| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931 |
- /*
- * SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- /**
- * @file DWARF Exception Frames parser
- *
- * This file performs parsing and execution of DWARF except frames described in
- * section `.eh_frame` and `.eh_frame_hdr`. This is currently used on RISC-V
- * boards to implement a complete backtracing when a panic occurs.
- *
- * More information about the sections structure and DWARF instructions can be
- * found in the official documentation:
- * http://dwarfstd.org/Download.php
- */
- #include "esp_private/eh_frame_parser.h"
- #include "esp_private/panic_internal.h"
- #include <string.h>
- #if CONFIG_ESP_SYSTEM_USE_EH_FRAME
- #include "eh_frame_parser_impl.h"
- /**
- * @brief Dimension of an array (number of elements)
- */
- #ifndef DIM
- #define DIM(array) (sizeof(array)/sizeof(*array))
- #endif
- /**
- * @brief DWARF Exception Header Encoding
- * This is used to know how the data in .eh_frame and .eh_frame_hdr sections
- * are encoded.
- */
- /* DWARF Exception Exception Header value format. */
- #define DW_EH_PE_omit 0xff /*!< No value is present */
- #define DW_EH_PE_uleb128 0x01 /*!< Unsigned value encoded in LEB128 (Little Endian Base 128). */
- #define DW_EH_PE_udata2 0x02 /*!< Unsigned 16-bit value. */
- #define DW_EH_PE_udata4 0x03 /*!< Unsigned 32-bit value. */
- #define DW_EH_PE_udata8 0x04 /*!< Unsigned 64-bit value. */
- #define DW_EH_PE_sleb128 0x09 /*!< Signed value encoded in LEB128 (Little Endian Base 128). */
- #define DW_EH_PE_sdata2 0x0A /*!< Signed 16-bit value. */
- #define DW_EH_PE_sdata4 0x0B /*!< Signed 32-bit value. */
- #define DW_EH_PE_sdata8 0x0C /*!< Signed 64-bit value. */
- /* DWARF Exception Exception Header value application.
- * These values are in fact represented in the high nibble of a given data.
- * For example:
- * 0x3A describes the values as signed 16-bit offsets relative to .eh_frame_hdr section.
- * 0x11 describes the values as unsigned value encoded in LEB128, relative to their location ion memory. */
- #define DW_EH_PE_absptr 0x00 /*!< The value itself is a pointer, it is not an offset. */
- #define DW_EH_PE_pcrel 0x01 /*!< The value is an offset, relative to its location in memory. */
- #define DW_EH_PE_datarel 0x03 /*!< The value is an offset, relative to .eh_frame_hdr section. */
- /* Macros simplifying testing relative offset data encoding. */
- #define ESP_ENCODING_PC_REL(ENCODING) (((ENCODING >> 4) & 0xf) == DW_EH_PE_pcrel)
- #define ESP_ENCODING_FRAME_HDR_REL(ENCODING) (((ENCODING >> 4) & 0xf) == DW_EH_PE_datarel)
- /**
- * @brief Call Frame Information (CIE) fields information.
- * As the size of CIE is variable, the simplest way to described it is to
- * have a pointer at the beginning of CIE structure and access the fields
- * thanks to the index macros defined here.
- */
- #define ESP_CIE_VARIABLE_FIELDS_IDX (9) /*!< Offset, in bytes, where variable length fields start. */
- /**
- * @brief Frame Description Entry (FDE) fields index.
- * For the same reasons as above, we prefer defining these macros rather than
- * having a structure.
- */
- #define ESP_FDE_LENGTH_IDX (0) /*!< Length, in bytes, of the FDE excluding this field. 4 bytes field. */
- #define ESP_FDE_CIE_IDX (1) /*!< Nearest preceding Common Information Entry (CIE) offset. 4 bytes field. */
- #define ESP_FDE_INITLOC_IDX (2) /*!< Initial location (of the function) the FDE describes. Variable size (encoding in CIE). */
- #define ESP_FDE_RANGELEN_IDX (3) /*!< Size, in bytes, of the function described by this FDE location the FDE describes. Variable size (encoding in CIE). */
- #define ESP_FDE_AUGMENTATION_IDX (4) /*!< Augmentation data length. Unsigned LEB128. */
- /**
- * @brief Pointers to both .eh_frame_hdr and .eh_frame sections.
- */
- #define EH_FRAME_HDR_ADDR (&__eh_frame_hdr)
- #define EH_FRAME_ADDR (&__eh_frame)
- /**
- * @brief Structure of .eh_frame_hdr section header.
- */
- typedef struct {
- uint8_t version; /*!< Structure version, must be 1.*/
- uint8_t eh_frame_ptr_enc; /*!< eh_frame_ptr entry encoding. */
- uint8_t fde_count_enc; /*!< fde_count entry encoding. */
- uint8_t table_enc; /*!< table entries encoding. */
- /* The rest of the structure has variable length. Thus, we cannot define
- * them here. Here are their names:
- * - eh_frame_ptr : encoded pointer to the .eh_frame section.
