test_spi_slave.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
  1. /*
  2. * SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /*
  7. Tests for the spi_slave device driver
  8. */
  9. #include <string.h>
  10. #include "sdkconfig.h"
  11. #include "unity.h"
  12. #include "test/test_common_spi.h"
  13. #include "driver/spi_master.h"
  14. #include "driver/spi_slave.h"
  15. #include "driver/gpio.h"
  16. #include "esp_log.h"
  17. #include "esp_rom_gpio.h"
  18. #if (TEST_SPI_PERIPH_NUM >= 2)
  19. //These will only be enabled on chips with 2 or more SPI peripherals
  20. #ifndef CONFIG_SPIRAM
  21. //This test should be removed once the timing test is merged.
  22. static spi_device_handle_t spi;
  23. static WORD_ALIGNED_ATTR uint8_t master_txbuf[320];
  24. static WORD_ALIGNED_ATTR uint8_t master_rxbuf[320];
  25. static WORD_ALIGNED_ATTR uint8_t slave_txbuf[320];
  26. static WORD_ALIGNED_ATTR uint8_t slave_rxbuf[320];
  27. static const uint8_t master_send[] = { 0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43 };
  28. static const uint8_t slave_send[] = { 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0 };
  29. static inline void int_connect( uint32_t gpio, uint32_t sigo, uint32_t sigi )
  30. {
  31. esp_rom_gpio_connect_out_signal( gpio, sigo, false, false );
  32. esp_rom_gpio_connect_in_signal( gpio, sigi, false );
  33. }
  34. static void master_init( spi_device_handle_t* spi)
  35. {
  36. esp_err_t ret;
  37. spi_bus_config_t buscfg={
  38. .miso_io_num=PIN_NUM_MISO,
  39. .mosi_io_num=PIN_NUM_MOSI,
  40. .sclk_io_num=PIN_NUM_CLK,
  41. .quadwp_io_num=UNCONNECTED_PIN,
  42. .quadhd_io_num=-1
  43. };
  44. spi_device_interface_config_t devcfg={
  45. .clock_speed_hz=4*1000*1000, //currently only up to 4MHz for internel connect
  46. .mode=0, //SPI mode 0
  47. .spics_io_num=PIN_NUM_CS, //CS pin
  48. .queue_size=7, //We want to be able to queue 7 transactions at a time
  49. .pre_cb=NULL,
  50. .cs_ena_posttrans=5,
  51. .cs_ena_pretrans=1,
  52. };
  53. //Initialize the SPI bus
  54. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO);
  55. TEST_ASSERT(ret==ESP_OK);
  56. //Attach the LCD to the SPI bus
  57. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi);
  58. TEST_ASSERT(ret==ESP_OK);
  59. }
  60. static void slave_init(void)
  61. {
  62. //Configuration for the SPI bus
  63. spi_bus_config_t buscfg={
  64. .mosi_io_num=PIN_NUM_MOSI,
  65. .miso_io_num=PIN_NUM_MISO,
  66. .sclk_io_num=PIN_NUM_CLK
  67. };
  68. //Configuration for the SPI slave interface
  69. spi_slave_interface_config_t slvcfg={
  70. .mode=0,
  71. .spics_io_num=PIN_NUM_CS,
  72. .queue_size=3,
  73. .flags=0,
  74. };
  75. //Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected.
