test_spi_master.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140
  1. /*
  2. Tests for the spi_master device driver
  3. */
  4. #include <esp_types.h>
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <malloc.h>
  8. #include <string.h>
  9. #include "rom/ets_sys.h"
  10. #include "freertos/FreeRTOS.h"
  11. #include "freertos/task.h"
  12. #include "freertos/semphr.h"
  13. #include "freertos/queue.h"
  14. #include "freertos/xtensa_api.h"
  15. #include "unity.h"
  16. #include "driver/spi_master.h"
  17. #include "driver/spi_slave.h"
  18. #include "soc/dport_reg.h"
  19. #include "esp_heap_caps.h"
  20. #include "esp_log.h"
  21. #include "soc/spi_periph.h"
  22. #include "test_utils.h"
  23. #include "test/test_common_spi.h"
  24. #include "soc/gpio_periph.h"
  25. #include "sdkconfig.h"
  26. const static char TAG[] = "test_spi";
  27. static void check_spi_pre_n_for(int clk, int pre, int n)
  28. {
  29. esp_err_t ret;
  30. spi_device_handle_t handle;
  31. spi_device_interface_config_t devcfg={
  32. .command_bits=0,
  33. .address_bits=0,
  34. .dummy_bits=0,
  35. .clock_speed_hz=clk,
  36. .duty_cycle_pos=128,
  37. .mode=0,
  38. .spics_io_num=21,
  39. .queue_size=3
  40. };
  41. char sendbuf[16]="";
  42. spi_transaction_t t;
  43. memset(&t, 0, sizeof(t));
  44. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle);
  45. TEST_ASSERT(ret==ESP_OK);
  46. t.length=16*8;
  47. t.tx_buffer=sendbuf;
  48. ret=spi_device_transmit(handle, &t);
  49. printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, SPI2.clock.clkdiv_pre+1, SPI2.clock.clkcnt_n+1);
  50. TEST_ASSERT(SPI2.clock.clkcnt_n+1==n);
  51. TEST_ASSERT(SPI2.clock.clkdiv_pre+1==pre);
  52. ret=spi_bus_remove_device(handle);
  53. TEST_ASSERT(ret==ESP_OK);
  54. }
  55. TEST_CASE("SPI Master clockdiv calculation routines", "[spi]")
  56. {
  57. spi_bus_config_t buscfg={
  58. .mosi_io_num=4,
  59. .miso_io_num=26,
  60. .sclk_io_num=25,
  61. .quadwp_io_num=-1,
  62. .quadhd_io_num=-1
  63. };
  64. esp_err_t ret;
  65. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  66. TEST_ASSERT(ret==ESP_OK);
  67. check_spi_pre_n_for(26000000, 1, 3);
  68. check_spi_pre_n_for(20000000, 1, 4);
  69. check_spi_pre_n_for(8000000, 1, 10);
  70. check_spi_pre_n_for(800000, 2, 50);
  71. check_spi_pre_n_for(100000, 16, 50);
  72. check_spi_pre_n_for(333333, 4, 60);
  73. check_spi_pre_n_for(900000, 2, 44);
  74. check_spi_pre_n_for(1, 8192, 64); //Actually should generate the minimum clock speed, 152Hz
  75. check_spi_pre_n_for(26000000, 1, 3);
  76. ret=spi_bus_free(HSPI_HOST);
  77. TEST_ASSERT(ret==ESP_OK);
  78. }
  79. static spi_device_handle_t setup_spi_bus(int clkspeed, bool dma) {
  80. spi_bus_config_t buscfg={
  81. .mosi_io_num=26,
  82. .miso_io_num=26,
  83. .sclk_io_num=25,
  84. .quadwp_io_num=-1,
  85. .quadhd_io_num=-1,
  86. .max_transfer_sz=4096*3
  87. };
  88. spi_device_interface_config_t devcfg={
  89. .command_bits=0,
  90. .address_bits=0,
  91. .dummy_bits=0,
  92. .clock_speed_hz=clkspeed,
  93. .duty_cycle_pos=128,
  94. .mode=0,
  95. .spics_io_num=21,
  96. .queue_size=3,
  97. };
  98. esp_err_t ret;
  99. spi_device_handle_t handle;
  100. ret=spi_bus_initialize(HSPI_HOST, &buscfg, dma?1:0);
  101. TEST_ASSERT(ret==ESP_OK);
  102. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle);
  103. TEST_ASSERT(ret==ESP_OK);
  104. //connect MOSI to two devices breaks the output, fix it.
