| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393 |
- #!/usr/bin/env python
- # SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
- # SPDX-License-Identifier: Apache-2.0
- import argparse
- import hashlib
- import hmac
- import json
- import os
- import struct
- import subprocess
- import sys
- from cryptography.hazmat.backends import default_backend
- from cryptography.hazmat.primitives import serialization
- from cryptography.hazmat.primitives.asymmetric import rsa
- from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
- from cryptography.utils import int_to_bytes
- try:
- import nvs_partition_gen as nvs_gen
- except ImportError:
- idf_path = os.getenv('IDF_PATH')
- if not idf_path or not os.path.exists(idf_path):
- raise Exception('IDF_PATH not found')
- sys.path.insert(0, os.path.join(idf_path, 'components', 'nvs_flash', 'nvs_partition_generator'))
- import nvs_partition_gen as nvs_gen
- # Check python version is proper or not to avoid script failure
- assert sys.version_info >= (3, 6, 0), 'Python version too low.'
- esp_ds_data_dir = 'esp_ds_data'
- # hmac_key_file is generated when HMAC_KEY is calculated, it is used when burning HMAC_KEY to efuse
- hmac_key_file = esp_ds_data_dir + '/hmac_key.bin'
- # csv and bin filenames are default filenames for nvs partition files created with this script
- csv_filename = esp_ds_data_dir + '/pre_prov.csv'
- bin_filename = esp_ds_data_dir + '/pre_prov.bin'
- expected_json_path = os.path.join('build', 'config', 'sdkconfig.json')
- # Targets supported by the script
- supported_targets = {'esp32s2', 'esp32c3', 'esp32s3'}
- supported_key_size = {'esp32s2':[1024, 2048, 3072, 4096], 'esp32c3':[1024, 2048, 3072], 'esp32s3':[1024, 2048, 3072, 4096]}
- # @return
- # on success idf_target - value of the IDF_TARGET read from build/config/sdkconfig.json
- # on failure None
- def get_idf_target():
- if os.path.exists(expected_json_path):
- sdkconfig = json.load(open(expected_json_path))
- idf_target_read = sdkconfig['IDF_TARGET']
- return idf_target_read
- else:
- print('ERROR: IDF_TARGET has not been set for the supported targets,'
- "\nplase execute command \"idf.py set-target {TARGET}\" in the example directory")
- return None
- def load_privatekey(key_file_path, password=None):
- key_file = open(key_file_path, 'rb')
- key = key_file.read()
- key_file.close()
- return serialization.load_pem_private_key(key, password=password, backend=default_backend())
- def number_as_bytes(number, pad_bits=None):
- """
- Given a number, format as a little endian array of bytes
- """
- result = int_to_bytes(number)[::-1]
- while pad_bits is not None and len(result) < (pad_bits // 8):
- result += b'\x00'
- return result
- # @return
- # c : ciphertext_c
- # iv : initialization vector
- # key_size : key size of the RSA private key in bytes.
- # @input
- # privkey : path to the RSA private key
- # priv_key_pass : path to the RSA privaete key password
- # hmac_key : HMAC key value ( to calculate DS params)
- # idf_target : The target chip for the script (e.g. esp32s2, esp32c3, esp32s3)
- # @info
- # The function calculates the encrypted private key parameters.
- # Consult the DS documentation (available for the ESP32-S2) in the esp-idf programming guide for more details about the variables and calculations.