  76. gpio_set_pull_mode(PIN_NUM_MOSI, GPIO_PULLUP_ONLY);
  77. gpio_set_pull_mode(PIN_NUM_CLK, GPIO_PULLUP_ONLY);
  78. gpio_set_pull_mode(PIN_NUM_CS, GPIO_PULLUP_ONLY);
  79. //Initialize SPI slave interface
  80. TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
  81. }
  82. static void custom_setup(void) {
  83. //Initialize buffers
  84. memset(master_txbuf, 0, sizeof(master_txbuf));
  85. memset(master_rxbuf, 0, sizeof(master_rxbuf));
  86. memset(slave_txbuf, 0, sizeof(slave_txbuf));
  87. memset(slave_rxbuf, 0, sizeof(slave_rxbuf));
  88. //Initialize SPI Master
  89. master_init( &spi );
  90. //Initialize SPI Slave
  91. slave_init();
  92. //Do internal connections
  93. int_connect( PIN_NUM_MOSI, spi_periph_signal[TEST_SPI_HOST].spid_out, spi_periph_signal[TEST_SLAVE_HOST].spiq_in );
  94. int_connect( PIN_NUM_MISO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out, spi_periph_signal[TEST_SPI_HOST].spid_in );
  95. int_connect( PIN_NUM_CS, spi_periph_signal[TEST_SPI_HOST].spics_out[0], spi_periph_signal[TEST_SLAVE_HOST].spics_in );
  96. int_connect( PIN_NUM_CLK, spi_periph_signal[TEST_SPI_HOST].spiclk_out, spi_periph_signal[TEST_SLAVE_HOST].spiclk_in );
  97. }
  98. static void custom_teardown(void) {
  99. TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
  100. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  101. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  102. }
  103. TEST_CASE("test fullduplex slave with only RX direction","[spi]")
  104. {
  105. custom_setup();
  106. memcpy(master_txbuf, master_send, sizeof(master_send));
  107. for ( int i = 0; i < 4; i ++ ) {
  108. //slave send
  109. spi_slave_transaction_t slave_t;
  110. spi_slave_transaction_t* out;
  111. memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
  112. slave_t.length=8*32;
  113. slave_t.tx_buffer=NULL;
  114. slave_t.rx_buffer=slave_rxbuf;
  115. // Colorize RX buffer with known pattern
  116. memset( slave_rxbuf, 0x66, sizeof(slave_rxbuf));
  117. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
  118. //send
  119. spi_transaction_t t = {};
  120. t.length = 32*(i+1);
  121. if ( t.length != 0 ) {
  122. t.tx_buffer = master_txbuf;
  123. t.rx_buffer = NULL;
  124. }
  125. spi_device_transmit( spi, (spi_transaction_t*)&t );
  126. //wait for end
  127. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
  128. //show result
  129. ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
  130. ESP_LOG_BUFFER_HEX( "master tx", t.tx_buffer, t.length/8 );
  131. ESP_LOG_BUFFER_HEX( "slave rx", slave_t.rx_buffer, (slave_t.trans_len+7)/8);
  132. TEST_ASSERT_EQUAL_HEX8_ARRAY( t.tx_buffer, slave_t.rx_buffer, t.length/8 );
  133. TEST_ASSERT_EQUAL( t.length, slave_t.trans_len );
  134. }
  135. custom_teardown();
  136. ESP_LOGI(SLAVE_TAG, "test passed.");
  137. }
  138. TEST_CASE("test fullduplex slave with only TX direction","[spi]")
  139. {
  140. custom_setup();
  141. memcpy(slave_txbuf, slave_send, sizeof(slave_send));
  142. for ( int i = 0; i < 4; i ++ ) {
  143. //slave send
  144. spi_slave_transaction_t slave_t;
  145. spi_slave_transaction_t* out;
  146. memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
  147. slave_t.length=8*32;
  148. slave_t.tx_buffer=slave_txbuf;
  149. slave_t.rx_buffer=NULL;
  150. // Colorize RX buffer with known pattern
  151. memset( master_rxbuf, 0x66, sizeof(master_rxbuf));
  152. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
  153. //send
  154. spi_transaction_t t = {};
  155. t.length = 32*(i+1);
  156. if ( t.length != 0 ) {
  157. t.tx_buffer = NULL;
  158. t.rx_buffer = master_rxbuf;
  159. }
  160. spi_device_transmit( spi, (spi_transaction_t*)&t );
  161. //wait for end