  105. spitest_gpio_output_sel(26, FUNC_GPIO, HSPID_OUT_IDX);
  106. printf("Bus/dev inited.\n");
  107. return handle;
  108. }
  109. static int spi_test(spi_device_handle_t handle, int num_bytes) {
  110. esp_err_t ret;
  111. int x;
  112. bool success = true;
  113. srand(num_bytes);
  114. char *sendbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA);
  115. char *recvbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA);
  116. for (x=0; x<num_bytes; x++) {
  117. sendbuf[x]=rand()&0xff;
  118. recvbuf[x]=0x55;
  119. }
  120. spi_transaction_t t;
  121. memset(&t, 0, sizeof(t));
  122. t.length=num_bytes*8;
  123. t.tx_buffer=sendbuf;
  124. t.rx_buffer=recvbuf;
  125. t.addr=0xA00000000000000FL;
  126. t.cmd=0x55;
  127. printf("Transmitting %d bytes...\n", num_bytes);
  128. ret=spi_device_transmit(handle, &t);
  129. TEST_ASSERT(ret==ESP_OK);
  130. srand(num_bytes);
  131. for (x=0; x<num_bytes; x++) {
  132. if (sendbuf[x]!=(rand()&0xff)) {
  133. printf("Huh? Sendbuf corrupted at byte %d\n", x);
  134. TEST_ASSERT(0);
  135. }
  136. if (sendbuf[x]!=recvbuf[x]) break;
  137. }
  138. if (x!=num_bytes) {
  139. int from=x-16;
  140. if (from<0) from=0;
  141. success = false;
  142. printf("Error at %d! Sent vs recved: (starting from %d)\n" , x, from);
  143. for (int i=0; i<32; i++) {
  144. if (i+from<num_bytes) printf("%02X ", sendbuf[from+i]);
  145. }
  146. printf("\n");
  147. for (int i=0; i<32; i++) {
  148. if (i+from<num_bytes) printf("%02X ", recvbuf[from+i]);
  149. }
  150. printf("\n");
  151. }
  152. if (success) printf("Success!\n");
  153. free(sendbuf);
  154. free(recvbuf);
  155. return success;
  156. }
  157. TEST_CASE("SPI Master test", "[spi]")
  158. {
  159. bool success = true;
  160. printf("Testing bus at 80KHz\n");
  161. spi_device_handle_t handle=setup_spi_bus(80000, true);
  162. success &= spi_test(handle, 16); //small
  163. success &= spi_test(handle, 21); //small, unaligned
  164. success &= spi_test(handle, 36); //aligned
  165. success &= spi_test(handle, 128); //aligned
  166. success &= spi_test(handle, 129); //unaligned
  167. success &= spi_test(handle, 4096-2); //multiple descs, edge case 1
  168. success &= spi_test(handle, 4096-1); //multiple descs, edge case 2
  169. success &= spi_test(handle, 4096*3); //multiple descs
  170. master_free_device_bus(handle);
  171. printf("Testing bus at 80KHz, non-DMA\n");
  172. handle=setup_spi_bus(80000, false);
  173. success &= spi_test(handle, 4); //aligned
  174. success &= spi_test(handle, 16); //small
  175. success &= spi_test(handle, 21); //small, unaligned
  176. success &= spi_test(handle, 32); //small
  177. success &= spi_test(handle, 47); //small, unaligned
  178. success &= spi_test(handle, 63); //small
  179. success &= spi_test(handle, 64); //small, unaligned
  180. master_free_device_bus(handle);
  181. printf("Testing bus at 26MHz\n");
  182. handle=setup_spi_bus(20000000, true);
  183. success &= spi_test(handle, 128); //DMA, aligned
  184. success &= spi_test(handle, 4096*3); //DMA, multiple descs
  185. master_free_device_bus(handle);
  186. printf("Testing bus at 900KHz\n");
  187. handle=setup_spi_bus(9000000, true);
  188. success &= spi_test(handle, 128); //DMA, aligned
  189. success &= spi_test(handle, 4096*3); //DMA, multiple descs
  190. master_free_device_bus(handle);
  191. TEST_ASSERT(success);
  192. }
  193. TEST_CASE("SPI Master test, interaction of multiple devs", "[spi]") {
  194. esp_err_t ret;
  195. bool success = true;
  196. spi_device_interface_config_t devcfg={
  197. .command_bits=0,
  198. .address_bits=0,
  199. .dummy_bits=0,
  200. .clock_speed_hz=1000000,
  201. .duty_cycle_pos=128,
  202. .mode=0,
  203. .spics_io_num=23,
  204. .queue_size=3,
  205. };
  206. spi_device_handle_t handle1=setup_spi_bus(80000, true);
  207. spi_device_handle_t handle2;
  208. spi_bus_add_device(HSPI_HOST, &devcfg, &handle2);
  209. printf("Sending to dev 1\n");
  210. success &= spi_test(handle1, 7);
  211. printf("Sending to dev 1\n");
  212. success &= spi_test(handle1, 15);
  213. printf("Sending to dev 2\n");
  214. success &= spi_test(handle2, 15);
  215. printf("Sending to dev 1\n");
  216. success &= spi_test(handle1, 32);
  217. printf("Sending to dev 2\n");
  218. success &= spi_test(handle2, 32);
  219. printf("Sending to dev 1\n");
  220. success &= spi_test(handle1, 63);
  221. printf("Sending to dev 2\n");
  222. success &= spi_test(handle2, 63);
  223. printf("Sending to dev 1\n");
  224. success &= spi_test(handle1, 5000);
  225. printf("Sending to dev 2\n");
  226. success &= spi_test(handle2, 5000);
  227. ret=spi_bus_remove_device(handle2);
  228. TEST_ASSERT(ret==ESP_OK);
  229. master_free_device_bus(handle1);
  230. TEST_ASSERT(success);
  231. }
  232. static esp_err_t test_master_pins(int mosi, int miso, int sclk, int cs)
  233. {
  234. esp_err_t ret;
  235. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  236. cfg.mosi_io_num = mosi;
  237. cfg.miso_io_num = miso;
  238. cfg.sclk_io_num = sclk;
  239. spi_device_interface_config_t master_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  240. master_cfg.spics_io_num = cs;
  241. ret = spi_bus_initialize(TEST_SPI_HOST, &cfg, 1);
  242. if (ret != ESP_OK) return ret;
  243. spi_device_handle_t spi;
  244. ret = spi_bus_add_device(TEST_SPI_HOST, &master_cfg, &spi);
  245. if (ret != ESP_OK) {
  246. spi_bus_free(TEST_SPI_HOST);
  247. return ret;
  248. }
  249. master_free_device_bus(spi);
  250. return ESP_OK;
  251. }
  252. static esp_err_t test_slave_pins(int mosi, int miso, int sclk, int cs)
  253. {
  254. esp_err_t ret;
  255. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  256. cfg.mosi_io_num = mosi;
  257. cfg.miso_io_num = miso;
  258. cfg.sclk_io_num = sclk;
  259. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  260. slave_cfg.spics_io_num = cs;
  261. ret = spi_slave_initialize(TEST_SLAVE_HOST, &cfg, &slave_cfg, 1);
  262. if (ret != ESP_OK) return ret;
  263. spi_slave_free(TEST_SLAVE_HOST);
  264. return ESP_OK;
  265. }
  266. TEST_CASE("spi placed on input-only pins", "[spi]")
  267. {
  268. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  269. TEST_ASSERT(test_master_pins(34, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS)!=ESP_OK);
  270. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, 34, PIN_NUM_CLK, PIN_NUM_CS));
  271. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, 34, PIN_NUM_CS)!=ESP_OK);
  272. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, 34)!=ESP_OK);
  273. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  274. TEST_ESP_OK(test_slave_pins(34, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  275. TEST_ASSERT(test_slave_pins(PIN_NUM_MOSI, 34, PIN_NUM_CLK, PIN_NUM_CS)!=ESP_OK);
  276. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, 34, PIN_NUM_CS));
  277. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, 34));
  278. }
  279. TEST_CASE("spi bus setting with different pin configs", "[spi]")
  280. {
  281. spi_bus_config_t cfg;
  282. uint32_t flags_o;
  283. uint32_t flags_expected;
  284. ESP_LOGI(TAG, "test 6 iomux output pins...");
  285. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_NATIVE_PINS | SPICOMMON_BUSFLAG_QUAD;
  286. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  287. .max_transfer_sz = 8, .flags = flags_expected};
  288. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  289. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  290. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  291. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  292. ESP_LOGI(TAG, "test 4 iomux output pins...");
  293. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_NATIVE_PINS | SPICOMMON_BUSFLAG_DUAL;
  294. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  295. .max_transfer_sz = 8, .flags = flags_expected};
