS;
  341. //swap MOSI and MISO
  342. cfg = (spi_bus_config_t) {
  343. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  344. .max_transfer_sz = 8, .flags = flags_expected
  345. };
  346. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  347. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  348. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  349. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  350. ESP_LOGI(TAG, "test 4 output pins...");
  351. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
  352. //swap MOSI and MISO
  353. cfg = (spi_bus_config_t) {
  354. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  355. .max_transfer_sz = 8, .flags = flags_expected
  356. };
  357. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  358. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  359. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  360. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  361. #if TEST_SOC_HAS_INPUT_ONLY_PINS //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  362. ESP_LOGI(TAG, "test master 5 output pins and MOSI on input-only pin...");
  363. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD | SPICOMMON_BUSFLAG_GPIO_PINS;
  364. cfg = (spi_bus_config_t) {
  365. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  366. .max_transfer_sz = 8, .flags = flags_expected
  367. };
  368. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  369. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  370. ESP_LOGI(TAG, "test slave 5 output pins and MISO on input-only pin...");
  371. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD | SPICOMMON_BUSFLAG_GPIO_PINS;
  372. cfg = (spi_bus_config_t) {
  373. .mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  374. .max_transfer_sz = 8, .flags = flags_expected
  375. };
  376. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  377. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  378. ESP_LOGI(TAG, "test master 3 output pins and MOSI on input-only pin...");
  379. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_GPIO_PINS;
  380. cfg = (spi_bus_config_t) {
  381. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  382. .max_transfer_sz = 8, .flags = flags_expected
  383. };
  384. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  385. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  386. ESP_LOGI(TAG, "test slave 3 output pins and MISO on input-only pin...");
  387. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_GPIO_PINS;
  388. cfg = (spi_bus_config_t) {
  389. .mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  390. .max_transfer_sz = 8, .flags = flags_expected
  391. };
  392. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  393. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  394. //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  395. #endif //#if TEST_SOC_HAS_INPUT_ONLY_PINS
  396. ESP_LOGI(TAG, "check native flag for 6 output pins...");
  397. flags_expected = SPICOMMON_BUSFLAG_IOMUX_PINS;
  398. //swap MOSI and MISO
  399. cfg = (spi_bus_config_t) {
  400. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  401. .max_transfer_sz = 8, .flags = flags_expected
  402. };
  403. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  404. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  405. ESP_LOGI(TAG, "check native flag for 4 output pins...");
  406. flags_expected = SPICOMMON_BUSFLAG_IOMUX_PINS;
  407. //swap MOSI and MISO
  408. cfg = (spi_bus_config_t) {
  409. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  410. .max_transfer_sz = 8, .flags = flags_expected
  411. };
  412. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  413. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  414. #if TEST_SOC_HAS_INPUT_ONLY_PINS //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  415. ESP_LOGI(TAG, "check dual flag for master 5 output pins and MISO/MOSI on input-only pin...");
  416. flags_expected = SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
  417. cfg = (spi_bus_config_t) {
  418. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  419. .max_transfer_sz = 8, .flags = flags_expected
  420. };
  421. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  422. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  423. cfg = (spi_bus_config_t) {
  424. .mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  425. .max_transfer_sz = 8, .flags = flags_expected
  426. };
  427. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  428. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  429. ESP_LOGI(TAG, "check dual flag for master 3 output pins and MISO/MOSI on input-only pin...");
  430. flags_expected = SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
  431. cfg = (spi_bus_config_t) {
  432. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  433. .max_transfer_sz = 8, .flags = flags_expected
  434. };
  435. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  436. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  437. cfg = (spi_bus_config_t) {
  438. .mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  439. .max_transfer_sz = 8, .flags = flags_expected
  440. };
  441. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  442. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  443. //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  444. #endif //#if TEST_SOC_HAS_INPUT_ONLY_PINS
  445. ESP_LOGI(TAG, "check sclk flag...");
  446. flags_expected = SPICOMMON_BUSFLAG_SCLK;
  447. cfg = (spi_bus_config_t) {
  448. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = -1, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  449. .max_transfer_sz = 8, .flags = flags_expected
  450. };
  451. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  452. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  453. ESP_LOGI(TAG, "check mosi flag...");
  454. flags_expected = SPICOMMON_BUSFLAG_MOSI;
  455. cfg = (spi_bus_config_t) {
  456. .mosi_io_num = -1, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  457. .max_transfer_sz = 8, .flags = flags_expected
  458. };
  459. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  460. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  461. ESP_LOGI(TAG, "check miso flag...");
  462. flags_expected = SPICOMMON_BUSFLAG_MISO;
  463. cfg = (spi_bus_config_t) {
  464. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = -1, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  465. .max_transfer_sz = 8, .flags = flags_expected
  466. };
  467. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  468. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  469. ESP_LOGI(TAG, "check quad flag...");
  470. flags_expected = SPICOMMON_BUSFLAG_QUAD;
  471. cfg = (spi_bus_config_t) {
  472. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  473. .max_transfer_sz = 8, .flags = flags_expected
  474. };
  475. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  476. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  477. cfg = (spi_bus_config_t) {
  478. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = -1,
  479. .max_transfer_sz = 8, .flags = flags_expected
  480. };
  481. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  482. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  483. }
  484. TEST_CASE("SPI Master no response when switch from host1 (SPI2) to host2 (SPI3)", "[spi]")
  485. {
  486. //spi config
  487. spi_bus_config_t bus_config;
  488. spi_device_interface_config_t device_config;
  489. spi_device_handle_t spi;
  490. spi_host_device_t host;
  491. memset(&bus_config, 0, sizeof(spi_bus_config_t));
  492. memset(&device_config, 0, sizeof(spi_device_interface_config_t));
  493. bus_config.miso_io_num = -1;
  494. bus_config.mosi_io_num = PIN_NUM_MOSI;
  495. bus_config.sclk_io_num = PIN_NUM_CLK;
  496. bus_config.quadwp_io_num = -1;
  497. bus_config.quadhd_io_num = -1;
  498. device_config.clock_speed_hz = 50000;
  499. device_config.mode = 0;
  500. device_config.spics_io_num = -1;
  501. device_config.queue_size = 1;
  502. device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST;
  503. struct spi_transaction_t transaction = {
  504. .flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA,
  505. .length = 16,
  506. .rx_buffer = NULL,
  507. .tx_data = {0x04, 0x00}
  508. };
  509. //initialize for first host
  510. host = TEST_SPI_HOST;
  511. TEST_ESP_OK(spi_bus_initialize(host, &bus_config, SPI_DMA_CH_AUTO));
  512. TEST_ESP_OK(spi_bus_add_device(host, &device_config, &spi));
  513. printf("before first xmit\n");
  514. TEST_ESP_OK(spi_device_transmit(spi, &transaction));
  515. printf("after first xmit\n");
  516. TEST_ESP_OK(spi_bus_remove_device(spi));
  517. TEST_ESP_OK(spi_bus_free(host));
  518. //for second host and failed before
  519. host = TEST_SLAVE_HOST;
  520. TEST_ESP_OK(spi_bus_initialize(host, &bus_config, SPI_DMA_CH_AUTO));
  521. TEST_ESP_OK(spi_bus_add_device(host, &device_config, &spi));
  522. printf("before second xmit\n");
  523. // the original version (bit mis-written) stucks here.
