| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616 |
- // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <string.h>
- #include "esp_types.h"
- #include "esp_attr.h"
- #include "esp_intr.h"
- #include "esp_intr_alloc.h"
- #include "esp_log.h"
- #include "esp_err.h"
- #include "esp_clk.h"
- #include "malloc.h"
- #include "freertos/FreeRTOS.h"
- #include "freertos/semphr.h"
- #include "freertos/xtensa_api.h"
- #include "freertos/task.h"
- #include "freertos/ringbuf.h"
- #include "soc/dport_reg.h"
- #include "soc/uart_struct.h"
- #include "driver/uart.h"
- #include "driver/gpio.h"
- #include "driver/uart_select.h"
- #include "sdkconfig.h"
- #ifdef CONFIG_UART_ISR_IN_IRAM
- #define UART_ISR_ATTR IRAM_ATTR
- #else
- #define UART_ISR_ATTR
- #endif
- #define XOFF (char)0x13
- #define XON (char)0x11
- static const char* UART_TAG = "uart";
- #define UART_CHECK(a, str, ret_val) \
- if (!(a)) { \
- ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
- return (ret_val); \
- }
- #define UART_EMPTY_THRESH_DEFAULT (10)
- #define UART_FULL_THRESH_DEFAULT (120)
- #define UART_TOUT_THRESH_DEFAULT (10)
- #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
- #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
- #define UART_TX_IDLE_NUM_DEFAULT (0)
- #define UART_PATTERN_DET_QLEN_DEFAULT (10)
- #define UART_MIN_WAKEUP_THRESH (2)
- #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
- #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
- #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
- #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
- // Check actual UART mode set
- #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
- typedef struct {
- uart_event_type_t type; /*!< UART TX data type */
- struct {
- int brk_len;
- size_t size;
- uint8_t data[0];
- } tx_data;
- } uart_tx_data_t;
- typedef struct {
- int wr;
- int rd;
- int len;
- int* data;
- } uart_pat_rb_t;
- typedef struct {
- uart_port_t uart_num; /*!< UART port number*/
- int queue_size; /*!< UART event queue size*/
- QueueHandle_t xQueueUart; /*!< UART queue handler*/
- intr_handle_t intr_handle; /*!< UART interrupt handle*/
- uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
- bool coll_det_flg; /*!< UART collision detection flag */
-
- //rx parameters
- int rx_buffered_len; /*!< UART cached data length */
- SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
- int rx_buf_size; /*!< RX ring buffer size */
- RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
- bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
- int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
- uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
- uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
- uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
- uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
- uart_pat_rb_t rx_pattern_pos;
- //tx parameters
- SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
- SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
- SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
- SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
- int tx_buf_size; /*!< TX ring buffer size */
- RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
- bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
- uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
- uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
- uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
- uint32_t tx_len_cur;
- uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
- uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
- uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
- uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
- } uart_obj_t;
- static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
- /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
- static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
- static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
- static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
- esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->conf0.bit_num = data_bit;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- *(data_bit) = UART[uart_num]->conf0.bit_num;
- return ESP_OK;
- }
- esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- //workaround for hardware bug, when uart stop bit set as 2-bit mode.
- if (stop_bit == UART_STOP_BITS_2) {
- stop_bit = UART_STOP_BITS_1;
- UART[uart_num]->rs485_conf.dl1_en = 1;
- } else {
- UART[uart_num]->rs485_conf.dl1_en = 0;
- }
- UART[uart_num]->conf0.stop_bit_num = stop_bit;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- //workaround for hardware bug, when uart stop bit set as 2-bit mode.
