adc_hal.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324
  1. /*
  2. * SPDX-FileCopyrightText: 2019-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <sys/param.h>
  7. #include "sdkconfig.h"
  8. #include "hal/adc_hal.h"
  9. #include "hal/adc_hal_conf.h"
  10. #include "hal/assert.h"
  11. #include "soc/lldesc.h"
  12. #include "soc/soc_caps.h"
  13. #if CONFIG_IDF_TARGET_ESP32
  14. //ADC utilises I2S0 DMA on ESP32
  15. #include "hal/i2s_ll.h"
  16. #include "hal/i2s_types.h"
  17. #include "soc/i2s_struct.h"
  18. #endif
  19. #if CONFIG_IDF_TARGET_ESP32S2
  20. //ADC utilises SPI3 DMA on ESP32S2
  21. #include "hal/spi_ll.h"
  22. #include "soc/spi_struct.h"
  23. #endif
  24. /*---------------------------------------------------------------
  25. Define all ADC DMA required operations here
  26. ---------------------------------------------------------------*/
  27. #if SOC_GDMA_SUPPORTED
  28. #define adc_dma_ll_rx_clear_intr(dev, chan, mask) gdma_ll_rx_clear_interrupt_status(dev, chan, mask)
  29. #define adc_dma_ll_rx_enable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, true)
  30. #define adc_dma_ll_rx_disable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, false)
  31. #define adc_dma_ll_rx_reset_channel(dev, chan) gdma_ll_rx_reset_channel(dev, chan)
  32. #define adc_dma_ll_rx_stop(dev, chan) gdma_ll_rx_stop(dev, chan)
  33. #define adc_dma_ll_rx_start(dev, chan, addr) do { \
  34. gdma_ll_rx_set_desc_addr(dev, chan, (uint32_t)addr); \
  35. gdma_ll_rx_start(dev, chan); \
  36. } while (0)
  37. #define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num)
  38. #define adc_ll_digi_reset(dev) adc_ll_digi_reset()
  39. #define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable()
  40. #define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable()
  41. //ADC utilises SPI3 DMA on ESP32S2
  42. #elif CONFIG_IDF_TARGET_ESP32S2
  43. #define adc_dma_ll_rx_get_intr(dev, mask) spi_ll_get_intr(dev, mask)
  44. #define adc_dma_ll_rx_clear_intr(dev, chan, mask) spi_ll_clear_intr(dev, mask)
  45. #define adc_dma_ll_rx_enable_intr(dev, chan, mask) spi_ll_enable_intr(dev, mask)
  46. #define adc_dma_ll_rx_disable_intr(dev, chan, mask) spi_ll_disable_intr(dev, mask)
  47. #define adc_dma_ll_rx_reset_channel(dev, chan) spi_dma_ll_rx_reset(dev, chan)
  48. #define adc_dma_ll_rx_stop(dev, chan) spi_dma_ll_rx_stop(dev, chan)
  49. #define adc_dma_ll_rx_start(dev, chan, addr) spi_dma_ll_rx_start(dev, chan, addr)
  50. #define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) spi_dma_ll_get_in_suc_eof_desc_addr(dev, chan)
  51. #define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num)
  52. #define adc_ll_digi_reset(dev) adc_ll_digi_reset()
  53. #define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable()
  54. #define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable()
  55. //ADC utilises I2S0 DMA on ESP32
  56. #else //CONFIG_IDF_TARGET_ESP32
  57. #define adc_dma_ll_rx_get_intr(dev, mask) ({i2s_ll_get_intr_status(dev) & mask;})
  58. #define adc_dma_ll_rx_clear_intr(dev, chan, mask) i2s_ll_clear_intr_status(dev, mask)
  59. #define adc_dma_ll_rx_enable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val |= mask;} while (0)
  60. #define adc_dma_ll_rx_disable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val &= ~mask;} while (0)
  61. #define adc_dma_ll_rx_reset_channel(dev, chan) i2s_ll_rx_reset_dma(dev)
  62. #define adc_dma_ll_rx_stop(dev, chan) i2s_ll_rx_stop_link(dev)
  63. #define adc_dma_ll_rx_start(dev, chan, address) do { \
  64. ((i2s_dev_t *)(dev))->in_link.addr = (uint32_t)(address); \
  65. i2s_ll_enable_dma(dev, 1); \
  66. ((i2s_dev_t *)(dev))->in_link.start = 1; \
  67. } while (0)
  68. #define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) ({uint32_t addr; i2s_ll_rx_get_eof_des_addr(dev, &addr); addr;})
  69. #define adc_ll_digi_dma_set_eof_num(dev, num) do {((i2s_dev_t *)(dev))->rx_eof_num = num;} while (0)
  70. #define adc_ll_digi_reset(dev) do { \
  71. i2s_ll_rx_reset(dev); \
  72. i2s_ll_rx_reset_fifo(dev); \
  73. } while (0)
  74. #define adc_ll_digi_trigger_enable(dev) i2s_ll_rx_start(dev)
  75. #define adc_ll_digi_trigger_disable(dev) i2s_ll_rx_stop(dev)
  76. #define adc_ll_digi_dma_enable() adc_ll_digi_set_data_source(1) //Will this influence I2S0
  77. #define adc_ll_digi_dma_disable() adc_ll_digi_set_data_source(0)
  78. //ESP32 ADC uses the DMA through I2S. The I2S needs to be configured.