  524. TEST_ESP_OK(spi_device_transmit(spi, &transaction));
  525. // test case success when see this.
  526. printf("after second xmit\n");
  527. TEST_ESP_OK(spi_bus_remove_device(spi));
  528. TEST_ESP_OK(spi_bus_free(host));
  529. }
  530. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)
  531. //IDF-5146
  532. DRAM_ATTR static uint32_t data_dram[80] = {0};
  533. //force to place in code area.
  534. static const uint8_t data_drom[320 + 3] = {
  535. 0xD8, 0xD1, 0x0A, 0xB8, 0xCE, 0x67, 0x1B, 0x11, 0x17, 0xA0, 0xDA, 0x89, 0x55, 0xC1, 0x40, 0x0F, 0x55, 0xEB, 0xF7, 0xEC, 0xF0, 0x3C, 0x0F, 0x4D, 0x2B, 0x9E, 0xBF, 0xCD, 0x57, 0x2C, 0x48, 0x1A,
  536. 0x8B, 0x47, 0xC5, 0x01, 0x0C, 0x05, 0x80, 0x30, 0xF4, 0xEA, 0xE5, 0x92, 0x56, 0x97, 0x98, 0x78, 0x21, 0x34, 0xA1, 0xBC, 0xAE, 0x93, 0x7E, 0x96, 0x08, 0xE6, 0x54, 0x6A, 0x6C, 0x67, 0xCF, 0x58,
  537. 0xEE, 0x15, 0xA8, 0xB6, 0x32, 0x8C, 0x85, 0xF7, 0xE9, 0x88, 0x5E, 0xB1, 0x76, 0xE4, 0xB2, 0xC7, 0x0F, 0x57, 0x51, 0x7A, 0x2F, 0xAB, 0x12, 0xC3, 0x37, 0x99, 0x4E, 0x67, 0x75, 0x28, 0xE4, 0x1D,
  538. 0xF8, 0xBA, 0x22, 0xCB, 0xA1, 0x18, 0x4C, 0xAB, 0x5F, 0xC9, 0xF3, 0xA2, 0x39, 0x92, 0x44, 0xE6, 0x7B, 0xE3, 0xD0, 0x16, 0xC5, 0xC2, 0xCB, 0xD9, 0xC0, 0x7F, 0x06, 0xBF, 0x3E, 0xCE, 0xE1, 0x26,
  539. 0xD5, 0x3C, 0xAD, 0x0E, 0xC1, 0xC7, 0x7D, 0x0D, 0x56, 0x85, 0x6F, 0x32, 0xC8, 0x63, 0x8D, 0x12, 0xAB, 0x1E, 0x81, 0x7B, 0xF4, 0xF1, 0xA9, 0xAF, 0xD9, 0x74, 0x60, 0x05, 0x3D, 0xCC, 0x0C, 0x34,
  540. 0x11, 0x44, 0xAE, 0x2A, 0x13, 0x2F, 0x04, 0xC3, 0x59, 0xF0, 0x54, 0x07, 0xBA, 0x26, 0xD9, 0xFB, 0x80, 0x95, 0xC0, 0x14, 0xFA, 0x27, 0xEF, 0xD3, 0x58, 0xB8, 0xE4, 0xA2, 0xE3, 0x5E, 0x94, 0xB3,
  541. 0xCD, 0x2C, 0x4F, 0xAC, 0x3B, 0xD1, 0xCA, 0xBE, 0x61, 0x71, 0x7B, 0x62, 0xEB, 0xF0, 0xFC, 0xEF, 0x22, 0xB7, 0x3F, 0x56, 0x65, 0x19, 0x61, 0x73, 0x1A, 0x4D, 0xE4, 0x23, 0xE5, 0x3A, 0x91, 0x5C,
  542. 0xE6, 0x1B, 0x5F, 0x0E, 0x10, 0x94, 0x7C, 0x9F, 0xCF, 0x75, 0xB3, 0xEB, 0x42, 0x4C, 0xCF, 0xFE, 0xAF, 0x68, 0x62, 0x3F, 0x9A, 0x3C, 0x81, 0x3E, 0x7A, 0x45, 0x92, 0x79, 0x91, 0x4F, 0xFF, 0xDE,
  543. 0x25, 0x18, 0x33, 0xB9, 0xA9, 0x3A, 0x3F, 0x1F, 0x4F, 0x4B, 0x5C, 0x71, 0x82, 0x75, 0xB0, 0x1F, 0xE9, 0x98, 0xA3, 0xE2, 0x65, 0xBB, 0xCA, 0x4F, 0xB7, 0x1D, 0x23, 0x43, 0x16, 0x73, 0xBD, 0x83,
  544. 0x70, 0x22, 0x7D, 0x0A, 0x6D, 0xD3, 0x77, 0x73, 0xD0, 0xF4, 0x06, 0xB2, 0x19, 0x8C, 0xFF, 0x58, 0xE4, 0xDB, 0xE9, 0xEC, 0x89, 0x6A, 0xF4, 0x0E, 0x67, 0x12, 0xEC, 0x11, 0xD2, 0x1F, 0x8D, 0xD7,
  545. };
  546. TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
  547. {
  548. #ifdef CONFIG_SPIRAM
  549. //test psram if enabled
  550. ESP_LOGI(TAG, "testing PSRAM...");
  551. uint32_t *data_malloc = (uint32_t *)heap_caps_malloc(324, MALLOC_CAP_SPIRAM);
  552. TEST_ASSERT(esp_ptr_external_ram(data_malloc));
  553. #else
  554. uint32_t *data_malloc = (uint32_t *)heap_caps_malloc(324, MALLOC_CAP_DMA);
  555. TEST_ASSERT(esp_ptr_in_dram(data_malloc));
  556. #endif
  557. TEST_ASSERT(data_malloc != NULL);
  558. TEST_ASSERT(esp_ptr_in_dram(data_dram));
  559. TEST_ASSERT(esp_ptr_in_drom(data_drom));
  560. ESP_LOGI(TAG, "dram: %p", data_dram);
  561. ESP_LOGI(TAG, "drom: %p, malloc: %p", data_drom, data_malloc);
  562. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  563. uint32_t *data_iram = (uint32_t *)heap_caps_malloc(324, MALLOC_CAP_EXEC);
  564. TEST_ASSERT(data_iram != NULL);
  565. TEST_ASSERT(esp_ptr_executable(data_iram) || esp_ptr_in_iram(data_iram) || esp_ptr_in_diram_iram(data_iram));
  566. ESP_LOGI(TAG, "iram: %p", data_iram);
  567. #endif
  568. srand(52);
  569. for (int i = 0; i < 320 / 4; i++) {
  570. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  571. data_iram[i] = rand();