- if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
- (*stop_bit) = UART_STOP_BITS_2;
- } else {
- (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
- }
- return ESP_OK;
- }
- esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->conf0.parity = parity_mode & 0x1;
- UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- int val = UART[uart_num]->conf0.val;
- if(val & UART_PARITY_EN_M) {
- if(val & UART_PARITY_M) {
- (*parity_mode) = UART_PARITY_ODD;
- } else {
- (*parity_mode) = UART_PARITY_EVEN;
- }
- } else {
- (*parity_mode) = UART_PARITY_DISABLE;
- }
- return ESP_OK;
- }
- esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- esp_err_t ret = ESP_OK;
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- int uart_clk_freq;
- if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
- /* this UART has been configured to use REF_TICK */
- uart_clk_freq = REF_CLK_FREQ;
- } else {
- uart_clk_freq = esp_clk_apb_freq();
- }
- uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
- if (clk_div < 16) {
- /* baud rate is too high for this clock frequency */
- ret = ESP_ERR_INVALID_ARG;
- } else {
- UART[uart_num]->clk_div.div_int = clk_div >> 4;
- UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ret;
- }
- esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- uint32_t uart_clk_freq = esp_clk_apb_freq();
- if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
- uart_clk_freq = REF_CLK_FREQ;
- }
- (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
- return ESP_OK;
- }
- esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
- SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
- UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xoff thresh error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
- UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
- UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
- UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
- UART[uart_num]->swfc_conf.xon_char = XON;
- UART[uart_num]->swfc_conf.xoff_char = XOFF;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
- esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
- UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
- UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
- UART[uart_num]->conf1.rx_flow_en = 1;
- } else {
- UART[uart_num]->conf1.rx_flow_en = 0;
- }
- if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
- UART[uart_num]->conf0.tx_flow_en = 1;
- } else {
- UART[uart_num]->conf0.tx_flow_en = 0;
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
- if(UART[uart_num]->conf1.rx_flow_en) {
- val |= UART_HW_FLOWCTRL_RTS;
- }
- if(UART[uart_num]->conf0.tx_flow_en) {
- val |= UART_HW_FLOWCTRL_CTS;
- }
- (*flow_ctrl) = val;
- return ESP_OK;
- }
- static esp_err_t UART_ISR_ATTR uart_reset_rx_fifo(uart_port_t uart_num)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
- //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
- // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
- while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
- READ_PERI_REG(UART_FIFO_REG(uart_num));
- }
- return ESP_OK;
- }
- esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- //intr_clr register is write-only
- UART[uart_num]->int_clr.val = clr_mask;
- return ESP_OK;
- }
- esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
- SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- static void UART_ISR_ATTR uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
- {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- }
- static void UART_ISR_ATTR uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
- {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
- SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- }
- static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
- int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
- p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
- p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- free(pdata);
- }
- return ESP_OK;
- }
- static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- esp_err_t ret = ESP_OK;
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- int next = p_pos->wr + 1;
- if (next >= p_pos->len) {
- next = 0;
- }
- if (next == p_pos->rd) {
- ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
- ret = ESP_FAIL;
- } else {
- p_pos->data[p_pos->wr] = pos;
- p_pos->wr = next;
- ret = ESP_OK;
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ret;
- }
- static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
- return ESP_ERR_INVALID_STATE;
- } else {
- esp_err_t ret = ESP_OK;
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- if (p_pos->rd == p_pos->wr) {
- ret = ESP_FAIL;
- } else {
- p_pos->rd++;
- }
- if (p_pos->rd >= p_pos->len) {
- p_pos->rd = 0;
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ret;
- }
- }
- static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- int rd = p_pos->rd;
- while(rd != p_pos->wr) {
- p_pos->data[rd] -= diff_len;
- int rd_rec = rd;
- rd ++;
- if (rd >= p_pos->len) {
- rd = 0;
- }
- if (p_pos->data[rd_rec] < 0) {
- p_pos->rd = rd;
- }
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- int uart_pattern_pop_pos(uart_port_t uart_num)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- int pos = -1;
- if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
- pos = pat_pos->data[pat_pos->rd];
- uart_pattern_dequeue(uart_num);
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return pos;
- }
- int uart_pattern_get_pos(uart_port_t uart_num)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- int pos = -1;
- if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
- pos = pat_pos->data[pat_pos->rd];
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return pos;
- }
- esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
- int* pdata = (int*) malloc(queue_length * sizeof(int));