  296. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  297. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  298. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  299. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  300. ESP_LOGI(TAG, "test 6 output pins...");
  301. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_QUAD;
  302. //swap MOSI and MISO
  303. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  304. .max_transfer_sz = 8, .flags = flags_expected};
  305. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  306. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  307. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  308. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  309. ESP_LOGI(TAG, "test 4 output pins...");
  310. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_DUAL;
  311. //swap MOSI and MISO
  312. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  313. .max_transfer_sz = 8, .flags = flags_expected};
  314. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  315. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  316. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  317. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  318. ESP_LOGI(TAG, "test master 5 output pins and MOSI on input-only pin...");
  319. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD;
  320. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  321. .max_transfer_sz = 8, .flags = flags_expected};
  322. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  323. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  324. ESP_LOGI(TAG, "test slave 5 output pins and MISO on input-only pin...");
  325. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD;
  326. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  327. .max_transfer_sz = 8, .flags = flags_expected};
  328. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  329. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  330. ESP_LOGI(TAG, "test master 3 output pins and MOSI on input-only pin...");
  331. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO;
  332. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  333. .max_transfer_sz = 8, .flags = flags_expected};
  334. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  335. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  336. ESP_LOGI(TAG, "test slave 3 output pins and MISO on input-only pin...");
  337. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO;
  338. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  339. .max_transfer_sz = 8, .flags = flags_expected};
  340. TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  341. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  342. ESP_LOGI(TAG, "check native flag for 6 output pins...");
  343. flags_expected = SPICOMMON_BUSFLAG_NATIVE_PINS;
  344. //swap MOSI and MISO
  345. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  346. .max_transfer_sz = 8, .flags = flags_expected};
  347. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  348. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  349. ESP_LOGI(TAG, "check native flag for 4 output pins...");
  350. flags_expected = SPICOMMON_BUSFLAG_NATIVE_PINS;
  351. //swap MOSI and MISO
  352. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  353. .max_transfer_sz = 8, .flags = flags_expected};
  354. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  355. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  356. ESP_LOGI(TAG, "check dual flag for master 5 output pins and MISO/MOSI on input-only pin...");
  357. flags_expected = SPICOMMON_BUSFLAG_DUAL;
  358. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  359. .max_transfer_sz = 8, .flags = flags_expected};
  360. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  361. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  362. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  363. .max_transfer_sz = 8, .flags = flags_expected};
  364. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  365. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  366. ESP_LOGI(TAG, "check dual flag for master 3 output pins and MISO/MOSI on input-only pin...");
  367. flags_expected = SPICOMMON_BUSFLAG_DUAL;
  368. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  369. .max_transfer_sz = 8, .flags = flags_expected};
  370. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  371. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  372. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  373. .max_transfer_sz = 8, .flags = flags_expected};
  374. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  375. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  376. ESP_LOGI(TAG, "check sclk flag...");
  377. flags_expected = SPICOMMON_BUSFLAG_SCLK;
  378. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = -1, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  379. .max_transfer_sz = 8, .flags = flags_expected};
  380. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  381. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  382. ESP_LOGI(TAG, "check mosi flag...");
  383. flags_expected = SPICOMMON_BUSFLAG_MOSI;
  384. cfg = (spi_bus_config_t){.mosi_io_num = -1, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  385. .max_transfer_sz = 8, .flags = flags_expected};
  386. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  387. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  388. ESP_LOGI(TAG, "check miso flag...");
  389. flags_expected = SPICOMMON_BUSFLAG_MISO;
  390. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = -1, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  391. .max_transfer_sz = 8, .flags = flags_expected};
  392. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  393. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  394. ESP_LOGI(TAG, "check quad flag...");
  395. flags_expected = SPICOMMON_BUSFLAG_QUAD;
  396. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  397. .max_transfer_sz = 8, .flags = flags_expected};
  398. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  399. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  400. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = -1,
  401. .max_transfer_sz = 8, .flags = flags_expected};
  402. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  403. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  404. }
  405. TEST_CASE("SPI Master no response when switch from host1 (HSPI) to host2 (VSPI)", "[spi]")
  406. {
  407. //spi config
  408. spi_bus_config_t bus_config;
  409. spi_device_interface_config_t device_config;
  410. spi_device_handle_t spi;
  411. spi_host_device_t host;
  412. int dma = 1;
  413. memset(&bus_config, 0, sizeof(spi_bus_config_t));
  414. memset(&device_config, 0, sizeof(spi_device_interface_config_t));
  415. bus_config.miso_io_num = -1;
  416. bus_config.mosi_io_num = 26;
  417. bus_config.sclk_io_num = 25;
  418. bus_config.quadwp_io_num = -1;
  419. bus_config.quadhd_io_num = -1;
  420. device_config.clock_speed_hz = 50000;
  421. device_config.mode = 0;
  422. device_config.spics_io_num = -1;
  423. device_config.queue_size = 1;
  424. device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST;
  425. struct spi_transaction_t transaction = {
  426. .flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA,
  427. .length = 16,
  428. .rx_buffer = NULL,
  429. .tx_data = {0x04, 0x00}
  430. };
  431. //initialize for first host
  432. host = 1;
  433. TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
  434. TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
  435. printf("before first xmit\n");
  436. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
  437. printf("after first xmit\n");
  438. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  439. TEST_ASSERT(spi_bus_free(host) == ESP_OK);
  440. //for second host and failed before
  441. host = 2;
  442. TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
  443. TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
  444. printf("before second xmit\n");
  445. // the original version (bit mis-written) stucks here.