- def calculate_ds_parameters(privkey, priv_key_pass, hmac_key, idf_target):
- private_key = load_privatekey(privkey, priv_key_pass)
- if not isinstance(private_key, rsa.RSAPrivateKey):
- print('ERROR: Only RSA private keys are supported')
- sys.exit(-1)
- if hmac_key is None:
- print('ERROR: hmac_key cannot be None')
- sys.exit(-2)
- priv_numbers = private_key.private_numbers()
- pub_numbers = private_key.public_key().public_numbers()
- Y = priv_numbers.d
- M = pub_numbers.n
- key_size = private_key.key_size
- if key_size not in supported_key_size[idf_target]:
- print('ERROR: Private key size {0} not supported for the target {1},\nthe supported key sizes are {2}'
- .format(key_size, idf_target, str(supported_key_size[idf_target])))
- sys.exit(-1)
- iv = os.urandom(16)
- rr = 1 << (key_size * 2)
- rinv = rr % pub_numbers.n
- mprime = - rsa._modinv(M, 1 << 32)
- mprime &= 0xFFFFFFFF
- length = key_size // 32 - 1
- # get max supported key size for the respective target
- max_len = max(supported_key_size[idf_target])
- aes_key = hmac.HMAC(hmac_key, b'\xFF' * 32, hashlib.sha256).digest()
- md_in = number_as_bytes(Y, max_len) + \
- number_as_bytes(M, max_len) + \
- number_as_bytes(rinv, max_len) + \
- struct.pack('<II', mprime, length) + \
- iv
- # expected_len = max_len_Y + max_len_M + max_len_rinv + (mprime + length packed (8 bytes))+ iv (16 bytes)
- expected_len = (max_len / 8) * 3 + 8 + 16
- assert len(md_in) == expected_len
- md = hashlib.sha256(md_in).digest()
- # In case of ESP32-S2
- # Y4096 || M4096 || Rb4096 || M_prime32 || LENGTH32 || MD256 || 0x08*8
- # In case of ESP32-C3
- # Y3072 || M3072 || Rb3072 || M_prime32 || LENGTH32 || MD256 || 0x08*8
- p = number_as_bytes(Y, max_len) + \
- number_as_bytes(M, max_len) + \
- number_as_bytes(rinv, max_len) + \
- md + \
- struct.pack('<II', mprime, length) + \
- b'\x08' * 8
- # expected_len = max_len_Y + max_len_M + max_len_rinv + md (32 bytes) + (mprime + length packed (8bytes)) + padding (8 bytes)
- expected_len = (max_len / 8) * 3 + 32 + 8 + 8
- assert len(p) == expected_len
- cipher = Cipher(algorithms.AES(aes_key), modes.CBC(iv), backend=default_backend())
- encryptor = cipher.encryptor()
- c = encryptor.update(p) + encryptor.finalize()
- return c, iv, key_size
- # @info
- # The function makes use of the "espefuse.py" script to read the efuse summary
- def efuse_summary(args, idf_target):
- os.system('python $IDF_PATH/components/esptool_py/esptool/espefuse.py --chip {0} -p {1} summary'.format(idf_target, (args.port)))
- # @info
- # The function makes use of the "espefuse.py" script to burn the HMAC key on the efuse.
- def efuse_burn_key(args, idf_target):
- # In case of a development (default) usecase we disable the read protection.
- key_block_status = '--no-read-protect'
- if args.production is True:
- # Whitespace character will have no additional effect on the command and
- # read protection will be enabled as the default behaviour of the command
- key_block_status = ' '
- os.system('python $IDF_PATH/components/esptool_py/esptool/espefuse.py --chip {0} -p {1} burn_key '
- '{2} {3} HMAC_DOWN_DIGITAL_SIGNATURE {4}'
- .format((idf_target), (args.port), ('BLOCK_KEY' + str(args.efuse_key_id)), (hmac_key_file), (key_block_status)))
- # @info
- # Generate a custom csv file of encrypted private key parameters.
- # The csv file is required by the nvs_partition_generator utility to create the nvs partition.
- def generate_csv_file(c, iv, hmac_key_id, key_size, csv_file):
- with open(csv_file, 'wt', encoding='utf8') as f:
- f.write('# This is a generated csv file containing required parameters for the Digital Signature operation\n')
- f.write('key,type,encoding,value\nesp_ds_ns,namespace,,\n')
- f.write('esp_ds_c,data,hex2bin,%s\n' % (c.hex()))
- f.write('esp_ds_iv,data,hex2bin,%s\n' % (iv.hex()))
- f.write('esp_ds_key_id,data,u8,%d\n' % (hmac_key_id))
- f.write('esp_ds_rsa_len,data,u16,%d\n' % (key_size))
- class DefineArgs(object):
- def __init__(self, attributes):
- for key, value in attributes.items():
- self.__setattr__(key, value)
- # @info
- # This function uses the nvs_partition_generater utility
- # to generate the nvs partition of the encrypted private key parameters.