- if(pdata == NULL) {
- return ESP_ERR_NO_MEM;
- }
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
- p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
- p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
- p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
- p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- free(ptmp);
- return ESP_OK;
- }
- esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
- UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
- UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
- UART[uart_num]->at_cmd_char.data = pattern_chr;
- UART[uart_num]->at_cmd_char.char_num = chr_num;
- UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
- UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
- UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
- return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
- }
- esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
- {
- return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
- }
- esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
- {
- return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
- }
- esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
- {
- return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
- }
- esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
- {
- return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
- }
- esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->int_clr.txfifo_empty = 1;
- UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
- UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
- {
- int ret;
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- switch(uart_num) {
- case UART_NUM_1:
- ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
- break;
- case UART_NUM_2:
- ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
- break;
- case UART_NUM_0:
- default:
- ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
- break;
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ret;
- }
- esp_err_t uart_isr_free(uart_port_t uart_num)
- {
- esp_err_t ret;
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
- p_uart_obj[uart_num]->intr_handle=NULL;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ret;
- }
- //internal signal can be output to multiple GPIO pads
- //only one GPIO pad can connect with input signal
- esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
- UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
- UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
- UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
- int tx_sig, rx_sig, rts_sig, cts_sig;
- switch(uart_num) {
- case UART_NUM_0:
- tx_sig = U0TXD_OUT_IDX;
- rx_sig = U0RXD_IN_IDX;
- rts_sig = U0RTS_OUT_IDX;
- cts_sig = U0CTS_IN_IDX;
- break;
- case UART_NUM_1:
- tx_sig = U1TXD_OUT_IDX;
- rx_sig = U1RXD_IN_IDX;
- rts_sig = U1RTS_OUT_IDX;
- cts_sig = U1CTS_IN_IDX;
- break;
- case UART_NUM_2:
- tx_sig = U2TXD_OUT_IDX;
- rx_sig = U2RXD_IN_IDX;
- rts_sig = U2RTS_OUT_IDX;
- cts_sig = U2CTS_IN_IDX;
- break;
- case UART_NUM_MAX:
- default:
- tx_sig = U0TXD_OUT_IDX;
- rx_sig = U0RXD_IN_IDX;
- rts_sig = U0RTS_OUT_IDX;
- cts_sig = U0CTS_IN_IDX;
- break;
- }
- if(tx_io_num >= 0) {
- PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
- gpio_set_level(tx_io_num, 1);
- gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
- }
- if(rx_io_num >= 0) {
- PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
- gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
- gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
- gpio_matrix_in(rx_io_num, rx_sig, 0);
- }
- if(rts_io_num >= 0) {
- PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
- gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
- gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
- }
- if(cts_io_num >= 0) {
- PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
- gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
- gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
- gpio_matrix_in(cts_io_num, cts_sig, 0);
- }
- return ESP_OK;
- }
- esp_err_t uart_set_rts(uart_port_t uart_num, int level)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->conf0.sw_rts = level & 0x1;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->conf0.sw_dtr = level & 0x1;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->idle_conf.tx_idle_num = idle_num;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- static periph_module_t get_periph_module(uart_port_t uart_num)
- {
- periph_module_t periph_module = PERIPH_UART0_MODULE;
- if (uart_num == UART_NUM_0) {
- periph_module = PERIPH_UART0_MODULE;
- } else if (uart_num == UART_NUM_1) {
- periph_module = PERIPH_UART1_MODULE;
- } else if (uart_num == UART_NUM_2) {
- periph_module = PERIPH_UART2_MODULE;
- } else {
- assert(0 && "uart_num error");
- }
- return periph_module;
- }
- esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
- {
- esp_err_t r;
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((uart_config), "param null", ESP_FAIL);
- periph_module_t periph_module = get_periph_module(uart_num);
- if (uart_num != CONFIG_CONSOLE_UART_NUM) {
- periph_module_reset(periph_module);
- }
- periph_module_enable(periph_module);
- r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
- if (r != ESP_OK) return r;
- UART[uart_num]->conf0.val =
- (uart_config->parity << UART_PARITY_S)
- | (uart_config->data_bits << UART_BIT_NUM_S)
- | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
- | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
- r = uart_set_baudrate(uart_num, uart_config->baud_rate);
- if (r != ESP_OK) return r;
- r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
- if (r != ESP_OK) return r;
- r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
- //A hardware reset does not reset the fifo,
- //so we need to reset the fifo manually.