  79. #define I2S_BASE_CLK (2*APB_CLK_FREQ)
  80. #define SAMPLE_BITS 16
  81. #define ADC_LL_CLKM_DIV_NUM_DEFAULT 2
  82. #define ADC_LL_CLKM_DIV_B_DEFAULT 0
  83. #define ADC_LL_CLKM_DIV_A_DEFAULT 1
  84. #endif
  85. void adc_hal_dma_ctx_config(adc_hal_dma_ctx_t *hal, const adc_hal_dma_config_t *config)
  86. {
  87. hal->desc_dummy_head.next = hal->rx_desc;
  88. hal->dev = config->dev;
  89. hal->desc_max_num = config->desc_max_num;
  90. hal->dma_chan = config->dma_chan;
  91. hal->eof_num = config->eof_num;
  92. }
  93. void adc_hal_digi_init(adc_hal_dma_ctx_t *hal)
  94. {
  95. // Set internal FSM wait time, fixed value.
  96. adc_ll_digi_set_fsm_time(ADC_HAL_FSM_RSTB_WAIT_DEFAULT, ADC_HAL_FSM_START_WAIT_DEFAULT,
  97. ADC_HAL_FSM_STANDBY_WAIT_DEFAULT);
  98. adc_ll_set_sample_cycle(ADC_HAL_SAMPLE_CYCLE_DEFAULT);
  99. adc_hal_pwdet_set_cct(ADC_HAL_PWDET_CCT_DEFAULT);
  100. adc_ll_digi_output_invert(ADC_UNIT_1, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_1));
  101. adc_ll_digi_output_invert(ADC_UNIT_2, ADC_HAL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_2));
  102. adc_ll_digi_set_clk_div(ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT);
  103. adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
  104. adc_dma_ll_rx_enable_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
  105. adc_ll_digi_dma_set_eof_num(hal->dev, hal->eof_num);
  106. #if CONFIG_IDF_TARGET_ESP32
  107. i2s_ll_rx_set_sample_bit(hal->dev, SAMPLE_BITS, SAMPLE_BITS);
  108. i2s_ll_rx_enable_mono_mode(hal->dev, 1);
  109. i2s_ll_rx_force_enable_fifo_mod(hal->dev, 1);
  110. i2s_ll_enable_builtin_adc(hal->dev, 1);
  111. #endif
  112. adc_oneshot_ll_disable_all_unit();
  113. }
  114. void adc_hal_digi_deinit(adc_hal_dma_ctx_t *hal)
  115. {
  116. adc_ll_digi_trigger_disable(hal->dev);
  117. adc_ll_digi_dma_disable();
  118. adc_ll_digi_clear_pattern_table(ADC_UNIT_1);
  119. adc_ll_digi_clear_pattern_table(ADC_UNIT_2);
  120. adc_ll_digi_reset(hal->dev);
  121. adc_ll_digi_controller_clk_disable();
  122. }
  123. /*---------------------------------------------------------------
  124. DMA read
  125. ---------------------------------------------------------------*/
  126. static adc_ll_digi_convert_mode_t get_convert_mode(adc_digi_convert_mode_t convert_mode)
  127. {
  128. #if CONFIG_IDF_TARGET_ESP32
  129. return ADC_LL_DIGI_CONV_ONLY_ADC1;
  130. #endif
  131. #if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
  132. return ADC_LL_DIGI_CONV_ALTER_UNIT;
  133. #elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
  134. switch (convert_mode) {
  135. case ADC_CONV_SINGLE_UNIT_1:
  136. return ADC_LL_DIGI_CONV_ONLY_ADC1;
  137. case ADC_CONV_SINGLE_UNIT_2:
  138. return ADC_LL_DIGI_CONV_ONLY_ADC2;
  139. case ADC_CONV_BOTH_UNIT:
  140. return ADC_LL_DIGI_CONV_BOTH_UNIT;
  141. case ADC_CONV_ALTER_UNIT:
  142. return ADC_LL_DIGI_CONV_ALTER_UNIT;
  143. default:
  144. abort();
  145. }
  146. #endif
  147. }
  148. /**
  149. * For esp32s2 and later chips
  150. * - Set ADC digital controller clock division factor. The clock is divided from `APLL` or `APB` clock.