  572. #endif
  573. data_dram[i] = rand();
  574. data_malloc[i] = rand();
  575. }
  576. esp_err_t ret;
  577. spi_device_handle_t spi;
  578. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  579. buscfg.miso_io_num = PIN_NUM_MOSI;
  580. spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  581. //Initialize the SPI bus
  582. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
  583. //Attach the LCD to the SPI bus
  584. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  585. //connect MOSI to two devices breaks the output, fix it.
  586. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  587. #define TEST_REGION_SIZE 5
  588. static spi_transaction_t trans[TEST_REGION_SIZE];
  589. int x;
  590. memset(trans, 0, sizeof(trans));
  591. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  592. trans[0].length = 320 * 8,
  593. trans[0].tx_buffer = data_iram;
  594. trans[0].rx_buffer = data_malloc + 1;
  595. trans[1].length = 320 * 8,
  596. trans[1].tx_buffer = data_dram;
  597. trans[1].rx_buffer = data_iram;
  598. trans[2].length = 320 * 8,
  599. trans[2].tx_buffer = data_drom;
  600. trans[2].rx_buffer = data_iram;
  601. #endif
  602. trans[3].length = 320 * 8,
  603. trans[3].tx_buffer = data_malloc + 2;
  604. trans[3].rx_buffer = data_dram;
  605. trans[4].length = 4 * 8,
  606. trans[4].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
  607. uint32_t *ptr = (uint32_t *)trans[4].rx_data;
  608. *ptr = 0x54545454;
  609. ptr = (uint32_t *)trans[4].tx_data;
  610. *ptr = 0xbc124960;
  611. //Queue all transactions.
  612. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  613. for (x = 0; x < TEST_REGION_SIZE; x++) {
  614. #else
  615. for (x = 3; x < TEST_REGION_SIZE; x++) {
  616. #endif
  617. ESP_LOGI(TAG, "transmitting %d...", x);
  618. ret = spi_device_transmit(spi, &trans[x]);
  619. TEST_ASSERT(ret == ESP_OK);
  620. if (trans[x].flags & SPI_TRANS_USE_RXDATA) {
  621. TEST_ASSERT_EQUAL_HEX8_ARRAY(trans[x].tx_data, trans[x].rx_data, 4);
  622. } else {
  623. TEST_ASSERT_EQUAL_HEX32_ARRAY(trans[x].tx_buffer, trans[x].rx_buffer, trans[x].length / 8 / 4);
  624. }
  625. }
  626. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  627. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  628. free(data_malloc);
  629. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  630. free(data_iram);
  631. #endif
  632. }
  633. #endif //!TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)
  634. //this part tests 3 DMA issues in master mode, full-duplex in IDF2.1
  635. // 1. RX buffer not aligned (start and end)
  636. // 2. not setting rx_buffer
  637. // 3. setting rx_length != length
  638. TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
  639. {
  640. uint8_t tx_buf[320] = {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
  641. uint8_t rx_buf[320];
  642. spi_device_handle_t spi;
  643. spi_bus_config_t buscfg = {
  644. .miso_io_num = PIN_NUM_MOSI,
  645. .mosi_io_num = PIN_NUM_MOSI,
  646. .sclk_io_num = PIN_NUM_CLK,
  647. .quadwp_io_num = -1,
  648. .quadhd_io_num = -1
  649. };
  650. spi_device_interface_config_t devcfg = {
  651. .clock_speed_hz = 10 * 1000 * 1000, //Clock out at 10 MHz
  652. .mode = 0, //SPI mode 0
  653. .spics_io_num = PIN_NUM_CS, //CS pin
  654. .queue_size = 7, //We want to be able to queue 7 transactions at a time
  655. .pre_cb = NULL,
  656. };
  657. //Initialize the SPI bus
  658. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
  659. //Attach the LCD to the SPI bus
  660. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  661. //connect MOSI to two devices breaks the output, fix it.