  446. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
  447. // test case success when see this.
  448. printf("after second xmit\n");
  449. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  450. TEST_ASSERT(spi_bus_free(host) == ESP_OK);
  451. }
  452. DRAM_ATTR static uint32_t data_dram[80]={0};
  453. //force to place in code area.
  454. static const uint8_t data_drom[320+3] = {
  455. 0xD8, 0xD1, 0x0A, 0xB8, 0xCE, 0x67, 0x1B, 0x11, 0x17, 0xA0, 0xDA, 0x89, 0x55, 0xC1, 0x40, 0x0F, 0x55, 0xEB, 0xF7, 0xEC, 0xF0, 0x3C, 0x0F, 0x4D, 0x2B, 0x9E, 0xBF, 0xCD, 0x57, 0x2C, 0x48, 0x1A,
  456. 0x8B, 0x47, 0xC5, 0x01, 0x0C, 0x05, 0x80, 0x30, 0xF4, 0xEA, 0xE5, 0x92, 0x56, 0x97, 0x98, 0x78, 0x21, 0x34, 0xA1, 0xBC, 0xAE, 0x93, 0x7E, 0x96, 0x08, 0xE6, 0x54, 0x6A, 0x6C, 0x67, 0xCF, 0x58,
  457. 0xEE, 0x15, 0xA8, 0xB6, 0x32, 0x8C, 0x85, 0xF7, 0xE9, 0x88, 0x5E, 0xB1, 0x76, 0xE4, 0xB2, 0xC7, 0x0F, 0x57, 0x51, 0x7A, 0x2F, 0xAB, 0x12, 0xC3, 0x37, 0x99, 0x4E, 0x67, 0x75, 0x28, 0xE4, 0x1D,
  458. 0xF8, 0xBA, 0x22, 0xCB, 0xA1, 0x18, 0x4C, 0xAB, 0x5F, 0xC9, 0xF3, 0xA2, 0x39, 0x92, 0x44, 0xE6, 0x7B, 0xE3, 0xD0, 0x16, 0xC5, 0xC2, 0xCB, 0xD9, 0xC0, 0x7F, 0x06, 0xBF, 0x3E, 0xCE, 0xE1, 0x26,
  459. 0xD5, 0x3C, 0xAD, 0x0E, 0xC1, 0xC7, 0x7D, 0x0D, 0x56, 0x85, 0x6F, 0x32, 0xC8, 0x63, 0x8D, 0x12, 0xAB, 0x1E, 0x81, 0x7B, 0xF4, 0xF1, 0xA9, 0xAF, 0xD9, 0x74, 0x60, 0x05, 0x3D, 0xCC, 0x0C, 0x34,
  460. 0x11, 0x44, 0xAE, 0x2A, 0x13, 0x2F, 0x04, 0xC3, 0x59, 0xF0, 0x54, 0x07, 0xBA, 0x26, 0xD9, 0xFB, 0x80, 0x95, 0xC0, 0x14, 0xFA, 0x27, 0xEF, 0xD3, 0x58, 0xB8, 0xE4, 0xA2, 0xE3, 0x5E, 0x94, 0xB3,
  461. 0xCD, 0x2C, 0x4F, 0xAC, 0x3B, 0xD1, 0xCA, 0xBE, 0x61, 0x71, 0x7B, 0x62, 0xEB, 0xF0, 0xFC, 0xEF, 0x22, 0xB7, 0x3F, 0x56, 0x65, 0x19, 0x61, 0x73, 0x1A, 0x4D, 0xE4, 0x23, 0xE5, 0x3A, 0x91, 0x5C,
  462. 0xE6, 0x1B, 0x5F, 0x0E, 0x10, 0x94, 0x7C, 0x9F, 0xCF, 0x75, 0xB3, 0xEB, 0x42, 0x4C, 0xCF, 0xFE, 0xAF, 0x68, 0x62, 0x3F, 0x9A, 0x3C, 0x81, 0x3E, 0x7A, 0x45, 0x92, 0x79, 0x91, 0x4F, 0xFF, 0xDE,
  463. 0x25, 0x18, 0x33, 0xB9, 0xA9, 0x3A, 0x3F, 0x1F, 0x4F, 0x4B, 0x5C, 0x71, 0x82, 0x75, 0xB0, 0x1F, 0xE9, 0x98, 0xA3, 0xE2, 0x65, 0xBB, 0xCA, 0x4F, 0xB7, 0x1D, 0x23, 0x43, 0x16, 0x73, 0xBD, 0x83,
  464. 0x70, 0x22, 0x7D, 0x0A, 0x6D, 0xD3, 0x77, 0x73, 0xD0, 0xF4, 0x06, 0xB2, 0x19, 0x8C, 0xFF, 0x58, 0xE4, 0xDB, 0xE9, 0xEC, 0x89, 0x6A, 0xF4, 0x0E, 0x67, 0x12, 0xEC, 0x11, 0xD2, 0x1F, 0x8D, 0xD7,
  465. };
  466. TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
  467. {
  468. #ifdef CONFIG_SPIRAM_SUPPORT
  469. //test psram if enabled
  470. ESP_LOGI(TAG, "testing PSRAM...");
  471. uint32_t* data_malloc = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_SPIRAM);
  472. TEST_ASSERT(esp_ptr_external_ram(data_malloc));
  473. #else
  474. uint32_t* data_malloc = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_DMA);
  475. TEST_ASSERT(esp_ptr_in_dram(data_malloc));
  476. #endif
  477. TEST_ASSERT(data_malloc != NULL);
  478. //refer to soc_memory_layout.c
  479. uint32_t* data_iram = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_EXEC);
  480. TEST_ASSERT(data_iram != NULL);
  481. ESP_LOGI(TAG, "iram: %p, dram: %p", data_iram, data_dram);
  482. ESP_LOGI(TAG, "drom: %p, malloc: %p", data_drom, data_malloc);
  483. TEST_ASSERT(esp_ptr_in_dram(data_dram));
  484. TEST_ASSERT(esp_ptr_in_iram(data_iram));
  485. TEST_ASSERT(esp_ptr_in_drom(data_drom));
  486. srand(52);
  487. for (int i = 0; i < 320/4; i++) {
