test_vfs_select.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610
  1. /*
  2. * SPDX-FileCopyrightText: 2018-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdio.h>
  7. #include <unistd.h>
  8. #include <sys/fcntl.h>
  9. #include <sys/param.h>
  10. #include "unity.h"
  11. #include "freertos/FreeRTOS.h"
  12. #include "soc/uart_struct.h"
  13. #include "driver/uart.h"
  14. #include "esp_vfs.h"
  15. #include "esp_vfs_dev.h"
  16. #include "esp_vfs_fat.h"
  17. #include "lwip/sockets.h"
  18. #include "lwip/netdb.h"
  19. #include "test_utils.h"
  20. typedef struct {
  21. int fd;
  22. int delay_ms;
  23. SemaphoreHandle_t sem;
  24. } test_task_param_t;
  25. typedef struct {
  26. fd_set *rdfds;
  27. fd_set *wrfds;
  28. fd_set *errfds;
  29. int maxfds;
  30. struct timeval *tv;
  31. int select_ret;
  32. SemaphoreHandle_t sem;
  33. } test_select_task_param_t;
  34. static const char message[] = "Hello world!";
  35. static int open_dummy_socket(void)
  36. {
  37. const struct addrinfo hints = {
  38. .ai_family = AF_INET,
  39. .ai_socktype = SOCK_DGRAM,
  40. };
  41. struct addrinfo *res = NULL;
  42. const int err = getaddrinfo("localhost", "80", &hints, &res);
  43. TEST_ASSERT_EQUAL(0, err);
  44. TEST_ASSERT_NOT_NULL(res);
  45. const int dummy_socket_fd = socket(res->ai_family, res->ai_socktype, 0);
  46. TEST_ASSERT(dummy_socket_fd >= 0);
  47. return dummy_socket_fd;
  48. }
  49. static int socket_init(void)
  50. {
  51. const struct addrinfo hints = {
  52. .ai_family = AF_INET,
  53. .ai_socktype = SOCK_DGRAM,
  54. };
  55. struct addrinfo *res;
  56. int err;
  57. struct sockaddr_in saddr = { 0 };
  58. int socket_fd = -1;
  59. err = getaddrinfo("localhost", "80", &hints, &res);
  60. TEST_ASSERT_EQUAL(err, 0);
  61. TEST_ASSERT_NOT_NULL(res);
  62. socket_fd = socket(res->ai_family, res->ai_socktype, 0);
  63. TEST_ASSERT(socket_fd >= 0);
  64. saddr.sin_family = PF_INET;
  65. saddr.sin_port = htons(80);
  66. saddr.sin_addr.s_addr = htonl(INADDR_ANY);
  67. err = bind(socket_fd, (struct sockaddr *) &saddr, sizeof(struct sockaddr_in));
  68. TEST_ASSERT(err >= 0);
  69. err = connect(socket_fd, res->ai_addr, res->ai_addrlen);
  70. TEST_ASSERT_EQUAL_MESSAGE(err, 0, "Socket connection failed");
  71. freeaddrinfo(res);
  72. return socket_fd;
  73. }
  74. static void uart1_init(void)
  75. {
  76. uart_config_t uart_config = {
  77. .baud_rate = 115200,
  78. .data_bits = UART_DATA_8_BITS,
  79. .parity = UART_PARITY_DISABLE,
  80. .stop_bits = UART_STOP_BITS_1,
  81. .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
  82. .source_clk = UART_SCLK_DEFAULT,
  83. };
  84. uart_driver_install(UART_NUM_1, 256, 256, 0, NULL, 0);
  85. uart_param_config(UART_NUM_1, &uart_config);
  86. }
  87. static void send_task(void *param)
  88. {
  89. const test_task_param_t *test_task_param = param;
  90. vTaskDelay(test_task_param->delay_ms / portTICK_PERIOD_MS);
  91. write(test_task_param->fd, message, sizeof(message));
  92. if (test_task_param->sem) {
  93. xSemaphoreGive(test_task_param->sem);
  94. }
  95. vTaskDelete(NULL);
  96. }
  97. static inline void start_task(const test_task_param_t *test_task_param)
  98. {
  99. xTaskCreate(send_task, "send_task", 8*1024, (void *) test_task_param, 5, NULL);
  100. }
  101. static void init(int *uart_fd, int *socket_fd)
  102. {
  103. test_case_uses_tcpip();
  104. uart1_init();
  105. uart_set_loop_back(UART_NUM_1, true);
  106. *uart_fd = open("/dev/uart/1", O_RDWR);
  107. TEST_ASSERT_NOT_EQUAL_MESSAGE(*uart_fd, -1, "Cannot open UART");