  662. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  663. memset(rx_buf, 0x66, 320);
  664. for ( int i = 0; i < 8; i ++ ) {
  665. memset( rx_buf, 0x66, sizeof(rx_buf));
  666. spi_transaction_t t = {};
  667. t.length = 8 * (i + 1);
  668. t.rxlength = 0;
  669. t.tx_buffer = tx_buf + 2 * i;
  670. t.rx_buffer = rx_buf + i;
  671. if ( i == 1 ) {
  672. //test set no start
  673. t.rx_buffer = NULL;
  674. } else if ( i == 2 ) {
  675. //test rx length != tx_length
  676. t.rxlength = t.length - 8;
  677. }
  678. spi_device_transmit( spi, &t );
  679. for ( int i = 0; i < 16; i ++ ) {
  680. printf("%02X ", rx_buf[i]);
  681. }
  682. printf("\n");
  683. if ( i == 1 ) {
  684. // no rx, skip check
  685. } else if ( i == 2 ) {
  686. //test rx length = tx length-1
  687. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length / 8 - 1 );
  688. } else {
  689. //normal check
  690. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length / 8 );
  691. }
  692. }
  693. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  694. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  695. }
  696. #if (TEST_SPI_PERIPH_NUM >= 2)
  697. //These will only be enabled on chips with 2 or more SPI peripherals
  698. static uint8_t bitswap(uint8_t in)
  699. {
  700. uint8_t out = 0;
  701. for (int i = 0; i < 8; i++) {
  702. out = out >> 1;
  703. if (in & 0x80) {
  704. out |= 0x80;
  705. }
  706. in = in << 1;
  707. }
  708. return out;
  709. }
  710. void test_cmd_addr(spi_slave_task_context_t *slave_context, bool lsb_first)
  711. {
  712. spi_device_handle_t spi;
  713. ESP_LOGI(MASTER_TAG, ">>>>>>>>> TEST %s FIRST <<<<<<<<<<<", lsb_first ? "LSB" : "MSB");
  714. //initial master, mode 0, 1MHz
  715. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  716. buscfg.quadhd_io_num = UNCONNECTED_PIN;
  717. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
  718. spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  719. devcfg.clock_speed_hz = 1 * 1000 * 1000;
  720. if (lsb_first) {
  721. devcfg.flags |= SPI_DEVICE_BIT_LSBFIRST;
  722. }
  723. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  724. //connecting pins to two peripherals breaks the output, fix it.
  725. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  726. spitest_gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  727. spitest_gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  728. spitest_gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  729. for (int i = 0; i < 8; i++) {
  730. //prepare slave tx data
  731. slave_txdata_t slave_txdata = (slave_txdata_t) {
  732. .start = spitest_slave_send + 4 * (i % 3),
  733. .len = 256,
  734. };
  735. xQueueSend(slave_context->data_to_send, &slave_txdata, portMAX_DELAY);
  736. vTaskDelay(50);
  737. //prepare master tx data
  738. int cmd_bits = (i + 1) * 2;
  739. int addr_bits =
  740. #ifdef CONFIG_IDF_TARGET_ESP32
  741. 56 - 8 * i;
  742. #elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
  743. //ESP32S2 only supportes up to 32 bits address
  744. 28 - 4 * i;
  745. #endif
  746. int round_up = (cmd_bits + addr_bits + 7) / 8 * 8;
  747. addr_bits = round_up - cmd_bits;
  748. spi_transaction_ext_t trans = (spi_transaction_ext_t) {
  749. .base = {
  750. .flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
  751. .addr = 0x456789abcdef0123,
  752. .cmd = 0x9876,
  753. },
  754. .command_bits = cmd_bits,
  755. .address_bits = addr_bits,
  756. };
  757. ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
  758. ESP_LOGI(MASTER_TAG, "cmd_bits: %d, addr_bits: %d", cmd_bits, addr_bits);
  759. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t *)&trans));
  760. //wait for both master and slave end
  761. size_t rcv_len;
  762. slave_rxdata_t *rcv_data = xRingbufferReceive(slave_context->data_received, &rcv_len, portMAX_DELAY);
  763. rcv_len -= 8;
  764. uint8_t *buffer = rcv_data->data;
  765. ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
  766. TEST_ASSERT_EQUAL(rcv_len, (rcv_data->len + 7) / 8);
  767. TEST_ASSERT_EQUAL(rcv_data->len, cmd_bits + addr_bits);
  768. ESP_LOG_BUFFER_HEX("slave rx", buffer, rcv_len);
  769. uint16_t cmd_expected = trans.base.cmd & (BIT(cmd_bits) - 1);
  770. uint64_t addr_expected = trans.base.addr & ((1ULL << addr_bits) - 1);
  771. uint8_t *data_ptr = buffer;
  772. uint16_t cmd_got = *(uint16_t *)data_ptr;
  773. data_ptr += cmd_bits / 8;
  774. cmd_got = __builtin_bswap16(cmd_got);
  775. cmd_got = cmd_got >> (16 - cmd_bits);
  776. int remain_bits = cmd_bits % 8;
  777. uint64_t addr_got = *(uint64_t *)data_ptr;
  778. data_ptr += 8;
  779. addr_got = __builtin_bswap64(addr_got);
  780. addr_got = (addr_got << remain_bits);
  781. addr_got |= (*data_ptr >> (8 - remain_bits));
  782. addr_got = addr_got >> (64 - addr_bits);
  783. if (lsb_first) {
  784. cmd_got = __builtin_bswap16(cmd_got);
  785. addr_got = __builtin_bswap64(addr_got);
  786. uint8_t *swap_ptr = (uint8_t *)&cmd_got;
  787. swap_ptr[0] = bitswap(swap_ptr[0]);
  788. swap_ptr[1] = bitswap(swap_ptr[1]);
  789. cmd_got = cmd_got >> (16 - cmd_bits);
  790. swap_ptr = (uint8_t *)&addr_got;
  791. for (int j = 0; j < 8; j++) {
  792. swap_ptr[j] = bitswap(swap_ptr[j]);
  793. }
  794. addr_got = addr_got >> (64 - addr_bits);
  795. }
  796. ESP_LOGI(SLAVE_TAG, "cmd_got: %04X, addr_got: %08X%08X", cmd_got, (uint32_t)(addr_got >> 32), (uint32_t)addr_got);