  488. data_iram[i] = rand();
  489. data_dram[i] = rand();
  490. data_malloc[i] = rand();
  491. }
  492. esp_err_t ret;
  493. spi_device_handle_t spi;
  494. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  495. buscfg.miso_io_num = PIN_NUM_MOSI;
  496. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  497. //Initialize the SPI bus
  498. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  499. TEST_ASSERT(ret==ESP_OK);
  500. //Attach the LCD to the SPI bus
  501. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi);
  502. TEST_ASSERT(ret==ESP_OK);
  503. //connect MOSI to two devices breaks the output, fix it.
  504. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX);
  505. #define TEST_REGION_SIZE 5
  506. static spi_transaction_t trans[TEST_REGION_SIZE];
  507. int x;
  508. memset(trans, 0, sizeof(trans));
  509. trans[0].length = 320*8,
  510. trans[0].tx_buffer = data_iram;
  511. trans[0].rx_buffer = data_malloc+1;
  512. trans[1].length = 320*8,
  513. trans[1].tx_buffer = data_dram;
  514. trans[1].rx_buffer = data_iram;
  515. trans[2].length = 320*8,
  516. trans[2].tx_buffer = data_malloc+2;
  517. trans[2].rx_buffer = data_dram;
  518. trans[3].length = 320*8,
  519. trans[3].tx_buffer = data_drom;
  520. trans[3].rx_buffer = data_iram;
  521. trans[4].length = 4*8,
  522. trans[4].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
  523. uint32_t* ptr = (uint32_t*)trans[4].rx_data;
  524. *ptr = 0x54545454;
  525. ptr = (uint32_t*)trans[4].tx_data;
  526. *ptr = 0xbc124960;
  527. //Queue all transactions.
  528. for (x=0; x<TEST_REGION_SIZE; x++) {
  529. ESP_LOGI(TAG, "transmitting %d...", x);
  530. ret=spi_device_transmit(spi,&trans[x]);
  531. TEST_ASSERT(ret==ESP_OK);
  532. if (trans[x].flags & SPI_TRANS_USE_RXDATA) {
  533. TEST_ASSERT_EQUAL_HEX8_ARRAY(trans[x].tx_data, trans[x].rx_data, 4);
  534. } else {
  535. TEST_ASSERT_EQUAL_HEX32_ARRAY(trans[x].tx_buffer, trans[x].rx_buffer, trans[x].length / 8 /4);
  536. }
  537. }
  538. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  539. TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
  540. free(data_malloc);
  541. free(data_iram);
  542. }
  543. //this part tests 3 DMA issues in master mode, full-duplex in IDF2.1
  544. // 1. RX buffer not aligned (start and end)
  545. // 2. not setting rx_buffer
  546. // 3. setting rx_length != length
  547. TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
  548. {
  549. uint8_t tx_buf[320]={0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
  550. uint8_t rx_buf[320];
  551. esp_err_t ret;
  552. spi_device_handle_t spi;
  553. spi_bus_config_t buscfg={
  554. .miso_io_num=PIN_NUM_MOSI,
  555. .mosi_io_num=PIN_NUM_MOSI,
  556. .sclk_io_num=PIN_NUM_CLK,
  557. .quadwp_io_num=-1,
  558. .quadhd_io_num=-1
  559. };
  560. spi_device_interface_config_t devcfg={
  561. .clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
  562. .mode=0, //SPI mode 0
  563. .spics_io_num=PIN_NUM_CS, //CS pin
  564. .queue_size=7, //We want to be able to queue 7 transactions at a time
  565. .pre_cb=NULL,
  566. };
  567. //Initialize the SPI bus
  568. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  569. TEST_ASSERT(ret==ESP_OK);
  570. //Attach the LCD to the SPI bus
  571. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi);
  572. TEST_ASSERT(ret==ESP_OK);
  573. //connect MOSI to two devices breaks the output, fix it.