- * - fde_Count : number of entries in the array of table_entry.
- * - table_entry array : sorted array of table_entry. */
- } __attribute__((packed)) fde_header;
- /**
- * @brief .eh_frame_hdr table's entry format.
- * Each entry of the table contains 2 32-bit encoded addresses.
- * Encoding is defined in the previous structure. Check table_enc field.
- */
- typedef struct {
- uint32_t fun_addr; /*!< Address of the function described. */
- uint32_t fde_addr; /*!< Address of the FDE for the function.*/
- } table_entry;
- /**
- * @brief DWARF state constant macros.
- */
- #define ESP_EH_FRAME_STACK_SIZE (2) /*!< DWARF virtual machine can save the push the current on a virtual
- stack. we mimic the stack with an array. While testing, a stack
- size of 2 was enough. */
- /**
- * @brief
- * Structure representing the state of the DWARF virtual machine.
- */
- typedef struct {
- /* Stack for DWARF state registers.
- * For caller saved registers, save their CFA address (value in previous call frame).
- * As these registers will be used to define offset in the CFA, they will always be
- * multiple of CPU word (4-bytes in our case). Thus, it will save the offset in word-size, not
- * in bytes. Plus, the highest bit will be used to mark that this register is NOY
- * ESP_EH_FRAME_REG_SAME. (0x80000000 is a valid value then, meaning that the register value
- * is CFA + 0 offset) */
- uint32_t regs_offset[ESP_EH_FRAME_STACK_SIZE][EXECUTION_FRAME_MAX_REGS];
- /* reg_offset represents the state of registers when PC reaches the following location. */
- uint32_t location;
- /* Index of the registers offset to use (1 for saved offset, 0 else). */
- uint8_t offset_idx;
- } dwarf_regs;
- /**
- * @brief DWARF's register state.
- * When a DWARF register is set to ESP_EH_FRAME_REG_SAME, the CPU register corresponding to this
- * virtual register will be unchanged after executing DWARF instructions.
- * Please see esp_eh_frame_restore_caller_state() for more details.
- */
- #define ESP_EH_FRAME_REG_SAME (0)
- /**
- * @brief Set a register's offset (relative to CFA).
- * The highest bit is set to 1 to mark that this register needs to be retrived because it has been
- * altered.
- */
- #define ESP_EH_FRAME_SET_REG_OFFSET(offset) (0x80000000 | offset)
- /**
- * @brief Get a register's offset (relative to CFA).
- */
- #define ESP_EH_FRAME_GET_REG_OFFSET(offset) (0x7fffffff & offset)
- /**
- * @brief Get a register's CFA offset.
- */
- #define ESP_EH_FRAME_IS_CFA_RELATIVE(reg) ((reg >> 31) == 1)
- /**
- * @brief Test whether an offset is small enough to be stored
- * in our 32-bit register.
- * Note: the highest bit is used.
- */
- #define ESP_EH_FRAME_CFA_OFFSET_VALID(offset) (offset < 0x80000000)
- /**
- * @brief Index of Call Frame Address (CFA) in DWARF registers array.
- */
- #define ESP_ESH_FRAME_CFA_IDX (EXECUTION_FRAME_SP_REG)
- /**
- * @brief Macros to get and set CFA's relative register and offset.
- * Indeed, CFA is defined by two values: register and offset. CFA is then
- * calculated by adding the offset to the register value.
- * `register` will be stored in the lowest 8 bits.
- * `offset` will be stored in the highest 24 bits.
- *
- * NOTE: with this implementation, CFA will be affected by
- * DW_CFA_REMEMBER_STATE and DW_CFA_RESTORE_STATE instructions.
- */
- #if EXECUTION_FRAME_MAX_REGS > 255
- #error "Too many registers defined for the target ExecutionFrame"
- #endif
- #define ESP_EH_FRAME_CFA_REG_VALID(reg) (reg < EXECUTION_FRAME_MAX_REGS)
- #define ESP_EH_FRAME_CFA_OFF_VALID(off) (((off) >> 24) == 0)
- #define ESP_EH_FRAME_CFA(state) ((state)->regs_offset[(state)->offset_idx][ESP_ESH_FRAME_CFA_IDX])
- #define ESP_EH_FRAME_NEW_CFA(reg, off) (((off) << 8) | ((reg) & 0xff))
- #define ESP_EH_FRAME_SET_CFA_REG(value, reg) (((value) & ~0xff) | ((reg) & 0xff))
- #define ESP_EH_FRAME_SET_CFA_OFF(value, off) (((value) & 0xff) | ((off) << 8))
- #define ESP_EH_FRAME_GET_CFA_REG(value) ((value) & 0xff)
- #define ESP_EH_FRAME_GET_CFA_OFF(value) ((value) >> 8)
- /**
- * @brief Unsupported opcode value to return when exeucting 0-opcode type instructions.