  797. TEST_ASSERT_EQUAL_HEX16(cmd_expected, cmd_got);
  798. if (addr_bits > 0) {
  799. TEST_ASSERT_EQUAL_HEX32(addr_expected, addr_got);
  800. TEST_ASSERT_EQUAL_HEX32(addr_expected >> 8, addr_got >> 8);
  801. }
  802. //clean
  803. vRingbufferReturnItem(slave_context->data_received, rcv_data);
  804. }
  805. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  806. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  807. }
  808. TEST_CASE("SPI master variable cmd & addr test", "[spi]")
  809. {
  810. spi_slave_task_context_t slave_context = {};
  811. esp_err_t err = init_slave_context( &slave_context );
  812. TEST_ASSERT( err == ESP_OK );
  813. TaskHandle_t handle_slave;
  814. xTaskCreate( spitest_slave_task, "spi_slave", 4096, &slave_context, 0, &handle_slave);
  815. //initial slave, mode 0, no dma
  816. int dma_chan = 0;
  817. int slave_mode = 0;
  818. spi_bus_config_t slv_buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  819. spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  820. slvcfg.mode = slave_mode;
  821. //Initialize SPI slave interface
  822. TEST_ESP_OK( spi_slave_initialize(TEST_SLAVE_HOST, &slv_buscfg, &slvcfg, dma_chan) );
  823. test_cmd_addr(&slave_context, false);
  824. test_cmd_addr(&slave_context, true);
  825. vTaskDelete( handle_slave );
  826. handle_slave = 0;
  827. deinit_slave_context(&slave_context);
  828. TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
  829. ESP_LOGI(MASTER_TAG, "test passed.");
  830. }
  831. void test_dummy(spi_device_handle_t spi, int dummy_n, uint8_t *data_to_send, int len)
  832. {
  833. ESP_LOGI(TAG, "testing dummy n=%d", dummy_n);
  834. WORD_ALIGNED_ATTR uint8_t slave_buffer[len + (dummy_n + 7) / 8];
  835. spi_slave_transaction_t slave_t = {
  836. .tx_buffer = slave_buffer,
  837. .rx_buffer = slave_buffer,
  838. .length = len * 8 + ((dummy_n + 7) & (~8)) + 32, //receive more bytes to avoid slave discarding data
  839. };
  840. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
  841. vTaskDelay(50);
  842. spi_transaction_ext_t t = {
  843. .base = {
  844. .tx_buffer = data_to_send,
  845. .length = (len + 1) * 8, //send one more byte force slave receive all data
  846. .flags = SPI_TRANS_VARIABLE_DUMMY,
  847. },
  848. .dummy_bits = dummy_n,
  849. };
  850. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t *)&t));
  851. spi_slave_transaction_t *ret_slave;
  852. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
  853. TEST_ASSERT(ret_slave == &slave_t);
  854. ESP_LOG_BUFFER_HEXDUMP("rcv", slave_buffer, len + 4, ESP_LOG_INFO);
  855. int skip_cnt = dummy_n / 8;
  856. int dummy_remain = dummy_n % 8;
  857. uint8_t *slave_ptr = slave_buffer;
  858. if (dummy_remain > 0) {
  859. for (int i = 0; i < len; i++) {
  860. slave_ptr[0] = (slave_ptr[skip_cnt] << dummy_remain) | (slave_ptr[skip_cnt + 1] >> (8 - dummy_remain));
  861. slave_ptr++;
  862. }
  863. } else {
  864. for (int i = 0; i < len; i++) {
  865. slave_ptr[0] = slave_ptr[skip_cnt];
  866. slave_ptr++;
  867. }
  868. }
  869. TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_send, slave_buffer, len);
  870. }
  871. TEST_CASE("SPI master variable dummy test", "[spi]")
  872. {
  873. spi_device_handle_t spi;
  874. spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  875. spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  876. dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
  877. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, 0));
  878. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
  879. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  880. TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &bus_cfg, &slave_cfg, 0));
  881. spitest_gpio_output_sel(bus_cfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  882. spitest_gpio_output_sel(bus_cfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  883. spitest_gpio_output_sel(dev_cfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  884. spitest_gpio_output_sel(bus_cfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  885. uint8_t data_to_send[] = {0x12, 0x34, 0x56, 0x78};
  886. test_dummy(spi, 0, data_to_send, sizeof(data_to_send));
  887. test_dummy(spi, 1, data_to_send, sizeof(data_to_send));
  888. test_dummy(spi, 2, data_to_send, sizeof(data_to_send));
  889. test_dummy(spi, 3, data_to_send, sizeof(data_to_send));
  890. test_dummy(spi, 4, data_to_send, sizeof(data_to_send));
  891. test_dummy(spi, 8, data_to_send, sizeof(data_to_send));
  892. test_dummy(spi, 12, data_to_send, sizeof(data_to_send));
  893. test_dummy(spi, 16, data_to_send, sizeof(data_to_send));
  894. spi_slave_free(TEST_SLAVE_HOST);
  895. master_free_device_bus(spi);
  896. }
  897. /**
  898. * This test is to check when the first transaction of the HD master is to send data without receiving data via DMA,
  899. * then if the master could receive data correctly.
  900. *
  901. * Because an old version ESP32 silicon issue, there is a workaround to enable and start the RX DMA in FD/HD mode in
  902. * this condition (TX without RX). And if RX DMA is enabled and started in HD mode, because there is no correctly
  903. * linked RX DMA descriptor, there will be an inlink_dscr_error interrupt emerging, which will influence the following
  904. * RX transactions.
  905. *
  906. * This bug is fixed by triggering this workaround only in FD mode.