  574. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX);
  575. memset(rx_buf, 0x66, 320);
  576. for ( int i = 0; i < 8; i ++ ) {
  577. memset( rx_buf, 0x66, sizeof(rx_buf));
  578. spi_transaction_t t = {};
  579. t.length = 8*(i+1);
  580. t.rxlength = 0;
  581. t.tx_buffer = tx_buf+2*i;
  582. t.rx_buffer = rx_buf + i;
  583. if ( i == 1 ) {
  584. //test set no start
  585. t.rx_buffer = NULL;
  586. } else if ( i == 2 ) {
  587. //test rx length != tx_length
  588. t.rxlength = t.length - 8;
  589. }
  590. spi_device_transmit( spi, &t );
  591. for( int i = 0; i < 16; i ++ ) {
  592. printf("%02X ", rx_buf[i]);
  593. }
  594. printf("\n");
  595. if ( i == 1 ) {
  596. // no rx, skip check
  597. } else if ( i == 2 ) {
  598. //test rx length = tx length-1
  599. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8-1 );
  600. } else {
  601. //normal check
  602. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8 );
  603. }
  604. }
  605. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  606. TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
  607. }
  608. static uint8_t bitswap(uint8_t in)
  609. {
  610. uint8_t out = 0;
  611. for (int i = 0; i < 8; i++) {
  612. out = out >> 1;
  613. if (in&0x80) out |= 0x80;
  614. in = in << 1;
  615. }
  616. return out;
  617. }
  618. void test_cmd_addr(spi_slave_task_context_t *slave_context, bool lsb_first)
  619. {
  620. spi_device_handle_t spi;
  621. ESP_LOGI(MASTER_TAG, ">>>>>>>>> TEST %s FIRST <<<<<<<<<<<", lsb_first?"LSB":"MSB");
  622. //initial master, mode 0, 1MHz
  623. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  624. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1));
  625. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  626. devcfg.clock_speed_hz = 1*1000*1000;
  627. if (lsb_first) devcfg.flags |= SPI_DEVICE_BIT_LSBFIRST;
  628. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  629. //connecting pins to two peripherals breaks the output, fix it.
  630. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  631. spitest_gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  632. spitest_gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  633. spitest_gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  634. for (int i= 0; i < 8; i++) {
  635. //prepare slave tx data
  636. slave_txdata_t slave_txdata = (slave_txdata_t) {
  637. .start = spitest_slave_send + 4*(i%3),
  638. .len = 256,
  639. };
  640. xQueueSend(slave_context->data_to_send, &slave_txdata, portMAX_DELAY);
  641. vTaskDelay(50);
  642. //prepare master tx data
  643. int cmd_bits = (i+1)*2;
  644. int addr_bits = 56-8*i;
  645. int round_up = (cmd_bits+addr_bits+7)/8*8;
  646. addr_bits = round_up - cmd_bits;
  647. spi_transaction_ext_t trans = (spi_transaction_ext_t) {
  648. .base = {
  649. .flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
  650. .addr = 0x456789abcdef0123,
  651. .cmd = 0xcdef,
  652. },
  653. .command_bits = cmd_bits,
  654. .address_bits = addr_bits,
  655. };
  656. ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
  657. ESP_LOGI(MASTER_TAG, "cmd_bits: %d, addr_bits: %d", cmd_bits, addr_bits);
  658. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&trans));
  659. //wait for both master and slave end
  660. size_t rcv_len;
  661. slave_rxdata_t *rcv_data = xRingbufferReceive(slave_context->data_received, &rcv_len, portMAX_DELAY);
  662. rcv_len-=8;
  663. uint8_t *buffer = rcv_data->data;
  664. ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
  665. TEST_ASSERT_EQUAL(rcv_len, (rcv_data->len+7)/8);
  666. TEST_ASSERT_EQUAL(rcv_data->len, cmd_bits+addr_bits);
  667. ESP_LOG_BUFFER_HEX("slave rx", buffer, rcv_len);
  668. uint16_t cmd_expected = trans.base.cmd & (BIT(cmd_bits) - 1);
  669. uint64_t addr_expected = trans.base.addr & ((1ULL<<addr_bits) - 1);
  670. uint8_t *data_ptr = buffer;
  671. uint16_t cmd_got = *(uint16_t*)data_ptr;
  672. data_ptr += cmd_bits/8;
  673. cmd_got = __builtin_bswap16(cmd_got);
  674. cmd_got = cmd_got >> (16-cmd_bits);
  675. int remain_bits = cmd_bits % 8;
  676. uint64_t addr_got = *(uint64_t*)data_ptr;
  677. data_ptr += 8;
  678. addr_got = __builtin_bswap64(addr_got);
  679. addr_got = (addr_got << remain_bits);
  680. addr_got |= (*data_ptr >> (8-remain_bits));
  681. addr_got = addr_got >> (64-addr_bits);
  682. if (lsb_first) {
  683. cmd_got = __builtin_bswap16(cmd_got);
  684. addr_got = __builtin_bswap64(addr_got);
  685. uint8_t *swap_ptr = (uint8_t*)&cmd_got;
  686. swap_ptr[0] = bitswap(swap_ptr[0]);
  687. swap_ptr[1] = bitswap(swap_ptr[1]);
  688. cmd_got = cmd_got >> (16-cmd_bits);
  689. swap_ptr = (uint8_t*)&addr_got;
  690. for (int j = 0; j < 8; j++) swap_ptr[j] = bitswap(swap_ptr[j]);
  691. addr_got = addr_got >> (64-addr_bits);
  692. }
  693. ESP_LOGI(SLAVE_TAG, "cmd_got: %04X, addr_got: %08X%08X", cmd_got, (uint32_t)(addr_got>>32), (uint32_t)addr_got);
  694. TEST_ASSERT_EQUAL_HEX16(cmd_expected, cmd_got);
  695. if (addr_bits > 0) {
  696. TEST_ASSERT_EQUAL_HEX32(addr_expected, addr_got);
  697. TEST_ASSERT_EQUAL_HEX32(addr_expected >> 8, addr_got >> 8);
  698. }
  699. //clean
  700. vRingbufferReturnItem(slave_context->data_received, buffer);
  701. }
  702. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  703. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  704. }
  705. TEST_CASE("SPI master variable cmd & addr test","[spi]")
  706. {
  707. spi_slave_task_context_t slave_context = {};