  108. esp_vfs_dev_uart_use_driver(1);
  109. *socket_fd = socket_init();
  110. }
  111. static void deinit(int uart_fd, int socket_fd)
  112. {
  113. esp_vfs_dev_uart_use_nonblocking(1);
  114. close(uart_fd);
  115. uart_driver_delete(UART_NUM_1);
  116. close(socket_fd);
  117. }
  118. TEST_CASE("UART can do select()", "[vfs]")
  119. {
  120. int uart_fd;
  121. int socket_fd;
  122. struct timeval tv = {
  123. .tv_sec = 0,
  124. .tv_usec = 100000,
  125. };
  126. char recv_message[sizeof(message)];
  127. init(&uart_fd, &socket_fd);
  128. fd_set rfds;
  129. FD_ZERO(&rfds);
  130. FD_SET(uart_fd, &rfds);
  131. //without socket in rfds it will not use the same signalization
  132. const test_task_param_t test_task_param = {
  133. .fd = uart_fd,
  134. .delay_ms = 50,
  135. .sem = xSemaphoreCreateBinary(),
  136. };
  137. TEST_ASSERT_NOT_NULL(test_task_param.sem);
  138. start_task(&test_task_param);
  139. int s = select(uart_fd + 1, &rfds, NULL, NULL, &tv);
  140. TEST_ASSERT_EQUAL(s, 1);
  141. TEST_ASSERT(FD_ISSET(uart_fd, &rfds));
  142. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
  143. int read_bytes = read(uart_fd, recv_message, sizeof(message));
  144. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  145. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  146. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  147. FD_ZERO(&rfds);
  148. FD_SET(uart_fd, &rfds);
  149. FD_SET(socket_fd, &rfds);
  150. start_task(&test_task_param);
  151. s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv);
  152. TEST_ASSERT_EQUAL(s, 1);
  153. TEST_ASSERT(FD_ISSET(uart_fd, &rfds));
  154. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
  155. read_bytes = read(uart_fd, recv_message, sizeof(message));
  156. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  157. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  158. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  159. vSemaphoreDelete(test_task_param.sem);
  160. deinit(uart_fd, socket_fd);
  161. }
  162. TEST_CASE("UART can do poll()", "[vfs]")
  163. {
  164. int uart_fd;
  165. int socket_fd;
  166. char recv_message[sizeof(message)];
  167. init(&uart_fd, &socket_fd);
  168. struct pollfd poll_fds[] = {
  169. {
  170. .fd = uart_fd,
  171. .events = POLLIN,
  172. },
  173. {
  174. .fd = -1, // should be ignored according to the documentation of poll()
  175. },
  176. };
  177. const test_task_param_t test_task_param = {
  178. .fd = uart_fd,
  179. .delay_ms = 50,
  180. .sem = xSemaphoreCreateBinary(),
  181. };
  182. TEST_ASSERT_NOT_NULL(test_task_param.sem);
  183. start_task(&test_task_param);
  184. int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  185. TEST_ASSERT_EQUAL(s, 1);
  186. TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
  187. TEST_ASSERT_EQUAL(POLLIN, poll_fds[0].revents);
  188. TEST_ASSERT_EQUAL(-1, poll_fds[1].fd);
  189. TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
  190. int read_bytes = read(uart_fd, recv_message, sizeof(message));
  191. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  192. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  193. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  194. poll_fds[1].fd = socket_fd;
  195. poll_fds[1].events = POLLIN;
  196. start_task(&test_task_param);
  197. s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  198. TEST_ASSERT_EQUAL(s, 1);
  199. TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
  200. TEST_ASSERT_EQUAL(POLLIN, poll_fds[0].revents);
  201. TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd);