  907. *
  908. */
  909. TEST_CASE("SPI master hd dma TX without RX test", "[spi]")
  910. {
  911. spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  912. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, SPI_DMA_CH_AUTO));
  913. spi_device_handle_t spi;
  914. spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  915. dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
  916. dev_cfg.clock_speed_hz = 1 * 1000 * 1000;
  917. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
  918. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  919. TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &bus_cfg, &slave_cfg, SPI_DMA_CH_AUTO));
  920. same_pin_func_sel(bus_cfg, dev_cfg, 0);
  921. uint32_t buf_size = 32;
  922. uint8_t *mst_send_buf = heap_caps_malloc(buf_size, MALLOC_CAP_DMA);
  923. uint8_t *mst_recv_buf = heap_caps_calloc(buf_size, 1, MALLOC_CAP_DMA);
  924. uint8_t *slv_send_buf = heap_caps_malloc(buf_size, MALLOC_CAP_DMA);
  925. uint8_t *slv_recv_buf = heap_caps_calloc(buf_size, 1, MALLOC_CAP_DMA);
  926. srand(199);
  927. for (int i = 0; i < buf_size; i++) {
  928. mst_send_buf[i] = rand();
  929. }
  930. //1. Master sends without receiving, no rx_buffer is set
  931. spi_slave_transaction_t slave_trans = {
  932. .rx_buffer = slv_recv_buf,
  933. .length = buf_size * 8,
  934. };
  935. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_trans, portMAX_DELAY));
  936. spi_transaction_t master_trans = {
  937. .tx_buffer = mst_send_buf,
  938. .length = buf_size * 8,
  939. };
  940. TEST_ESP_OK(spi_device_transmit(spi, &master_trans));
  941. spi_slave_transaction_t *ret_slave;
  942. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
  943. spitest_cmp_or_dump(mst_send_buf, slv_recv_buf, buf_size);
  944. //2. Master receives data
  945. for (int i = 100; i < 110; i++) {
  946. srand(i);
  947. for (int j = 0; j < buf_size; j++) {
  948. slv_send_buf[j] = rand();
  949. }
  950. slave_trans = (spi_slave_transaction_t) {};
  951. slave_trans.tx_buffer = slv_send_buf;
  952. slave_trans.length = buf_size * 8;
  953. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_trans, portMAX_DELAY));
  954. vTaskDelay(50);
  955. master_trans = (spi_transaction_t) {};
  956. master_trans.rx_buffer = mst_recv_buf;
  957. master_trans.rxlength = buf_size * 8;
  958. TEST_ESP_OK(spi_device_transmit(spi, &master_trans));
  959. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
  960. spitest_cmp_or_dump(slv_send_buf, mst_recv_buf, buf_size);
  961. }
  962. free(mst_send_buf);
  963. free(mst_recv_buf);
  964. free(slv_send_buf);
  965. free(slv_recv_buf);
  966. spi_slave_free(TEST_SLAVE_HOST);
  967. master_free_device_bus(spi);
  968. }
  969. #endif //#if (TEST_SPI_PERIPH_NUM >= 2)
  970. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)
  971. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32) //TODO: IDF-3494
  972. #define FD_TEST_BUF_SIZE 32
  973. #define TEST_NUM 4
  974. #define FD_SEED1 199
  975. #define FD_SEED2 29
  976. #define FD_SEED3 48
  977. #define FD_SEED4 327
  978. static void master_only_tx_trans(spi_device_handle_t spi, uint8_t *mst_send_buf, uint32_t length)
  979. {
  980. ESP_LOGI(MASTER_TAG, "FD DMA, Only TX:");
  981. spi_transaction_t trans = {0};
  982. trans.tx_buffer = mst_send_buf;
  983. trans.length = length * 8;
  984. unity_wait_for_signal("Slave ready");
  985. TEST_ESP_OK(spi_device_transmit(spi, &trans));
  986. ESP_LOG_BUFFER_HEX("MASTER TX:", mst_send_buf, length);
  987. }
  988. static void master_only_rx_trans(spi_device_handle_t spi, uint8_t *mst_recv_buf, uint8_t *slv_send_buf, uint32_t length)
  989. {
  990. ESP_LOGI(MASTER_TAG, "FD DMA, Only RX:");
  991. spi_transaction_t trans = {0};
  992. trans.tx_buffer = NULL;
  993. trans.rx_buffer = mst_recv_buf;
  994. trans.length = length * 8;
  995. unity_wait_for_signal("Slave ready");
  996. TEST_ESP_OK(spi_device_transmit(spi, &trans));
  997. ESP_LOG_BUFFER_HEX("MASTER RX:", mst_recv_buf, length);
  998. TEST_ASSERT_EQUAL_HEX8_ARRAY(slv_send_buf, mst_recv_buf, length);
  999. }
  1000. static void master_both_trans(spi_device_handle_t spi, uint8_t *mst_send_buf, uint8_t *mst_recv_buf, uint8_t *slv_send_buf, uint32_t length)
  1001. {
  1002. ESP_LOGI(MASTER_TAG, "FD DMA, Both TX and RX:");
  1003. spi_transaction_t trans = {0};
  1004. trans.tx_buffer = mst_send_buf;
  1005. trans.rx_buffer = mst_recv_buf;
  1006. trans.length = length * 8;
  1007. unity_wait_for_signal("Slave ready");
  1008. TEST_ESP_OK(spi_device_transmit(spi, &trans));
  1009. ESP_LOG_BUFFER_HEX("MASTER TX:", mst_send_buf, length);
  1010. ESP_LOG_BUFFER_HEX("MASTER RX:", mst_recv_buf, length);
  1011. TEST_ASSERT_EQUAL_HEX8_ARRAY(slv_send_buf, mst_recv_buf, length);
  1012. }
  1013. static void fd_master(void)
  1014. {
  1015. spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  1016. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, SPI_DMA_CH_AUTO));
  1017. spi_device_handle_t spi;
  1018. spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  1019. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
  1020. unity_send_signal("Master ready");
  1021. uint8_t *mst_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
  1022. uint8_t *mst_recv_buf = heap_caps_calloc(FD_TEST_BUF_SIZE, 1, MALLOC_CAP_DMA);
  1023. uint8_t *slv_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
  1024. //Master FD DMA, RX without TX Test
  1025. for (int i = 0; i < TEST_NUM; i++) {
  1026. // 1. Master FD DMA, only receive, with NULL tx_buffer