  708. esp_err_t err = init_slave_context( &slave_context );
  709. TEST_ASSERT( err == ESP_OK );
  710. TaskHandle_t handle_slave;
  711. xTaskCreate( spitest_slave_task, "spi_slave", 4096, &slave_context, 0, &handle_slave);
  712. //initial slave, mode 0, no dma
  713. int dma_chan = 0;
  714. int slave_mode = 0;
  715. spi_bus_config_t slv_buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  716. spi_slave_interface_config_t slvcfg=SPI_SLAVE_TEST_DEFAULT_CONFIG();
  717. slvcfg.mode = slave_mode;
  718. //Initialize SPI slave interface
  719. TEST_ESP_OK( spi_slave_initialize(TEST_SLAVE_HOST, &slv_buscfg, &slvcfg, dma_chan) );
  720. test_cmd_addr(&slave_context, false);
  721. test_cmd_addr(&slave_context, true);
  722. vTaskDelete( handle_slave );
  723. handle_slave = 0;
  724. deinit_slave_context(&slave_context);
  725. TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
  726. ESP_LOGI(MASTER_TAG, "test passed.");
  727. }
  728. /********************************************************************************
  729. * Test SPI transaction interval
  730. ********************************************************************************/
  731. #define RECORD_TIME_PREPARE() uint32_t __t1, __t2
  732. #define RECORD_TIME_START() do {__t1 = xthal_get_ccount();}while(0)
  733. #define RECORD_TIME_END(p_time) do{__t2 = xthal_get_ccount(); *p_time = (__t2-__t1)/240;}while(0)
  734. static void speed_setup(spi_device_handle_t* spi, bool use_dma)
  735. {
  736. esp_err_t ret;
  737. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  738. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  739. devcfg.queue_size=8; //We want to be able to queue 7 transactions at a time
  740. //Initialize the SPI bus and the device to test
  741. ret=spi_bus_initialize(HSPI_HOST, &buscfg, (use_dma?1:0));
  742. TEST_ASSERT(ret==ESP_OK);
  743. ret=spi_bus_add_device(HSPI_HOST, &devcfg, spi);
  744. TEST_ASSERT(ret==ESP_OK);
  745. }
  746. static void sorted_array_insert(uint32_t* array, int* size, uint32_t item)
  747. {
  748. int pos;
  749. for (pos = *size; pos>0; pos--) {
  750. if (array[pos-1] < item) break;
  751. array[pos] = array[pos-1];
  752. }
  753. array[pos]=item;
  754. (*size)++;
  755. }
  756. #define TEST_TIMES 11
  757. static IRAM_ATTR void spi_transmit_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight)
  758. {
  759. RECORD_TIME_PREPARE();
  760. spi_device_transmit(spi, trans); // prime the flash cache
  761. RECORD_TIME_START();
  762. spi_device_transmit(spi, trans);
  763. RECORD_TIME_END(t_flight);
  764. }
  765. static IRAM_ATTR void spi_transmit_polling_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight)
  766. {
  767. RECORD_TIME_PREPARE();
  768. spi_device_polling_transmit(spi, trans); // prime the flash cache
  769. RECORD_TIME_START();
  770. spi_device_polling_transmit(spi, trans);
  771. RECORD_TIME_END(t_flight);
  772. }
  773. TEST_CASE("spi_speed","[spi]")
  774. {
  775. #ifdef CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
  776. return;
  777. #endif
  778. uint32_t t_flight;
  779. //to get rid of the influence of randomly interrupts, we measured the performance by median value
  780. uint32_t t_flight_sorted[TEST_TIMES];
  781. esp_err_t ret;
  782. int t_flight_num = 0;
  783. spi_device_handle_t spi;
  784. const bool use_dma = true;
  785. WORD_ALIGNED_ATTR spi_transaction_t trans = {
  786. .length = 1*8,
  787. .flags = SPI_TRANS_USE_TXDATA,
  788. };
  789. //first work with DMA
  790. speed_setup(&spi, use_dma);
  791. //record flight time by isr, with DMA
  792. t_flight_num = 0;
  793. for (int i = 0; i < TEST_TIMES; i++) {
  794. spi_transmit_measure(spi, &trans, &t_flight);
  795. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  796. }
  797. for (int i = 0; i < TEST_TIMES; i++) {
  798. ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
  799. }
  800. #ifndef CONFIG_SPIRAM_SUPPORT
  801. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
  802. #endif
  803. //acquire the bus to send polling transactions faster
  804. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  805. TEST_ESP_OK(ret);
  806. //record flight time by polling and with DMA
  807. t_flight_num = 0;
  808. for (int i = 0; i < TEST_TIMES; i++) {
  809. spi_transmit_polling_measure(spi, &trans, &t_flight);
  810. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  811. }
  812. for (int i = 0; i < TEST_TIMES; i++) {
  813. ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
  814. }
  815. #ifndef CONFIG_SPIRAM_SUPPORT
  816. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
  817. #endif
  818. //release the bus
  819. spi_device_release_bus(spi);
  820. master_free_device_bus(spi);
  821. speed_setup(&spi, !use_dma);
  822. //record flight time by isr, without DMA
  823. t_flight_num = 0;
  824. for (int i = 0; i < TEST_TIMES; i++) {
  825. spi_transmit_measure(spi, &trans, &t_flight);
  826. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  827. }
  828. for (int i = 0; i < TEST_TIMES; i++) {
  829. ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
  830. }
  831. #ifndef CONFIG_SPIRAM_SUPPORT
  832. TEST_PERFORMANCE_LESS_THAN( SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
  833. #endif
  834. //acquire the bus to send polling transactions faster
  835. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  836. TEST_ESP_OK(ret);
  837. //record flight time by polling, without DMA