- def generate_nvs_partition(input_filename, output_filename):
- nvs_args = DefineArgs({
- 'input': input_filename,
- 'outdir': os.getcwd(),
- 'output': output_filename,
- 'size': hex(0x3000),
- 'version': 2,
- 'keyfile':None,
- })
- nvs_gen.generate(nvs_args, is_encr_enabled=False, encr_key=None)
- # @return
- # The json formatted summary of the efuse.
- def get_efuse_summary_json(args, idf_target):
- _efuse_summary = None
- try:
- _efuse_summary = subprocess.check_output(('python $IDF_PATH/components/esptool_py/esptool/espefuse.py '
- '--chip {0} -p {1} summary --format json'.format(idf_target, (args.port))), shell=True)
- except subprocess.CalledProcessError as e:
- print((e.output).decode('UTF-8'))
- sys.exit(-1)
- _efuse_summary = _efuse_summary.decode('UTF-8')
- # Remove everything before actual json data from efuse_summary command output.
- _efuse_summary = _efuse_summary[_efuse_summary.find('{'):]
- try:
- _efuse_summary_json = json.loads(_efuse_summary)
- except json.JSONDecodeError:
- print('ERROR: failed to parse the json output')
- sys.exit(-1)
- return _efuse_summary_json
- # @return
- # on success: 256 bit HMAC key present in the given key_block (args.efuse_key_id)
- # on failure: None
- # @info
- # This function configures the provided efuse key_block.
- # If the provided efuse key_block is empty the function generates a new HMAC key and burns it in the efuse key_block.
- # If the key_block already contains a key the function reads the key from the efuse key_block
- def configure_efuse_key_block(args, idf_target):
- efuse_summary_json = get_efuse_summary_json(args, idf_target)
- key_blk = 'BLOCK_KEY' + str(args.efuse_key_id)
- key_purpose = 'KEY_PURPOSE_' + str(args.efuse_key_id)
- kb_writeable = efuse_summary_json[key_blk]['writeable']
- kb_readable = efuse_summary_json[key_blk]['readable']
- hmac_key_read = None
- # If the efuse key block is writable (empty) then generate and write
- # the new hmac key and check again
- # If the efuse key block is not writable (already contains a key) then check if it is redable
- if kb_writeable is True:
- print('Provided key block (KEY BLOCK %1d) is writable\n Generating a new key and burning it in the efuse..\n' % (args.efuse_key_id))
- new_hmac_key = os.urandom(32)
- with open(hmac_key_file, 'wb') as key_file:
- key_file.write(new_hmac_key)
- # Burn efuse key
- efuse_burn_key(args, idf_target)
- if args.production is False:
- # Read fresh summary of the efuse to read the key value from efuse.
- # If the key read from efuse matches with the key generated
- # on host then burn_key operation was successfull
- new_efuse_summary_json = get_efuse_summary_json(args, idf_target)
- hmac_key_read = new_efuse_summary_json[key_blk]['value']
- print(hmac_key_read)
- hmac_key_read = bytes.fromhex(hmac_key_read)
- if new_hmac_key == hmac_key_read:
- print('Key was successfully written to the efuse (KEY BLOCK %1d)' % (args.efuse_key_id))
- else:
- print('ERROR: Failed to burn the hmac key to efuse (KEY BLOCK %1d),'
- '\nPlease execute the script again using a different key id' % (args.efuse_key_id))
- return None
- else:
- new_efuse_summary_json = get_efuse_summary_json(args, idf_target)
- if new_efuse_summary_json[key_purpose]['value'] != 'HMAC_DOWN_DIGITAL_SIGNATURE':
- print('ERROR: Failed to verify the key purpose of the key block{})'.format(args.efuse_key_id))
- return None
- hmac_key_read = new_hmac_key
- else:
- # If the efuse key block is redable, then read the key from efuse block and use it for encrypting the RSA private key parameters.