- */
- #define ESP_EH_FRAME_UNSUPPORTED_OPCODE ((uint32_t) -1)
- /**
- * @brief Macros defining the DWARF instructions code.
- */
- #define DW_GET_OPCODE(OP) ((OP) >> 6)
- #define DW_GET_PARAM(OP) ((OP) & 0b111111)
- #define DW_CFA_ADVANCE_LOC (1)
- #define DW_CFA_OFFSET (2)
- #define DW_CFA_RESTORE (3)
- /**
- * @brief Constant for DWARF instructions code when high 2 bits are 0.
- */
- #define DW_CFA_0_OPCODE (0)
- #define DW_CFA_NOP (0x0)
- #define DW_CFA_SET_LOC (0x1)
- #define DW_CFA_ADVANCE_LOC1 (0x2)
- #define DW_CFA_ADVANCE_LOC2 (0x3)
- #define DW_CFA_ADVANCE_LOC4 (0x4)
- #define DW_CFA_OFFSET_EXTENDED (0x5)
- #define DW_CFA_RESTORE_EXTENDED (0x6)
- #define DW_CFA_UNDEFINED (0x7)
- #define DW_CFA_SAME_VALUE (0x8)
- #define DW_CFA_REGISTER (0x9)
- #define DW_CFA_REMEMBER_STATE (0xA)
- #define DW_CFA_RESTORE_STATE (0xB)
- #define DW_CFA_DEF_CFA (0xC)
- #define DW_CFA_DEF_CFA_REGISTER (0xD)
- #define DW_CFA_DEF_CFA_OFFSET (0xE)
- #define DW_CFA_DEF_CFA_EXPRESSION (0xF)
- #define DW_CFA_EXPRESSION (0x10)
- #define DW_CFA_OFFSET_EXTENDED_SF (0x11)
- #define DW_CFA_DEF_CFA_SF (0x12)
- #define DW_CFA_DEF_CFA_OFFSET_SF (0x13)
- #define DW_CFA_VAL_OFFSET (0x14)
- #define DW_CFA_VAL_OFFSET_SF (0x15)
- #define DW_CFA_VAL_EXPRESSION (0x16)
- #define DW_CFA_LO_USER (0x1C)
- /**
- * @brief Constants used for decoding (U)LEB128 integers.
- */
- #define DW_LEB128_HIGHEST_BIT(byte) (((byte) >> 7) & 1)
- #define DW_LEB128_SIGN_BIT(byte) (((byte) >> 6) & 1)
- #define DW_LEB128_MAX_SHIFT (31)
- /**
- * @brief Symbols defined by the linker.
- * Retrieve the addresses of both .eh_frame_hdr and .eh_frame sections.
- */
- extern char __eh_frame_hdr;
- extern char __eh_frame;
- /**
- * @brief Decode multiple bytes encoded in LEB128.
- *
- * @param bytes bytes encoded in LEB128. They will not be modified.
- * @param is_signed true if bytes represent a signed value, false else.
- * @param size Size in bytes of the encoded value.
- *
- * @return Decoded bytes.
- */
- static uint32_t decode_leb128(const uint8_t* bytes, bool is_signed, uint32_t* lebsize)
- {
- uint32_t res = 0;
- uint32_t shf = 0;
- uint32_t size = 0;
- uint8_t byte = 0;
- while(1) {
- byte = bytes[size++];
- res |= (byte & 0x7f) << shf;
- shf += 7;
- if (DW_LEB128_HIGHEST_BIT(byte) == 0)
- break;
- }
- if (is_signed && shf <= DW_LEB128_MAX_SHIFT && DW_LEB128_SIGN_BIT(byte)) {
- res |= ((uint32_t) ~0 << shf);
- }
- if (lebsize) {
- *lebsize = size;
- }
- return res;
- }
- /**
- * @brief Get the value of data encoded.
- *
- * @param data Pointer to the encoded data.
- * @param encoding Encoding for the data to read.
- * @param psize Reference to be filled with data size, in bytes.
- *
- * @return Decoded data read from the pointer.
- */
- static uint32_t esp_eh_frame_get_encoded(void* data, uint8_t encoding, uint32_t* psize)
- {
- int32_t svalue = 0;
- uint32_t uvalue = 0;
- uint32_t fvalue = 0;
- uint32_t size = 0;
- const uint32_t high = encoding >> 4;
- const uint32_t low = encoding & 0xf;
- assert(psize != NULL);
- if (encoding == DW_EH_PE_omit) {
- *psize = size;
- return uvalue;
- }
- switch (low) {
- case DW_EH_PE_udata2:
- size = 2;
- uvalue = *((uint16_t*) data);
- break;
- case DW_EH_PE_udata4:
- size = 4;
- uvalue = *((uint32_t*) data);
- break;
- case DW_EH_PE_sdata2:
- size = 2;
- svalue = *((int16_t*) data);
- break;
- case DW_EH_PE_sdata4:
- size = 4;
- svalue = *((int32_t*) data);
- break;
- default:
- /* Unsupported yet. */
- assert(false);
- break;
- }
- switch (high) {
- case DW_EH_PE_absptr:
- /* Do not change the values, as one of them will be 0, fvalue will
- * contain the data no matter whether it is signed or unsigned. */
- fvalue = svalue + uvalue;
- break;
- case DW_EH_PE_pcrel:
- /* Relative to the address of the data.