  162. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
  163. //show result
  164. ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
  165. ESP_LOG_BUFFER_HEX( "master rx", t.rx_buffer, t.length/8 );
  166. ESP_LOG_BUFFER_HEX( "slave tx", slave_t.tx_buffer, (slave_t.trans_len+7)/8);
  167. TEST_ASSERT_EQUAL_HEX8_ARRAY( slave_t.tx_buffer, t.rx_buffer, t.length/8 );
  168. TEST_ASSERT_EQUAL( t.length, slave_t.trans_len );
  169. }
  170. custom_teardown();
  171. ESP_LOGI(SLAVE_TAG, "test passed.");
  172. }
  173. TEST_CASE("test slave send unaligned","[spi]")
  174. {
  175. custom_setup();
  176. memcpy(master_txbuf, master_send, sizeof(master_send));
  177. memcpy(slave_txbuf, slave_send, sizeof(slave_send));
  178. for ( int i = 0; i < 4; i ++ ) {
  179. //slave send
  180. spi_slave_transaction_t slave_t;
  181. spi_slave_transaction_t* out;
  182. memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
  183. slave_t.length=8*32;
  184. slave_t.tx_buffer=slave_txbuf+i;
  185. slave_t.rx_buffer=slave_rxbuf;
  186. // Colorize RX buffers with known pattern
  187. memset( master_rxbuf, 0x66, sizeof(master_rxbuf));
  188. memset( slave_rxbuf, 0x66, sizeof(slave_rxbuf));
  189. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
  190. //send
  191. spi_transaction_t t = {};
  192. t.length = 32*(i+1);
  193. if ( t.length != 0 ) {
  194. t.tx_buffer = master_txbuf+i;
  195. t.rx_buffer = master_rxbuf+i;
  196. }
  197. spi_device_transmit( spi, (spi_transaction_t*)&t );
  198. //wait for end
  199. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
  200. //show result
  201. ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
  202. ESP_LOG_BUFFER_HEX( "master tx", t.tx_buffer, t.length/8 );
  203. ESP_LOG_BUFFER_HEX( "master rx", t.rx_buffer, t.length/8 );
  204. ESP_LOG_BUFFER_HEX( "slave tx", slave_t.tx_buffer, (slave_t.trans_len+7)/8);
  205. ESP_LOG_BUFFER_HEX( "slave rx", slave_t.rx_buffer, (slave_t.trans_len+7)/8);
  206. TEST_ASSERT_EQUAL_HEX8_ARRAY( t.tx_buffer, slave_t.rx_buffer, t.length/8 );
  207. TEST_ASSERT_EQUAL_HEX8_ARRAY( slave_t.tx_buffer, t.rx_buffer, t.length/8 );
  208. TEST_ASSERT_EQUAL( t.length, slave_t.trans_len );
  209. }
  210. custom_teardown();
  211. ESP_LOGI(SLAVE_TAG, "test passed.");
  212. }
  213. #endif // !CONFIG_SPIRAM
  214. #endif // #if (TEST_SPI_PERIPH_NUM >= 2)
  215. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)
  216. #if (TEST_SPI_PERIPH_NUM == 1)
  217. //These tests are for chips which only have 1 SPI controller
  218. /********************************************************************************
  219. * Test By Master & Slave (2 boards)
  220. *
  221. * Master (C3, C2, H2) && Slave (C3, C2, H2):
  222. * PIN | Master | Slave |
  223. * ----| --------- | --------- |
  224. * CS | 10 | 10 |
  225. * CLK | 6 | 6 |
  226. * MOSI| 7 | 7 |
  227. * MISO| 2 | 2 |
  228. * GND | GND | GND |
  229. *
  230. ********************************************************************************/
  231. #define BUF_SIZE 320
  232. static void unaligned_test_master(void)
  233. {
  234. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  235. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 0));
  236. spi_device_handle_t spi;
  237. spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  238. devcfg.clock_speed_hz = 4 * 1000 * 1000;
  239. devcfg.queue_size = 7;
  240. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  241. unity_send_signal("Master ready");
  242. uint8_t *master_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
  243. uint8_t *master_recv_buf = heap_caps_calloc(BUF_SIZE, 1, MALLOC_CAP_DMA);
  244. //This buffer is used for 2-board test and should be assigned totally the same as the ``test_slave_loop`` does.