  1027. get_tx_buffer(FD_SEED1+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1028. memset(mst_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1029. master_only_rx_trans(spi, mst_recv_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1030. //2. Master FD DMA with TX and RX
  1031. get_tx_buffer(FD_SEED2+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1032. memset(mst_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1033. master_both_trans(spi, mst_send_buf, mst_recv_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1034. }
  1035. //Master FD DMA, TX without RX Test
  1036. for (int i = 0; i < TEST_NUM; i++) {
  1037. // 1. Master FD DMA, only send, with NULL rx_buffer
  1038. get_tx_buffer(FD_SEED3+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1039. master_only_tx_trans(spi, mst_send_buf, FD_TEST_BUF_SIZE);
  1040. //2. Master FD DMA with TX and RX
  1041. get_tx_buffer(FD_SEED4+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1042. memset(mst_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1043. master_both_trans(spi, mst_send_buf, mst_recv_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1044. }
  1045. free(mst_send_buf);
  1046. free(mst_recv_buf);
  1047. free(slv_send_buf);
  1048. master_free_device_bus(spi);
  1049. }
  1050. static void slave_only_tx_trans(uint8_t *slv_send_buf, uint32_t length)
  1051. {
  1052. ESP_LOGI(SLAVE_TAG, "FD DMA, Only TX");
  1053. spi_slave_transaction_t trans = {0};
  1054. trans.tx_buffer = slv_send_buf;
  1055. trans.length = length * 8;
  1056. unity_send_signal("Slave ready");
  1057. TEST_ESP_OK(spi_slave_transmit(SPI2_HOST, &trans, portMAX_DELAY));
  1058. ESP_LOG_BUFFER_HEX("SLAVE TX:", slv_send_buf, length);
  1059. }
  1060. static void slave_only_rx_trans(uint8_t *slv_recv_buf, uint8_t *mst_send_buf, uint32_t length)
  1061. {
  1062. ESP_LOGI(SLAVE_TAG, "FD DMA, Only RX");
  1063. spi_slave_transaction_t trans = {};
  1064. trans.tx_buffer = NULL;
  1065. trans.rx_buffer = slv_recv_buf;
  1066. trans.length = length * 8;
  1067. unity_send_signal("Slave ready");
  1068. TEST_ESP_OK(spi_slave_transmit(SPI2_HOST, &trans, portMAX_DELAY));
  1069. ESP_LOG_BUFFER_HEX("SLAVE RX:", slv_recv_buf, length);
  1070. TEST_ASSERT_EQUAL(length * 8, trans.trans_len);
  1071. TEST_ASSERT_EQUAL_HEX8_ARRAY(mst_send_buf, slv_recv_buf, length);
  1072. }
  1073. static void slave_both_trans(uint8_t *slv_send_buf, uint8_t *slv_recv_buf, uint8_t *mst_send_buf, uint32_t length)
  1074. {
  1075. ESP_LOGI(SLAVE_TAG, "FD DMA, Both TX and RX:");
  1076. spi_slave_transaction_t trans = {0};
  1077. trans.tx_buffer = slv_send_buf;
  1078. trans.rx_buffer = slv_recv_buf;
  1079. trans.length = length * 8;
  1080. unity_send_signal("Slave ready");
  1081. TEST_ESP_OK(spi_slave_transmit(SPI2_HOST, &trans, portMAX_DELAY));
  1082. ESP_LOG_BUFFER_HEX("SLAVE TX:", slv_send_buf, length);
  1083. ESP_LOG_BUFFER_HEX("SLAVE RX:", slv_recv_buf, length);
  1084. TEST_ASSERT_EQUAL_HEX8_ARRAY(mst_send_buf, slv_recv_buf, length);
  1085. }
  1086. static void fd_slave(void)
  1087. {
  1088. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  1089. spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  1090. TEST_ESP_OK(spi_slave_initialize(SPI2_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
  1091. unity_wait_for_signal("Master ready");
  1092. uint8_t *slv_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
  1093. uint8_t *slv_recv_buf = heap_caps_calloc(FD_TEST_BUF_SIZE, 1, MALLOC_CAP_DMA);
  1094. uint8_t *mst_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
  1095. for (int i = 0; i < TEST_NUM; i++) {
  1096. //1. Slave TX without RX (rx_buffer == NULL)
  1097. get_tx_buffer(FD_SEED1+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1098. slave_only_tx_trans(slv_send_buf, FD_TEST_BUF_SIZE);
  1099. //2. Slave both TX and RX
  1100. get_tx_buffer(FD_SEED2+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1101. memset(slv_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1102. slave_both_trans(slv_send_buf, slv_recv_buf, mst_send_buf, FD_TEST_BUF_SIZE);
  1103. }
  1104. for (int i = 0; i < TEST_NUM; i++) {
  1105. // 1. Slave RX without TX (tx_buffer == NULL)
  1106. get_tx_buffer(FD_SEED3+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1107. memset(slv_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1108. slave_only_rx_trans(slv_recv_buf, mst_send_buf, FD_TEST_BUF_SIZE);
  1109. //2. Slave both TX and RX
  1110. get_tx_buffer(FD_SEED4+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1111. memset(slv_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1112. slave_both_trans(slv_send_buf, slv_recv_buf, mst_send_buf, FD_TEST_BUF_SIZE);
  1113. }
  1114. free(slv_send_buf);
  1115. free(slv_recv_buf);
  1116. free(mst_send_buf);
  1117. TEST_ASSERT(spi_slave_free(SPI2_HOST) == ESP_OK);
  1118. }
  1119. TEST_CASE_MULTIPLE_DEVICES("SPI Master: FD, DMA, Master Single Direction Test", "[spi_ms][test_env=Example_SPI_Multi_device]", fd_master, fd_slave);
  1120. #endif //#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32) //TODO: IDF-3494
  1121. #endif //#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2) //TODO: IDF-3494
  1122. //NOTE: Explained in IDF-1445 | MR !14996
  1123. #if !(CONFIG_SPIRAM) || (CONFIG_SPIRAM_MALLOC_ALWAYSINTERNAL >= 16384)
  1124. /********************************************************************************
  1125. * Test SPI transaction interval
  1126. ********************************************************************************/