- * svalue has been casted to an 32-bit value, so even if it was a
- * 2-byte signed value, fvalue will be calculated correctly here. */
- fvalue = (uint32_t) data + svalue + uvalue;
- break;
- case DW_EH_PE_datarel:
- fvalue = (uint32_t) EH_FRAME_HDR_ADDR + svalue + uvalue;
- break;
- }
- *psize = size;
- return fvalue;
- }
- /**
- * @brief Find entry in the table for the given return_address.
- *
- * @param sorted_table Pointer to the sorted table of entries.
- * @param length Number of entries in the table.
- * @param encoding Encoding for the addresses in the table
- * (Check DWARF documentation for more info about encoding).
- * @param return_address The address to find in the table. This address can be
- * part of one in the function listed.
- *
- * @note The table is structured like this (after decoding the addresses):
- * Function address FDE address Index
- * +-------------------------------+
- * |0x403805a4 0x4038d014| 0
- * +-------------------------------+
- * |0x403805be 0x4038d034| 1
- * +-------------------------------+
- * |0x403805d8 0x4038d070| 2
- * +-------------------------------+
- * |.......... ..........| ...
- * +-------------------------------+
- * |0x42020c48 0x4038ddb4| length-3
- * +-------------------------------+
- * |0x42020dca 0x4038dde4| length-2
- *+-------------------------------+
- * |0x42020f92 0x4038debc| length-1
- * +-------------------------------+
- *
- * For example, if return_address passed is 0x403805b4, this function will
- * return a pointer to the entry (0x403805a4, 0x4038d014).
- *
- * @return Pointer to the entry found, NULL if not found.
- */
- static const table_entry* esp_eh_frame_find_entry(const table_entry* sorted_table,
- const uint32_t length,
- const uint32_t encoding,
- const uint32_t return_address)
- {
- int32_t ra = 0;
- /* Used for decoding addresses in the table. */
- uint32_t is_signed = (encoding & 0xf) >= 0x9;
- uint32_t pc_relative = true;
- /* The following local variables are used for dichotomic search. */
- uint32_t found = false;
- uint32_t begin = 0;
- uint32_t end = length;
- uint32_t middle = (end + begin) / 2;
- /* If the addresses in the table are offsets relative to the eh_frame section,
- * instead of decoding each of them, we can simply encode the return_address
- * we have to find. If addresses are offsets relative to the programe counter,
- * then we have no other choice than decoding each of them to compare them
- * with return_address. */
- if (ESP_ENCODING_FRAME_HDR_REL(encoding)) {
- ra = return_address - (uint32_t) EH_FRAME_HDR_ADDR;
- pc_relative = false;
- }
- /* Perform dichotomic search. */
- while (end != 0 && middle != (length - 1) && !found) {
- const uint32_t fun_addr = sorted_table[middle].fun_addr;
- const uint32_t nxt_addr = sorted_table[middle + 1].fun_addr;
- if (pc_relative) {
- ra = return_address - (uint32_t) (sorted_table + middle);
- }
- if (is_signed) {
- /* Signed comparisons. */
- const int32_t sfun_addr = (int32_t) fun_addr;
- const int32_t snxt_addr = (int32_t) nxt_addr;
- if (sfun_addr <= ra && snxt_addr > ra)
- found = true;
- else if (snxt_addr <= ra)
- begin = middle + 1;
- else
- end = middle;
- } else {
- /* Unsigned comparisons. */
- const uint32_t ura = (uint32_t) ra;
- if (fun_addr <= ura && nxt_addr > ura)
- found = true;
- else if (nxt_addr <= ura)
- begin = middle + 1;
- else
- end = middle;
- }
- middle = (end + begin) / 2;
- }
- /* If 'end' reached the beginning of the array, it means the return_address
- * passed was below the first address of the array, thus, it was wrong.
- * Else, return the address found. */
- return (end == 0) ? 0 : sorted_table + middle;
- }
- /**
- * @brief Decode an address according to the encoding passed.
- *
- * @param addr Pointer to the address to decode.
- * This pointer's value MUST be an address in .eh_frame_hdr section.
- * @param encoding DWARF encoding byte.
- *
- * @return address dedoded (e.g. absolute address)
- */
- static inline uint32_t* esp_eh_frame_decode_address(const uint32_t* addr,
- const uint32_t encoding)
- {
- uint32_t* decoded = 0;
- if (ESP_ENCODING_FRAME_HDR_REL(encoding))
- decoded = (uint32_t*) (*addr + (uint32_t) EH_FRAME_HDR_ADDR);
- else if (ESP_ENCODING_PC_REL(encoding))
- decoded = (uint32_t*) (*addr + (uint32_t) addr);
- else
- decoded = (uint32_t*) (*addr);
- return decoded;
- }
- /**
- * @brief Execute the DWARF instruction which high 2 bits are 0.