- # If the efuse key block is not redable or it has key purpose set to a different
- # value than "HMAC_DOWN_DIGITAL_SIGNATURE" then we cannot use it for DS operation
- if kb_readable is True:
- if efuse_summary_json[key_purpose]['value'] == 'HMAC_DOWN_DIGITAL_SIGNATURE':
- print('Provided efuse key block (KEY BLOCK %1d) already contains a key with key_purpose=HMAC_DOWN_DIGITAL_SIGNATURE,'
- '\nusing the same key for encrypting the private key data...\n' % (args.efuse_key_id))
- hmac_key_read = efuse_summary_json[key_blk]['value']
- hmac_key_read = bytes.fromhex(hmac_key_read)
- if args.keep_ds_data is True:
- with open(hmac_key_file, 'wb') as key_file:
- key_file.write(hmac_key_read)
- else:
- print('ERROR: Provided efuse key block ((KEY BLOCK %1d)) contains a key with key purpose different'
- 'than HMAC_DOWN_DIGITAL_SIGNATURE,\nplease execute the script again with a different value of the efuse key id.' % (args.efuse_key_id))
- return None
- else:
- print('ERROR: Provided efuse key block (KEY BLOCK %1d) is not readable and writeable,'
- '\nplease execute the script again with a different value of the efuse key id.' % (args.efuse_key_id))
- return None
- # Return the hmac key burned into the efuse
- return hmac_key_read
- def cleanup(args):
- if args.keep_ds_data is False:
- if os.path.exists(hmac_key_file):
- os.remove(hmac_key_file)
- if os.path.exists(csv_filename):
- os.remove(csv_filename)
- def main():
- parser = argparse.ArgumentParser(description='''Generate an HMAC key and burn it in the desired efuse key block (required for Digital Signature),
- Generates an NVS partition containing the encrypted private key parameters from the client private key.
- ''')
- parser.add_argument(
- '--private-key',
- dest='privkey',
- default='client.key',
- metavar='relative/path/to/client-priv-key',
- help='relative path to client private key')
- parser.add_argument(
- '--pwd', '--password',
- dest='priv_key_pass',
- metavar='[password]',
- help='the password associated with the private key')
- parser.add_argument(
- '--summary',
- dest='summary',action='store_true',
- help='Provide this option to print efuse summary of the chip')
- parser.add_argument(
- '--efuse_key_id',
- dest='efuse_key_id', type=int, choices=range(1,6),
- metavar='[key_id] ',
- default=1,
- help='Provide the efuse key_id which contains/will contain HMAC_KEY, default is 1')
- parser.add_argument(
- '--port', '-p',
- dest='port',
- metavar='[port]',
- required=True,
- help='UART com port to which the ESP device is connected')
- parser.add_argument(
- '--keep_ds_data_on_host','-keep_ds_data',
- dest='keep_ds_data', action='store_true',
- help='Keep encrypted private key data and key on host machine for testing purpose')
- parser.add_argument(
- '--production', '-prod',
- dest='production', action='store_true',
- help='Enable production configurations. e.g.keep efuse key block read protection enabled')
- args = parser.parse_args()
- idf_target = get_idf_target()
- if idf_target not in supported_targets:
- if idf_target is not None:
- print('ERROR: The script does not support the target %s' % idf_target)
- sys.exit(-1)
- idf_target = str(idf_target)
- if args.summary is not False:
- efuse_summary(args, idf_target)
- sys.exit(0)
- if (os.path.exists(args.privkey) is False):
- print('ERROR: The provided private key file does not exist')
- sys.exit(-1)
- if (os.path.exists(esp_ds_data_dir) is False):
- os.makedirs(esp_ds_data_dir)
- # Burn hmac_key on the efuse block (if it is empty) or read it
- # from the efuse block (if the efuse block already contains a key).
- hmac_key_read = configure_efuse_key_block(args, idf_target)
- if hmac_key_read is None:
- sys.exit(-1)
- # Calculate the encrypted private key data along with all other parameters
- c, iv, key_size = calculate_ds_parameters(args.privkey, args.priv_key_pass, hmac_key_read, idf_target)
- # Generate csv file for the DS data and generate an NVS partition.
- generate_csv_file(c, iv, args.efuse_key_id, key_size, csv_filename)
- generate_nvs_partition(csv_filename, bin_filename)
- cleanup(args)
- if __name__ == '__main__':
- main()
|