  202. TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
  203. read_bytes = read(uart_fd, recv_message, sizeof(message));
  204. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  205. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  206. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  207. vSemaphoreDelete(test_task_param.sem);
  208. deinit(uart_fd, socket_fd);
  209. }
  210. TEST_CASE("socket can do select()", "[vfs]")
  211. {
  212. int uart_fd;
  213. int socket_fd;
  214. struct timeval tv = {
  215. .tv_sec = 0,
  216. .tv_usec = 100000,
  217. };
  218. char recv_message[sizeof(message)];
  219. init(&uart_fd, &socket_fd);
  220. const int dummy_socket_fd = open_dummy_socket();
  221. fd_set rfds;
  222. FD_ZERO(&rfds);
  223. FD_SET(uart_fd, &rfds);
  224. FD_SET(socket_fd, &rfds);
  225. FD_SET(dummy_socket_fd, &rfds);
  226. const test_task_param_t test_task_param = {
  227. .fd = socket_fd,
  228. .delay_ms = 50,
  229. .sem = xSemaphoreCreateBinary(),
  230. };
  231. TEST_ASSERT_NOT_NULL(test_task_param.sem);
  232. start_task(&test_task_param);
  233. const int s = select(MAX(MAX(uart_fd, socket_fd), dummy_socket_fd) + 1, &rfds, NULL, NULL, &tv);
  234. TEST_ASSERT_EQUAL(1, s);
  235. TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds));
  236. TEST_ASSERT_UNLESS(FD_ISSET(dummy_socket_fd, &rfds));
  237. TEST_ASSERT(FD_ISSET(socket_fd, &rfds));
  238. int read_bytes = read(socket_fd, recv_message, sizeof(message));
  239. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  240. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  241. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  242. vSemaphoreDelete(test_task_param.sem);
  243. deinit(uart_fd, socket_fd);
  244. close(dummy_socket_fd);
  245. }
  246. TEST_CASE("socket can do poll()", "[vfs]")
  247. {
  248. int uart_fd;
  249. int socket_fd;
  250. char recv_message[sizeof(message)];
  251. init(&uart_fd, &socket_fd);
  252. const int dummy_socket_fd = open_dummy_socket();
  253. struct pollfd poll_fds[] = {
  254. {
  255. .fd = uart_fd,
  256. .events = POLLIN,
  257. },
  258. {
  259. .fd = socket_fd,
  260. .events = POLLIN,
  261. },
  262. {
  263. .fd = dummy_socket_fd,
  264. .events = POLLIN,
  265. },
  266. };
  267. const test_task_param_t test_task_param = {
  268. .fd = socket_fd,
  269. .delay_ms = 50,
  270. .sem = xSemaphoreCreateBinary(),
  271. };
  272. TEST_ASSERT_NOT_NULL(test_task_param.sem);
  273. start_task(&test_task_param);
  274. int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  275. TEST_ASSERT_EQUAL(s, 1);
  276. TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
  277. TEST_ASSERT_EQUAL(0, poll_fds[0].revents);
  278. TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd);
  279. TEST_ASSERT_EQUAL(POLLIN, poll_fds[1].revents);
  280. TEST_ASSERT_EQUAL(dummy_socket_fd, poll_fds[2].fd);
  281. TEST_ASSERT_EQUAL(0, poll_fds[2].revents);
  282. int read_bytes = read(socket_fd, recv_message, sizeof(message));
  283. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  284. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  285. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  286. vSemaphoreDelete(test_task_param.sem);
  287. deinit(uart_fd, socket_fd);
  288. close(dummy_socket_fd);
  289. }
  290. TEST_CASE("select() timeout", "[vfs]")
  291. {
  292. int uart_fd;
  293. int socket_fd;
  294. struct timeval tv = {
  295. .tv_sec = 0,
  296. .tv_usec = 100000,
  297. };
  298. init(&uart_fd, &socket_fd);
  299. fd_set rfds;
  300. FD_ZERO(&rfds);