- *
- * @param opcode low 6 bits of the instruction code.
- * @param operands pointer to the possible operands.
- * @param state state of the DWARF machine. Its registers may be modified.
- *
- * @return Number of operands used for executing the instruction.
- */
- static inline uint32_t esp_eh_frame_execute_opcode_0(const uint32_t opcode, const uint8_t* operands,
- dwarf_regs* state)
- {
- uint32_t operand1 = 0;
- uint32_t used_operands = 0;
- uint32_t operand2 = 0;
- uint32_t used_operands2 = 0;
- switch(opcode) {
- case DW_CFA_NOP:
- break;
- case DW_CFA_ADVANCE_LOC1:
- /* Advance location with a 1-byte delta. */
- used_operands = 1;
- state->location += *operands;
- break;
- case DW_CFA_ADVANCE_LOC2:
- /* Advance location with a 2-byte delta. */
- used_operands = 2;
- state->location += *((const uint16_t*) operands);
- break;
- case DW_CFA_ADVANCE_LOC4:
- /* Advance location with a 4-byte delta. */
- used_operands = 4;
- state->location += *((const uint32_t*) operands);
- break;
- case DW_CFA_REMEMBER_STATE:
- assert(state->offset_idx == 0);
- memcpy(state->regs_offset[1], state->regs_offset[0],
- EXECUTION_FRAME_MAX_REGS * sizeof(uint32_t));
- state->offset_idx++;
- break;
- case DW_CFA_RESTORE_STATE:
- assert(state->offset_idx == 1);
- /* Drop the saved state. */
- state->offset_idx--;
- break;
- case DW_CFA_DEF_CFA:
- /* CFA changes according to a register and an offset.
- * This instruction appears when the assembly code saves the
- * SP in the middle of a routine, before modifying it.
- * For example (on RISC-V):
- * addi s0, sp, 80
- * addi sp, sp, -10
- * ... */
- /* Operand1 is the register containing the CFA value. */
- operand1 = decode_leb128(operands, false, &used_operands);
- /* Offset for the register's value. */
- operand2 = decode_leb128(operands + used_operands, false, &used_operands2);
- /* Calculate the number of bytes */
- used_operands += used_operands2;
- /* Assert that the register and the offset are valid. */
- assert(ESP_EH_FRAME_CFA_REG_VALID(operand1));
- assert(ESP_EH_FRAME_CFA_OFF_VALID(operand2));
- ESP_EH_FRAME_CFA(state) = ESP_EH_FRAME_NEW_CFA(operand1, operand2);
- break;
- case DW_CFA_DEF_CFA_REGISTER:
- /* Define the register of the current frame address (CFA).
- * Its operand is in the next bytes, its type is ULEB128. */
- operand1 = decode_leb128(operands, false, &used_operands);
- /* Check whether the value is valid or not. */
- assert(ESP_EH_FRAME_CFA_OFF_VALID(operand1));
- /* Offset will be unchanged, only register changes. */
- ESP_EH_FRAME_CFA(state) = ESP_EH_FRAME_SET_CFA_REG(ESP_EH_FRAME_CFA(state), operand1);
- break;
- case DW_CFA_DEF_CFA_OFFSET:
- /* Same as above but for the offset. The register of CFA remains unchanged. */
- operand1 = decode_leb128(operands, false, &used_operands);
- assert(ESP_EH_FRAME_CFA_OFF_VALID(operand1));
- ESP_EH_FRAME_CFA(state) = ESP_EH_FRAME_SET_CFA_OFF(ESP_EH_FRAME_CFA(state), operand1);
- break;
- default:
- panic_print_str("\r\nUnsupported DWARF opcode 0: 0x");
- panic_print_hex(opcode);
- panic_print_str("\r\n");
- used_operands = ESP_EH_FRAME_UNSUPPORTED_OPCODE;
- break;
- }
- return used_operands;
- }
- /**
- * @brief Execute DWARF instructions.
- *
- * @param instructions Array of instructions to execute.
- * @param instructions_length Length of the array of instructions.
- * @param frame Execution frame of the crashed task. This will only be used to
- * get the PC where the task crashed.
- * @param state DWARF machine state. The registers contained in the state will
- * modified accordingly to the instructions.
- *
- * @return true if the execution went fine, false if an unsupported instruction was met.