  1127. //Disabled since the check in portENTER_CRITICAL in esp_intr_enable/disable increase the delay
  1128. #ifndef CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
  1129. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)
  1130. //IDF-5146
  1131. #define RECORD_TIME_PREPARE() uint32_t __t1, __t2
  1132. #define RECORD_TIME_START() do {__t1 = esp_cpu_get_cycle_count();}while(0)
  1133. #define RECORD_TIME_END(p_time) do{__t2 = esp_cpu_get_cycle_count(); *p_time = (__t2-__t1);}while(0)
  1134. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ)
  1135. static void speed_setup(spi_device_handle_t *spi, bool use_dma)
  1136. {
  1137. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  1138. spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  1139. devcfg.queue_size = 8; //We want to be able to queue 7 transactions at a time
  1140. //Initialize the SPI bus and the device to test
  1141. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, (use_dma ? SPI_DMA_CH_AUTO : 0)));
  1142. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi));
  1143. }
  1144. static void sorted_array_insert(uint32_t *array, int *size, uint32_t item)
  1145. {
  1146. int pos;
  1147. for (pos = *size; pos > 0; pos--) {
  1148. if (array[pos - 1] < item) {
  1149. break;
  1150. }
  1151. array[pos] = array[pos - 1];
  1152. }
  1153. array[pos] = item;
  1154. (*size)++;
  1155. }
  1156. #define TEST_TIMES 11
  1157. static IRAM_ATTR NOINLINE_ATTR void spi_transmit_measure(spi_device_handle_t spi, spi_transaction_t *trans, uint32_t *t_flight)
  1158. {
  1159. RECORD_TIME_PREPARE();
  1160. spi_device_transmit(spi, trans); // prime the flash cache
  1161. RECORD_TIME_START();
  1162. spi_device_transmit(spi, trans);
  1163. RECORD_TIME_END(t_flight);
  1164. }
  1165. static IRAM_ATTR NOINLINE_ATTR void spi_transmit_polling_measure(spi_device_handle_t spi, spi_transaction_t *trans, uint32_t *t_flight)
  1166. {
  1167. spi_flash_disable_interrupts_caches_and_other_cpu(); //this can test the code are all in the IRAM at the same time
  1168. RECORD_TIME_PREPARE();
  1169. spi_device_polling_transmit(spi, trans); // prime the flash cache
  1170. RECORD_TIME_START();
  1171. spi_device_polling_transmit(spi, trans);
  1172. RECORD_TIME_END(t_flight);
  1173. spi_flash_enable_interrupts_caches_and_other_cpu();
  1174. }
  1175. TEST_CASE("spi_speed", "[spi]")
  1176. {
  1177. uint32_t t_flight;
  1178. //to get rid of the influence of randomly interrupts, we measured the performance by median value
  1179. uint32_t t_flight_sorted[TEST_TIMES];
  1180. esp_err_t ret;
  1181. int t_flight_num = 0;
  1182. spi_device_handle_t spi;
  1183. const bool use_dma = true;
  1184. WORD_ALIGNED_ATTR spi_transaction_t trans = {
  1185. .length = 1 * 8,
  1186. .flags = SPI_TRANS_USE_TXDATA,
  1187. };
  1188. //first work with DMA
  1189. speed_setup(&spi, use_dma);
  1190. //record flight time by isr, with DMA
  1191. t_flight_num = 0;
  1192. for (int i = 0; i < TEST_TIMES; i++) {
  1193. spi_transmit_measure(spi, &trans, &t_flight);
  1194. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1195. }
  1196. for (int i = 0; i < TEST_TIMES; i++) {
  1197. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  1198. }
  1199. #ifndef CONFIG_SPIRAM
  1200. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
  1201. #endif
  1202. //acquire the bus to send polling transactions faster
  1203. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  1204. TEST_ESP_OK(ret);
  1205. //record flight time by polling and with DMA
  1206. t_flight_num = 0;
  1207. for (int i = 0; i < TEST_TIMES; i++) {
  1208. spi_transmit_polling_measure(spi, &trans, &t_flight);
  1209. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1210. }
  1211. for (int i = 0; i < TEST_TIMES; i++) {
  1212. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  1213. }
  1214. #ifndef CONFIG_SPIRAM
  1215. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
  1216. #endif
  1217. //release the bus
  1218. spi_device_release_bus(spi);
  1219. master_free_device_bus(spi);
  1220. speed_setup(&spi, !use_dma);
  1221. //record flight time by isr, without DMA
  1222. t_flight_num = 0;
  1223. for (int i = 0; i < TEST_TIMES; i++) {
  1224. spi_transmit_measure(spi, &trans, &t_flight);
  1225. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1226. }
  1227. for (int i = 0; i < TEST_TIMES; i++) {
  1228. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  1229. }
  1230. #ifndef CONFIG_SPIRAM
  1231. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
  1232. #endif
  1233. //acquire the bus to send polling transactions faster
  1234. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  1235. TEST_ESP_OK(ret);
  1236. //record flight time by polling, without DMA
  1237. t_flight_num = 0;
  1238. for (int i = 0; i < TEST_TIMES; i++) {
  1239. spi_transmit_polling_measure(spi, &trans, &t_flight);
  1240. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1241. }
  1242. for (int i = 0; i < TEST_TIMES; i++) {
  1243. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  1244. }
  1245. #ifndef CONFIG_SPIRAM
  1246. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING_NO_DMA, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
  1247. #endif
  1248. //release the bus
  1249. spi_device_release_bus(spi);
  1250. master_free_device_bus(spi);
  1251. }
  1252. #endif //!TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)
  1253. #endif // CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
  1254. #endif // !(CONFIG_SPIRAM) || (CONFIG_SPIRAM_MALLOC_ALWAYSINTERNAL >= 16384)