  151. * Expression: controller_clk = APLL/APB * (div_num + div_a / div_b + 1).
  152. * - Enable clock and select clock source for ADC digital controller.
  153. * For esp32, use I2S clock
  154. */
  155. static void adc_hal_digi_sample_freq_config(adc_hal_dma_ctx_t *hal, uint32_t freq)
  156. {
  157. #if !CONFIG_IDF_TARGET_ESP32
  158. uint32_t interval = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1) / 2 / freq;
  159. //set sample interval
  160. adc_ll_digi_set_trigger_interval(interval);
  161. //Here we set the clock divider factor to make the digital clock to 5M Hz
  162. adc_ll_digi_controller_clk_div(ADC_LL_CLKM_DIV_NUM_DEFAULT, ADC_LL_CLKM_DIV_B_DEFAULT, ADC_LL_CLKM_DIV_A_DEFAULT);
  163. adc_ll_digi_clk_sel(0); //use APB
  164. #else
  165. i2s_ll_rx_clk_set_src(hal->dev, I2S_CLK_SRC_DEFAULT); /*!< Clock from PLL_D2_CLK(160M)*/
  166. uint32_t bclk_div = 16;
  167. uint32_t bclk = freq * 2;
  168. uint32_t mclk = bclk * bclk_div;
  169. uint32_t mclk_div = I2S_BASE_CLK / mclk;
  170. i2s_ll_rx_set_mclk(hal->dev, I2S_BASE_CLK, mclk, mclk_div);
  171. i2s_ll_rx_set_bck_div_num(hal->dev, bclk_div);
  172. #endif
  173. }
  174. void adc_hal_digi_controller_config(adc_hal_dma_ctx_t *hal, const adc_hal_digi_ctrlr_cfg_t *cfg)
  175. {
  176. #if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
  177. //Only one pattern table, this variable is for readability
  178. const int pattern_both = 0;
  179. adc_ll_digi_clear_pattern_table(pattern_both);
  180. adc_ll_digi_set_pattern_table_len(pattern_both, cfg->adc_pattern_len);
  181. for (int i = 0; i < cfg->adc_pattern_len; i++) {
  182. adc_ll_digi_set_pattern_table(pattern_both, i, cfg->adc_pattern[i]);
  183. }
  184. #elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
  185. uint32_t adc1_pattern_idx = 0;
  186. uint32_t adc2_pattern_idx = 0;
  187. adc_ll_digi_clear_pattern_table(ADC_UNIT_1);
  188. adc_ll_digi_clear_pattern_table(ADC_UNIT_2);
  189. for (int i = 0; i < cfg->adc_pattern_len; i++) {
  190. if (cfg->adc_pattern[i].unit == ADC_UNIT_1) {
  191. adc_ll_digi_set_pattern_table(ADC_UNIT_1, adc1_pattern_idx, cfg->adc_pattern[i]);
  192. adc1_pattern_idx++;
  193. } else if (cfg->adc_pattern[i].unit == ADC_UNIT_2) {
  194. adc_ll_digi_set_pattern_table(ADC_UNIT_2, adc2_pattern_idx, cfg->adc_pattern[i]);
  195. adc2_pattern_idx++;
  196. } else {
  197. abort();
  198. }
  199. }
  200. adc_ll_digi_set_pattern_table_len(ADC_UNIT_1, adc1_pattern_idx);
  201. adc_ll_digi_set_pattern_table_len(ADC_UNIT_2, adc2_pattern_idx);
  202. #endif
  203. adc_ll_digi_convert_limit_enable(ADC_LL_DEFAULT_CONV_LIMIT_EN);
  204. adc_ll_digi_set_convert_limit_num(ADC_LL_DEFAULT_CONV_LIMIT_NUM);
  205. adc_ll_digi_set_convert_mode(get_convert_mode(cfg->conv_mode));
  206. //clock and sample frequency