- */
- static bool esp_eh_frame_execute(const uint8_t* instructions, const uint32_t instructions_length,
- const ExecutionFrame* frame, dwarf_regs* state)
- {
- for (uint32_t i = 0; i < instructions_length; i++) {
- const uint8_t instr = instructions[i];
- const uint8_t param = DW_GET_PARAM(instr);
- uint32_t operand1 = 0;
- uint32_t size = 0;
- uint32_t used_operands = 0;
- /* Decode the instructions. According to DWARF documentation, there are three
- * types of Call Frame Instructions. The upper 2 bits defines the type. */
- switch (DW_GET_OPCODE(instr)) {
- case DW_CFA_0_OPCODE:
- used_operands = esp_eh_frame_execute_opcode_0(param, &instructions[i + 1], state);
- /* Exit the function if an unsupported opcode was met. */
- if (used_operands == ESP_EH_FRAME_UNSUPPORTED_OPCODE) {
- return false;
- }
- i += used_operands;
- break;
- case DW_CFA_ADVANCE_LOC:
- /* Move the location forward. This instruction will mark when to stop:
- * once we reach the instruction where the PC left, we can break out of the loop
- * The delta is part of the lowest 6 bits.
- */
- state->location += param;
- break;
- case DW_CFA_OFFSET:
- operand1 = decode_leb128(&instructions[i + 1], false, &size);
- assert(ESP_EH_FRAME_CFA_OFFSET_VALID(operand1));
- state->regs_offset[state->offset_idx][param] = ESP_EH_FRAME_SET_REG_OFFSET(operand1);
- i += size;
- break;
- case DW_CFA_RESTORE:
- state->regs_offset[state->offset_idx][param] = ESP_EH_FRAME_REG_SAME;
- break;
- default:
- /* Illegal opcode */
- assert(false);
- break;
- }
- /* As the state->location can also be modified by 0-opcode instructions (in the function)
- * and also because we need to break the loop (and not only the switch), let's put this
- * check here, after the execution of the instruction, outside of the switch block. */
- if (state->location >= EXECUTION_FRAME_PC(*frame))
- break;
- }
- /* Everything went fine, no unsupported opcode was met, return true. */
- return true;
- }
- /**
- * @brief Initialize the DWARF registers state by parsing and executing CIE instructions.
- *
- * @param cie Pointer to the CIE data.
- * @param frame Pointer to the execution frame.
- * @param state DWARF machine state (DWARF registers).
- *
- * @return index of the DWARF register containing the return address.
- */
- static uint32_t esp_eh_frame_initialize_state(const uint8_t* cie, ExecutionFrame* frame, dwarf_regs* state)
- {
- char c = 0;
- uint32_t size = 0;
- /* The first word in the CIE structure is the length of the structure,
- * excluding this field itself. */
- const uint32_t length = ((uint32_t*) cie)[0];
- /* ID of the CIE, should be 0 for .eh_frame (which is our case) */
- const uint32_t id = ((uint32_t*) cie)[1];
- assert(id == 0);
- /* Ignore CIE version (1 byte). */
- /* The following data in the structure have variable length as they are
- * encoded in (U)LEB128. Thus, let's use a byte pointer to parse them. */
- uint8_t* cie_data = (uint8_t*) cie + ESP_CIE_VARIABLE_FIELDS_IDX;
- /* Next field is a null-terminated UTF-8 string. Ignore it, look for the end. */
- while((c = *cie_data++) != 0);
- /* Field alignment factor shall be 1. It is encoded in ULEB128. */
- const uint32_t code_align = decode_leb128(cie_data, false, &size);
- assert(code_align == 1);
- /* Jump to the next field */
- cie_data += size;
- /* Same goes for data alignment factor. Shall be equal to -4. */
- const int32_t data_align = decode_leb128(cie_data, true, &size);
- cie_data += size;
- assert(data_align == -4);
- /* Field describing the index of the DWARF register which will contain
- * the return address. */
- const uint32_t ra_reg = decode_leb128(cie_data, false, &size);
- cie_data += size;
- /* Augmentation data length is encoded in ULEB128. It represents the,
- * length of the augmentation data. Jump after it to retrieve the
- * instructions to execute. */
- const uint32_t augmentation_len = decode_leb128(cie_data, false, &size);
- cie_data += size + augmentation_len;
- /* Calculate the instructions length in order to prevent any out of bounds
- * bug. Subtract the offset of this field (minus sizeof(uint32_t) because
- * `length` field is not part of the structure length) to the total length
- * of the structure. */
- const uint32_t instructions_length = length - (cie_data - sizeof(uint32_t) - cie);
- /* Execute the instructions contained in CIE structure. Their goal is to
- * initialize the DWARF registers. Usually it binds the CFA (virtual stack
- * pointer), to its hardware equivalent. It will also bind a hardware
- * register to the virtual return address register. For example, x86
- * doesn't have a return address register, the address to return to
- * it stored on the stack when `call` instruction is used. DWARF will
- * use `eip` (instruction pointer, a.k.a. program counter) as a
- * register containing the return address register. */
- esp_eh_frame_execute(cie_data, instructions_length, frame, state);
- return ra_reg;
- }
- /**
- * @brief Modify the execution frame and DWARF VM state for restoring caller's context.