- uart_reset_rx_fifo(uart_num);
- return r;
- }
- esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((intr_conf), "param null", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->int_clr.val = UART_INTR_MASK;
- if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
- //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
- //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
- if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
- UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
- } else {
- UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
- }
- UART[uart_num]->conf1.rx_tout_en = 1;
- } else {
- UART[uart_num]->conf1.rx_tout_en = 0;
- }
- if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
- UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
- }
- if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
- UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
- }
- UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
- {
- int cnt = 0;
- int len = length;
- while (len >= 0) {
- if (buf[len] == pat_chr) {
- cnt++;
- } else {
- cnt = 0;
- }
- if (cnt >= pat_num) {
- break;
- }
- len --;
- }
- return len;
- }
- //internal isr handler for default driver code.
- static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
- {
- uart_obj_t *p_uart = (uart_obj_t*) param;
- uint8_t uart_num = p_uart->uart_num;
- uart_dev_t* uart_reg = UART[uart_num];
- int rx_fifo_len = 0;
- uint8_t buf_idx = 0;
- uint32_t uart_intr_status = 0;
- uart_event_t uart_event;
- portBASE_TYPE HPTaskAwoken = 0;
- static uint8_t pat_flg = 0;
- while(1) {
- uart_intr_status = uart_reg->int_st.val;
- // The `continue statement` may cause the interrupt to loop infinitely
- // we exit the interrupt here
- if(uart_intr_status == 0) {
- break;
- }
- uart_event.type = UART_EVENT_MAX;
- if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
- uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
- uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
- if(p_uart->tx_waiting_brk) {
- continue;
- }
- //TX semaphore will only be used when tx_buf_size is zero.
- if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
- p_uart->tx_waiting_fifo = false;
- xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
- } else {
- //We don't use TX ring buffer, because the size is zero.
- if(p_uart->tx_buf_size == 0) {
- continue;
- }
- int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
- bool en_tx_flg = false;
- //We need to put a loop here, in case all the buffer items are very short.
- //That would cause a watch_dog reset because empty interrupt happens so often.
- //Although this is a loop in ISR, this loop will execute at most 128 turns.
- while(tx_fifo_rem) {
- if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
- size_t size;
- p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
- if(p_uart->tx_head) {
- //The first item is the data description
- //Get the first item to get the data information
- if(p_uart->tx_len_tot == 0) {
- p_uart->tx_ptr = NULL;
- p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
- if(p_uart->tx_head->type == UART_DATA_BREAK) {
- p_uart->tx_brk_flg = 1;
- p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
- }
- //We have saved the data description from the 1st item, return buffer.
- vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
- }else if(p_uart->tx_ptr == NULL) {
- //Update the TX item pointer, we will need this to return item to buffer.
- p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
- en_tx_flg = true;
- p_uart->tx_len_cur = size;
- }
- }
- else {
- //Can not get data from ring buffer, return;
- break;
- }
- }
- if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
- //To fill the TX FIFO.
- int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
- // Set RS485 RTS pin before transmission if the half duplex mode is enabled
- if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_reg->conf0.sw_rts = 0;
- uart_reg->int_ena.tx_done = 1;
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- }
- for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
- WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
- *(p_uart->tx_ptr++) & 0xff);
- }
- p_uart->tx_len_tot -= send_len;
- p_uart->tx_len_cur -= send_len;
- tx_fifo_rem -= send_len;
- if (p_uart->tx_len_cur == 0) {
- //Return item to ring buffer.
- vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
- p_uart->tx_head = NULL;
- p_uart->tx_ptr = NULL;
- //Sending item done, now we need to send break if there is a record.