  207. adc_hal_digi_sample_freq_config(hal, cfg->sample_freq_hz);
  208. }
  209. static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num)
  210. {
  211. HAL_ASSERT(((uint32_t)data_buf % 4) == 0);
  212. HAL_ASSERT((size % 4) == 0);
  213. uint32_t n = 0;
  214. while (num--) {
  215. desc[n] = (dma_descriptor_t) {
  216. .dw0.size = size,
  217. .dw0.length = 0,
  218. .dw0.suc_eof = 0,
  219. .dw0.owner = 1,
  220. .buffer = data_buf,
  221. .next = &desc[n+1]
  222. };
  223. data_buf += size;
  224. n++;
  225. }
  226. desc[n-1].next = NULL;
  227. }
  228. void adc_hal_digi_start(adc_hal_dma_ctx_t *hal, uint8_t *data_buf)
  229. {
  230. //stop peripheral and DMA
  231. adc_hal_digi_stop(hal);
  232. //reset DMA
  233. adc_dma_ll_rx_reset_channel(hal->dev, hal->dma_chan);
  234. //reset peripheral
  235. adc_ll_digi_reset(hal->dev);
  236. //reset the current descriptor address
  237. hal->cur_desc_ptr = &hal->desc_dummy_head;
  238. adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * SOC_ADC_DIGI_DATA_BYTES_PER_CONV, hal->desc_max_num);
  239. //start DMA
  240. adc_dma_ll_rx_start(hal->dev, hal->dma_chan, (lldesc_t *)hal->rx_desc);
  241. //connect DMA and peripheral
  242. adc_ll_digi_dma_enable();
  243. //start ADC
  244. adc_ll_digi_trigger_enable(hal->dev);
  245. }
  246. #if !SOC_GDMA_SUPPORTED
  247. intptr_t adc_hal_get_desc_addr(adc_hal_dma_ctx_t *hal)
  248. {
  249. return adc_dma_ll_get_in_suc_eof_desc_addr(hal->dev, hal->dma_chan);
  250. }
  251. bool adc_hal_check_event(adc_hal_dma_ctx_t *hal, uint32_t mask)
  252. {
  253. return adc_dma_ll_rx_get_intr(hal->dev, mask);
  254. }
  255. #endif //#if !SOC_GDMA_SUPPORTED
  256. adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_dma_ctx_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
  257. {
  258. HAL_ASSERT(hal->cur_desc_ptr);
  259. if (!hal->cur_desc_ptr->next) {
  260. return ADC_HAL_DMA_DESC_NULL;
  261. }
  262. if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) {
  263. return ADC_HAL_DMA_DESC_WAITING;
  264. }
  265. hal->cur_desc_ptr = hal->cur_desc_ptr->next;
  266. *cur_desc = hal->cur_desc_ptr;
  267. return ADC_HAL_DMA_DESC_VALID;
  268. }
  269. void adc_hal_digi_clr_intr(adc_hal_dma_ctx_t *hal, uint32_t mask)
  270. {
  271. adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, mask);
  272. }
  273. void adc_hal_digi_dis_intr(adc_hal_dma_ctx_t *hal, uint32_t mask)
  274. {
  275. adc_dma_ll_rx_disable_intr(hal->dev, hal->dma_chan, mask);
  276. }
  277. void adc_hal_digi_stop(adc_hal_dma_ctx_t *hal)
  278. {
  279. //stop ADC
  280. adc_ll_digi_trigger_disable(hal->dev);
  281. //stop DMA
  282. adc_dma_ll_rx_stop(hal->dev, hal->dma_chan);
  283. //disconnect DMA and peripheral
  284. adc_ll_digi_dma_disable();
  285. }