- *
- * @param fde Pointer to the Frame Description Entry for the current program counter (defined by frame's MEPC register)
- * @param frame Snapshot of the CPU registers when the CPU stopped its normal execution.
- * @param state DWARF VM registers.
- *
- * @return Return Address of the current context. Frame has been restored to the previous context
- * (before calling the function program counter is currently going throught).
- */
- static uint32_t esp_eh_frame_restore_caller_state(const uint32_t* fde,
- ExecutionFrame* frame,
- dwarf_regs* state)
- {
- /* Length of the whole Frame Description Entry (FDE), excluding this field. */
- const uint32_t length = fde[ESP_FDE_LENGTH_IDX];
- /* The addresses in FDE are relative to the location of each field.
- * Thus, to get the absolute address of the function it is pointing to,
- * we have to compute:
- * fun_addr = &fde[IDX] +/- fde[IDX]
- */
- const uint8_t* cie = (uint8_t*) ((uint32_t) &fde[ESP_FDE_CIE_IDX] - fde[ESP_FDE_CIE_IDX]);
- const uint32_t initial_location = ((uint32_t) &fde[ESP_FDE_INITLOC_IDX] + fde[ESP_FDE_INITLOC_IDX]);
- const uint32_t range_length = fde[ESP_FDE_RANGELEN_IDX];
- const uint8_t augmentation = *((uint8_t*) (fde + ESP_FDE_AUGMENTATION_IDX));
- /* The length, in byte, of the instructions is the size of the FDE header minus
- * the above fields' length. */
- const uint32_t instructions_length = length - 3 * sizeof(uint32_t) - sizeof(uint8_t);
- const uint8_t* instructions = ((uint8_t*) (fde + ESP_FDE_AUGMENTATION_IDX)) + 1;
- /* Make sure this FDE is the correct one for the PC given. */
- assert(initial_location <= EXECUTION_FRAME_PC(*frame) &&
- EXECUTION_FRAME_PC(*frame) < initial_location + range_length);
- /* Augmentation not supported. */
- assert(augmentation == 0);
- /* Initialize the DWARF state by executing the CIE's instructions. */
- const uint32_t ra_reg = esp_eh_frame_initialize_state(cie, frame, state);
- state->location = initial_location;
- /**
- * Execute the DWARf instructions is order to create rules that will be executed later to retrieve
- * the registers former value.
- */
- bool success = esp_eh_frame_execute(instructions, instructions_length, frame, state);
- if (!success) {
- /* An error occured (unsupported opcode), return PC as the return address.
- * This will be tested by the caller, and the backtrace will be finished. */
- return EXECUTION_FRAME_PC(*frame);
- }
- /* Execute the rules calculated previously. Start with the CFA. */
- const uint32_t cfa_val = ESP_EH_FRAME_CFA(state);
- const uint32_t cfa_reg = ESP_EH_FRAME_GET_CFA_REG(cfa_val);
- const uint32_t cfa_off = ESP_EH_FRAME_GET_CFA_OFF(cfa_val);
- const uint32_t cfa_addr = EXECUTION_FRAME_REG(frame, cfa_reg) + cfa_off;
- /* Restore the registers that need to be restored. */
- for (uint32_t i = 0; i < DIM(state->regs_offset[0]); i++) {
- uint32_t value_addr = state->regs_offset[state->offset_idx][i];
- /* Check that the value changed and that we are not treating the CFA register (if it is part of the array). */
- if (i != ESP_ESH_FRAME_CFA_IDX && value_addr != ESP_EH_FRAME_REG_SAME) {
- /* value_addr contains a description of how to find its address:
- * it has an offset relative to the CFA, which will point to the actual former value.
- * In fact, the register's previous value (in the context of the caller) is on the stack,
- * this is what value_addr will point to. */
- value_addr = cfa_addr - ESP_EH_FRAME_GET_REG_OFFSET(value_addr) * sizeof(uint32_t);
- EXECUTION_FRAME_REG(frame, i) = *((uint32_t*) value_addr);
- }
- }
- /* Restore the stack pointer according to DWARF CFA register. */
- EXECUTION_FRAME_SP(*frame) = cfa_addr;
- /* If the frame was not available, it would be possible to retrieve the return address
- * register thanks to CIE structure.
- * The return address points to the address the PC needs to jump to. It
- * does NOT point to the instruction where the routine call occured.
- * This can cause problems with functions without epilogue (i.e. function
- * which last instruction is a function call). This happens when compiler
- * optimization are ON or when a function is marked as "noreturn".
- *
- * Thus, in order to point to the call/jal instruction, we need to
- * subtract at least 1 byte but not more than an instruction size.
- */
- return EXECUTION_FRAME_REG(frame, ra_reg) - 2;
- }
- /**
- * @brief Test whether the DWARF information for the given PC are missing or not.
- *
- * @param fde FDE associated to this PC. This FDE is the one found thanks to
- * `esp_eh_frame_find_entry()`.