  245. uint8_t *slave_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
  246. srand(199);
  247. for (int i = 0; i < BUF_SIZE; i++) {
  248. master_send_buf[i] = rand();
  249. }
  250. srand(299);
  251. for (int i = 0; i < BUF_SIZE; i++) {
  252. slave_send_buf[i] = rand();
  253. }
  254. for (int i = 0; i < 4; i++) {
  255. uint32_t length_in_bytes = 4 * (i + 1);
  256. spi_transaction_t t = {
  257. .tx_buffer = master_send_buf + i,
  258. .rx_buffer = master_recv_buf,
  259. .length = length_in_bytes * 8,
  260. };
  261. vTaskDelay(50);
  262. unity_wait_for_signal("Slave ready");
  263. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&t));
  264. //show result
  265. ESP_LOG_BUFFER_HEX("master tx:", master_send_buf+i, length_in_bytes);
  266. ESP_LOG_BUFFER_HEX("master rx:", master_recv_buf, length_in_bytes);
  267. TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_send_buf+i, master_recv_buf, length_in_bytes);
  268. //clean
  269. memset(master_recv_buf, 0x00, BUF_SIZE);
  270. }
  271. free(master_send_buf);
  272. free(master_recv_buf);
  273. free(slave_send_buf);
  274. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  275. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  276. }
  277. static void unaligned_test_slave(void)
  278. {
  279. unity_wait_for_signal("Master ready");
  280. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  281. spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  282. TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
  283. uint8_t *slave_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
  284. uint8_t *slave_recv_buf = heap_caps_calloc(BUF_SIZE, 1, MALLOC_CAP_DMA);
  285. //This buffer is used for 2-board test and should be assigned totally the same as the ``test_slave_loop`` does.
  286. uint8_t *master_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
  287. srand(199);
  288. for (int i = 0; i < BUF_SIZE; i++) {
  289. master_send_buf[i] = rand();
  290. }
  291. srand(299);
  292. for (int i = 0; i < BUF_SIZE; i++) {
  293. slave_send_buf[i] = rand();
  294. }
  295. for (int i = 0; i < 4; i++) {
  296. uint32_t mst_length_in_bytes = 4 * (i + 1);
  297. spi_slave_transaction_t slave_t = {
  298. .tx_buffer = slave_send_buf + i,
  299. .rx_buffer = slave_recv_buf,
  300. .length = 32 * 8,
  301. };
  302. unity_send_signal("Slave ready");
  303. TEST_ESP_OK(spi_slave_transmit(TEST_SPI_HOST, &slave_t, portMAX_DELAY));
  304. //show result
  305. ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
  306. ESP_LOG_BUFFER_HEX("slave tx:", slave_send_buf + i, mst_length_in_bytes);
  307. ESP_LOG_BUFFER_HEX("slave rx:", slave_recv_buf, mst_length_in_bytes);
  308. TEST_ASSERT_EQUAL(mst_length_in_bytes * 8, slave_t.trans_len);
  309. TEST_ASSERT_EQUAL_HEX8_ARRAY(master_send_buf + i, slave_recv_buf, mst_length_in_bytes);
  310. //clean
  311. memset(slave_recv_buf, 0x00, BUF_SIZE);
  312. }
  313. free(slave_send_buf);
  314. free(slave_recv_buf);
  315. free(master_send_buf);
  316. TEST_ASSERT(spi_slave_free(TEST_SPI_HOST) == ESP_OK);
  317. }
  318. TEST_CASE_MULTIPLE_DEVICES("SPI_Slave_Unaligned_Test", "[spi_ms][test_env=Example_SPI_Multi_device][timeout=120]", unaligned_test_master, unaligned_test_slave);
  319. #endif //#if (TEST_SPI_PERIPH_NUM == 1)
  320. #endif //!TEMPORARY_DISABLED_FOR_TARGETS(...)