  838. t_flight_num = 0;
  839. for (int i = 0; i < TEST_TIMES; i++) {
  840. spi_transmit_polling_measure(spi, &trans, &t_flight);
  841. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  842. }
  843. for (int i = 0; i < TEST_TIMES; i++) {
  844. ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
  845. }
  846. #ifndef CONFIG_SPIRAM_SUPPORT
  847. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
  848. #endif
  849. //release the bus
  850. spi_device_release_bus(spi);
  851. master_free_device_bus(spi);
  852. }
  853. typedef struct {
  854. spi_device_handle_t handle;
  855. bool finished;
  856. } task_context_t;
  857. void spi_task1(void* arg)
  858. {
  859. //task1 send 50 polling transactions, acquire the bus and send another 50
  860. int count=0;
  861. spi_transaction_t t = {
  862. .flags = SPI_TRANS_USE_TXDATA,
  863. .tx_data = { 0x80, 0x12, 0x34, 0x56 },
  864. .length = 4*8,
  865. };
  866. spi_device_handle_t handle = ((task_context_t*)arg)->handle;
  867. for( int j = 0; j < 50; j ++ ) {
  868. TEST_ESP_OK(spi_device_polling_transmit( handle, &t ));
  869. ESP_LOGI( TAG, "task1:%d", count++ );
  870. }
  871. TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
  872. for( int j = 0; j < 50; j ++ ) {
  873. TEST_ESP_OK(spi_device_polling_transmit( handle, &t ));
  874. ESP_LOGI( TAG, "task1:%d", count++ );
  875. }
  876. spi_device_release_bus(handle);
  877. ESP_LOGI(TAG, "task1 terminates");
  878. ((task_context_t*)arg)->finished = true;
  879. vTaskDelete(NULL);
  880. }
  881. void spi_task2(void* arg)
  882. {
  883. int count=0;
  884. //task2 acquire the bus, send 50 polling transactions and then 50 non-polling
  885. spi_transaction_t t = {
  886. .flags = SPI_TRANS_USE_TXDATA,
  887. .tx_data = { 0x80, 0x12, 0x34, 0x56 },
  888. .length = 4*8,
  889. };
  890. spi_transaction_t *ret_t;
  891. spi_device_handle_t handle = ((task_context_t*)arg)->handle;
  892. TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
  893. for (int i = 0; i < 50; i ++) {
  894. TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
  895. ESP_LOGI( TAG, "task2: %d", count++ );
  896. }
  897. for( int j = 0; j < 50; j ++ ) {
  898. TEST_ESP_OK(spi_device_queue_trans( handle, &t, portMAX_DELAY ));
  899. }
  900. for( int j = 0; j < 50; j ++ ) {
  901. TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY));
  902. assert(ret_t == &t);
  903. ESP_LOGI( TAG, "task2: %d", count++ );
  904. }
  905. spi_device_release_bus(handle);
  906. vTaskDelay(1);
  907. ESP_LOGI(TAG, "task2 terminates");
  908. ((task_context_t*)arg)->finished = true;
  909. vTaskDelete(NULL);
  910. }
  911. void spi_task3(void* arg)
  912. {
  913. //task3 send 30 polling transactions, acquire the bus, send 20 polling transactions and then 50 non-polling
  914. int count=0;
  915. spi_transaction_t t = {
  916. .flags = SPI_TRANS_USE_TXDATA,
  917. .tx_data = { 0x80, 0x12, 0x34, 0x56 },
  918. .length = 4*8,
  919. };
  920. spi_transaction_t *ret_t;
  921. spi_device_handle_t handle = ((task_context_t*)arg)->handle;
  922. for (int i = 0; i < 30; i ++) {
  923. TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
  924. ESP_LOGI( TAG, "task3: %d", count++ );
  925. }
  926. TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
  927. for (int i = 0; i < 20; i ++) {
  928. TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
  929. ESP_LOGI( TAG, "task3: %d", count++ );
  930. }
  931. for (int j = 0; j < 50; j++) {
  932. TEST_ESP_OK(spi_device_queue_trans(handle, &t, portMAX_DELAY));
  933. }
  934. for (int j = 0; j < 50; j++) {
  935. TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY));
  936. assert(ret_t == &t);
  937. ESP_LOGI(TAG, "task3: %d", count++);
  938. }
  939. spi_device_release_bus(handle);
  940. ESP_LOGI(TAG, "task3 terminates");
  941. ((task_context_t*)arg)->finished = true;
  942. vTaskDelete(NULL);
  943. }
  944. TEST_CASE("spi poll tasks","[spi]")
  945. {
  946. task_context_t context1={};
  947. task_context_t context2={};
  948. task_context_t context3={};
  949. TaskHandle_t task1, task2, task3;
  950. esp_err_t ret;
  951. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  952. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  953. devcfg.queue_size = 100;
  954. //Initialize the SPI bus and 3 devices
  955. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  956. TEST_ASSERT(ret==ESP_OK);
  957. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context1.handle);
  958. TEST_ASSERT(ret==ESP_OK);
  959. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context2.handle);
  960. TEST_ASSERT(ret==ESP_OK);
  961. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context3.handle);
  962. TEST_ASSERT(ret==ESP_OK);
  963. xTaskCreate( spi_task1, "task1", 3072, &context1, 0, &task1 );
  964. xTaskCreate( spi_task2, "task2", 3072, &context2, 0, &task2 );
  965. xTaskCreate( spi_task3, "task3", 3072, &context3, 0, &task3 );
  966. for(;;){
  967. vTaskDelay(10);
  968. if (context1.finished && context2.finished && context3.finished) break;
  969. }
  970. TEST_ESP_OK( spi_bus_remove_device(context1.handle) );
  971. TEST_ESP_OK( spi_bus_remove_device(context2.handle) );
  972. TEST_ESP_OK( spi_bus_remove_device(context3.handle) );
  973. TEST_ESP_OK( spi_bus_free(HSPI_HOST) );
  974. }
  975. //TODO: add a case when a non-polling transaction happened in the bus-acquiring time and then release the bus then queue a new trans