- * @param pc PC to get information from.
- *
- * @return true is DWARF information are missing, false else.
- */
- static bool esp_eh_frame_missing_info(const uint32_t* fde, uint32_t pc) {
- if (fde == NULL) {
- return true;
- }
- /* Get the range of this FDE entry. It is possible that there are some
- * gaps between DWARF entries, in that case, the FDE entry found has
- * indeed an initial_location very close to PC but doesn't reach it.
- * For example, if FDE initial_location is 0x40300000 and its length is
- * 0x100, but PC value is 0x40300200, then some DWARF information
- * are missing as there is a gap.
- * End the backtrace. */
- const uint32_t initial_location = ((uint32_t) &fde[ESP_FDE_INITLOC_IDX] + fde[ESP_FDE_INITLOC_IDX]);
- const uint32_t range_length = fde[ESP_FDE_RANGELEN_IDX];
- return (initial_location + range_length) <= pc;
- }
- /**
- * @brief When one step of the backtrace is generated, output it to the serial.
- * This function can be overriden as it is defined as weak.
- *
- * @param pc Program counter of the backtrace step.
- * @param sp Stack pointer of the backtrace step.
- */
- void __attribute__((weak)) esp_eh_frame_generated_step(uint32_t pc, uint32_t sp)
- {
- panic_print_str(" 0x");
- panic_print_hex(pc);
- panic_print_str(":0x");
- panic_print_hex(sp);
- }
- /**
- * @brief Print backtrace for the given execution frame.
- *
- * @param frame_or Snapshot of the CPU registers when the CPU stopped its normal execution.
- */
- void esp_eh_frame_print_backtrace(const void *frame_or)
- {
- assert(frame_or != NULL);
- static dwarf_regs state = { 0 };
- ExecutionFrame frame = *((ExecutionFrame*) frame_or);
- uint32_t size = 0;
- uint8_t* enc_values = NULL;
- bool end_of_backtrace = false;
- /* Start parsing the .eh_frame_hdr section. */
- fde_header* header = (fde_header*) EH_FRAME_HDR_ADDR;
- assert(header->version == 1);
- /* Make enc_values point to the end of the structure, where the encoded
- * values start. */
- enc_values = (uint8_t*) (header + 1);
- /* Retrieve the encoded value eh_frame_ptr. Get the size of the data also. */
- const uint32_t eh_frame_ptr = esp_eh_frame_get_encoded(enc_values, header->eh_frame_ptr_enc, &size);
- assert(eh_frame_ptr == (uint32_t) EH_FRAME_ADDR);
- enc_values += size;
- /* Same for the number of entries in the sorted table. */
- const uint32_t fde_count = esp_eh_frame_get_encoded(enc_values, header->fde_count_enc, &size);
- enc_values += size;
- /* enc_values points now at the beginning of the sorted table. */
- /* Only support 4-byte entries. */
- const uint32_t table_enc = header->table_enc;
- assert(((table_enc >> 4) == 0x3) || ((table_enc >> 4) == 0xB));
- const table_entry* sorted_table = (const table_entry*) enc_values;
- panic_print_str("Backtrace:");
- while (!end_of_backtrace) {
- /* Output one step of the backtrace. */
- esp_eh_frame_generated_step(EXECUTION_FRAME_PC(frame), EXECUTION_FRAME_SP(frame));
- const table_entry* from_fun = esp_eh_frame_find_entry(sorted_table, fde_count,
- table_enc, EXECUTION_FRAME_PC(frame));
- /* Get absolute address of FDE entry describing the function where PC left of. */
- uint32_t* fde = NULL;
- if (from_fun != NULL) {
- fde = esp_eh_frame_decode_address(&from_fun->fde_addr, table_enc);
- }
- if (esp_eh_frame_missing_info(fde, EXECUTION_FRAME_PC(frame))) {
- /* Address was not found in the list. */
- panic_print_str("\r\nBacktrace ended abruptly: cannot find DWARF information for"
- " instruction at address 0x");
- panic_print_hex(EXECUTION_FRAME_PC(frame));
- panic_print_str("\r\n");
- break;
- }
- /* Clean and set the DWARF register structure. */
- memset(&state, 0, sizeof(dwarf_regs));
- const uint32_t prev_sp = EXECUTION_FRAME_SP(frame);
- /* Retrieve the return address of the frame. The frame's registers will be modified.
- * The frame we get then is the caller's one. */
- uint32_t ra = esp_eh_frame_restore_caller_state(fde, &frame, &state);
- /* End of backtrace is reached if the stack and the PC don't change anymore. */
- end_of_backtrace = (EXECUTION_FRAME_SP(frame) == prev_sp) && (EXECUTION_FRAME_PC(frame) == ra);
- /* Go back to the caller: update stack pointer and program counter. */
- EXECUTION_FRAME_PC(frame) = ra;
- }
- panic_print_str("\r\n");
- }
- #endif //ESP_SYSTEM_USE_EH_FRAME
|