  301. FD_SET(uart_fd, &rfds);
  302. FD_SET(socket_fd, &rfds);
  303. int s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv);
  304. TEST_ASSERT_EQUAL(s, 0);
  305. TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds));
  306. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
  307. FD_ZERO(&rfds);
  308. s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv);
  309. TEST_ASSERT_EQUAL(s, 0);
  310. TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds));
  311. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
  312. deinit(uart_fd, socket_fd);
  313. }
  314. TEST_CASE("poll() timeout", "[vfs]")
  315. {
  316. int uart_fd;
  317. int socket_fd;
  318. init(&uart_fd, &socket_fd);
  319. struct pollfd poll_fds[] = {
  320. {
  321. .fd = uart_fd,
  322. .events = POLLIN,
  323. },
  324. {
  325. .fd = socket_fd,
  326. .events = POLLIN,
  327. },
  328. };
  329. int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  330. TEST_ASSERT_EQUAL(s, 0);
  331. TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
  332. TEST_ASSERT_EQUAL(0, poll_fds[0].revents);
  333. TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd);
  334. TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
  335. poll_fds[0].fd = -1;
  336. poll_fds[1].fd = -1;
  337. s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  338. TEST_ASSERT_EQUAL(s, 0);
  339. TEST_ASSERT_EQUAL(-1, poll_fds[0].fd);
  340. TEST_ASSERT_EQUAL(0, poll_fds[0].revents);
  341. TEST_ASSERT_EQUAL(-1, poll_fds[1].fd);
  342. TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
  343. deinit(uart_fd, socket_fd);
  344. }
  345. static void select_task(void *task_param)
  346. {
  347. const test_select_task_param_t *param = task_param;
  348. int s = select(param->maxfds, param->rdfds, param->wrfds, param->errfds, param->tv);
  349. TEST_ASSERT_EQUAL(param->select_ret, s);
  350. if (param->sem) {
  351. xSemaphoreGive(param->sem);
  352. }
  353. vTaskDelete(NULL);
  354. }
  355. static void inline start_select_task(test_select_task_param_t *param)
  356. {
  357. xTaskCreate(select_task, "select_task", 4*1024, (void *) param, 5, NULL);
  358. }
  359. TEST_CASE("concurrent selects work", "[vfs]")
  360. {
  361. int uart_fd, socket_fd;
  362. init(&uart_fd, &socket_fd);
  363. const int dummy_socket_fd = open_dummy_socket();
  364. {
  365. // Two tasks will wait for the same UART FD for reading and they will time-out
  366. struct timeval tv = {
  367. .tv_sec = 0,
  368. .tv_usec = 100000,
  369. };
  370. fd_set rdfds1;
  371. FD_ZERO(&rdfds1);
  372. FD_SET(uart_fd, &rdfds1);
  373. test_select_task_param_t param = {
  374. .rdfds = &rdfds1,
  375. .wrfds = NULL,
  376. .errfds = NULL,
  377. .maxfds = uart_fd + 1,
  378. .tv = &tv,
  379. .select_ret = 0, // expected timeout
  380. .sem = xSemaphoreCreateBinary(),
  381. };
  382. TEST_ASSERT_NOT_NULL(param.sem);
  383. fd_set rdfds2;
  384. FD_ZERO(&rdfds2);
  385. FD_SET(uart_fd, &rdfds2);
  386. FD_SET(socket_fd, &rdfds2);
  387. FD_SET(dummy_socket_fd, &rdfds2);
  388. start_select_task(&param);
  389. vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
  390. int s = select(MAX(MAX(uart_fd, dummy_socket_fd), socket_fd) + 1, &rdfds2, NULL, NULL, &tv);
  391. TEST_ASSERT_EQUAL(0, s); // timeout here as well
  392. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1000 / portTICK_PERIOD_MS));
  393. vSemaphoreDelete(param.sem);
  394. }
  395. {
  396. // One tasks waits for UART reading and one for writing. The former will be successful and latter will
  397. // time-out.
  398. struct timeval tv = {
  399. .tv_sec = 0,
  400. .tv_usec = 100000,
  401. };
  402. fd_set wrfds1;
  403. FD_ZERO(&wrfds1);
  404. FD_SET(uart_fd, &wrfds1);
  405. test_select_task_param_t param = {
  406. .rdfds = NULL,
  407. .wrfds = &wrfds1,
  408. .errfds = NULL,
  409. .maxfds = uart_fd + 1,
  410. .tv = &tv,
  411. .select_ret = 0, // expected timeout
  412. .sem = xSemaphoreCreateBinary(),
  413. };
  414. TEST_ASSERT_NOT_NULL(param.sem);
  415. start_select_task(&param);
  416. fd_set rdfds2;
  417. FD_ZERO(&rdfds2);
  418. FD_SET(uart_fd, &rdfds2);
  419. FD_SET(socket_fd, &rdfds2);
  420. FD_SET(dummy_socket_fd, &rdfds2);
  421. const test_task_param_t send_param = {
  422. .fd = uart_fd,
  423. .delay_ms = 50,
  424. .sem = xSemaphoreCreateBinary(),
  425. };
  426. TEST_ASSERT_NOT_NULL(send_param.sem);
  427. start_task(&send_param); // This task will write to UART which will be detected by select()
  428. int s = select(MAX(MAX(uart_fd, dummy_socket_fd), socket_fd) + 1, &rdfds2, NULL, NULL, &tv);
  429. TEST_ASSERT_EQUAL(1, s);
  430. TEST_ASSERT(FD_ISSET(uart_fd, &rdfds2));
  431. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rdfds2));
  432. TEST_ASSERT_UNLESS(FD_ISSET(dummy_socket_fd, &rdfds2));
  433. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1000 / portTICK_PERIOD_MS));
  434. vSemaphoreDelete(param.sem);
  435. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(send_param.sem, 1000 / portTICK_PERIOD_MS));
  436. vSemaphoreDelete(send_param.sem);
  437. }
  438. deinit(uart_fd, socket_fd);
  439. close(dummy_socket_fd);
  440. }
  441. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)
  442. //IDF-5139
  443. TEST_CASE("select() works with concurrent mount", "[vfs][fatfs]")
  444. {
  445. wl_handle_t test_wl_handle;
  446. int uart_fd, socket_fd;
  447. init(&uart_fd, &socket_fd);
  448. const int dummy_socket_fd = open_dummy_socket();
  449. esp_vfs_fat_sdmmc_mount_config_t mount_config = {
  450. .format_if_mount_failed = true,
  451. .max_files = 2
  452. };
  453. // select() will be waiting for a socket & UART and FATFS mount will occur in parallel
  454. struct timeval tv = {
  455. .tv_sec = 1,
  456. .tv_usec = 0,
  457. };
  458. fd_set rdfds;
  459. FD_ZERO(&rdfds);
  460. FD_SET(uart_fd, &rdfds);
  461. FD_SET(dummy_socket_fd, &rdfds);
  462. test_select_task_param_t param = {
  463. .rdfds = &rdfds,
  464. .wrfds = NULL,
  465. .errfds = NULL,
  466. .maxfds = MAX(uart_fd, dummy_socket_fd) + 1,
  467. .tv = &tv,
  468. .select_ret = 0, // expected timeout
  469. .sem = xSemaphoreCreateBinary(),
  470. };
  471. TEST_ASSERT_NOT_NULL(param.sem);
  472. start_select_task(&param);
  473. vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
  474. TEST_ESP_OK(esp_vfs_fat_spiflash_mount_rw_wl("/spiflash", NULL, &mount_config, &test_wl_handle));
  475. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1500 / portTICK_PERIOD_MS));
  476. // select() will be waiting for a socket & UART and FATFS unmount will occur in parallel
  477. FD_ZERO(&rdfds);
  478. FD_SET(uart_fd, &rdfds);
  479. FD_SET(dummy_socket_fd, &rdfds);
  480. start_select_task(&param);
  481. vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
  482. TEST_ESP_OK(esp_vfs_fat_spiflash_unmount_rw_wl("/spiflash", test_wl_handle));
  483. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1500 / portTICK_PERIOD_MS));
  484. vSemaphoreDelete(param.sem);
  485. deinit(uart_fd, socket_fd);
  486. close(dummy_socket_fd);
  487. }
  488. #endif //!TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2)