- //Set TX break signal after FIFO is empty
- if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_reg->int_ena.tx_brk_done = 0;
- uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
- uart_reg->conf0.txd_brk = 1;
- uart_reg->int_clr.tx_brk_done = 1;
- uart_reg->int_ena.tx_brk_done = 1;
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- p_uart->tx_waiting_brk = 1;
- //do not enable TX empty interrupt
- en_tx_flg = false;
- } else {
- //enable TX empty interrupt
- en_tx_flg = true;
- }
- } else {
- //enable TX empty interrupt
- en_tx_flg = true;
- }
- }
- }
- if (en_tx_flg) {
- uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
- uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
- }
- }
- }
- else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
- || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
- || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
- ) {
- rx_fifo_len = uart_reg->status.rxfifo_cnt;
- typeof(uart_reg->mem_rx_status) rx_status = uart_reg->mem_rx_status;
-
- // When using DPort to read fifo, fifo_cnt is not credible, we need to calculate the real cnt based on the fifo read and write pointer.
- // When using AHB to read FIFO, we can use fifo_cnt to indicate the data length in fifo.
- if (rx_status.wr_addr > rx_status.rd_addr) {
- rx_fifo_len = rx_status.wr_addr - rx_status.rd_addr;
- } else if (rx_status.wr_addr < rx_status.rd_addr) {
- rx_fifo_len = (rx_status.wr_addr + 128) - rx_status.rd_addr;
- } else {
- rx_fifo_len = rx_fifo_len > 0 ? 128 : 0;
- }
- if(pat_flg == 1) {
- uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
- pat_flg = 0;
- }
- if (p_uart->rx_buffer_full_flg == false) {
- //We have to read out all data in RX FIFO to clear the interrupt signal
- for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
- p_uart->rx_data_buf[buf_idx] = uart_reg->fifo.rw_byte;
- }
- uint8_t pat_chr = uart_reg->at_cmd_char.data;
- int pat_num = uart_reg->at_cmd_char.char_num;
- int pat_idx = -1;
- //Get the buffer from the FIFO
- if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
- uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
- uart_event.type = UART_PATTERN_DET;
- uart_event.size = rx_fifo_len;
- pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
- } else {
- //After Copying the Data From FIFO ,Clear intr_status
- uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
- uart_event.type = UART_DATA;
- uart_event.size = rx_fifo_len;
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- }
- p_uart->rx_stash_len = rx_fifo_len;
- //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
- //Mainly for applications that uses flow control or small ring buffer.
- if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
- p_uart->rx_buffer_full_flg = true;
- uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
- if (uart_event.type == UART_PATTERN_DET) {
- if (rx_fifo_len < pat_num) {
- //some of the characters are read out in last interrupt
- uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
- } else {
- uart_pattern_enqueue(uart_num,
- pat_idx <= -1 ?
- //can not find the pattern in buffer,
- p_uart->rx_buffered_len + p_uart->rx_stash_len :
- // find the pattern in buffer
- p_uart->rx_buffered_len + pat_idx);
- }
- if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
- ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
- }
- }
- uart_event.type = UART_BUFFER_FULL;
- } else {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
- if (rx_fifo_len < pat_num) {
- //some of the characters are read out in last interrupt
- uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
- } else if(pat_idx >= 0) {
- // find pattern in statsh buffer.
- uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
- }
- }
- p_uart->rx_buffered_len += p_uart->rx_stash_len;
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- }
- } else {
- uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
- uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
- if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
- uart_reg->int_clr.at_cmd_char_det = 1;
- uart_event.type = UART_PATTERN_DET;
- uart_event.size = rx_fifo_len;
- pat_flg = 1;
- }
- }
- } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
- // When fifo overflows, we reset the fifo.
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_reset_rx_fifo(uart_num);
- uart_reg->int_clr.rxfifo_ovf = 1;
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_event.type = UART_FIFO_OVF;
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
- uart_reg->int_clr.brk_det = 1;
- uart_event.type = UART_BREAK;
- } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
- uart_reg->int_clr.frm_err = 1;
- uart_event.type = UART_FRAME_ERR;
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
- uart_reg->int_clr.parity_err = 1;
- uart_event.type = UART_PARITY_ERR;
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_reg->conf0.txd_brk = 0;
- uart_reg->int_ena.tx_brk_done = 0;
- uart_reg->int_clr.tx_brk_done = 1;
- if(p_uart->tx_brk_flg == 1) {
- uart_reg->int_ena.txfifo_empty = 1;
- }
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- if(p_uart->tx_brk_flg == 1) {
- p_uart->tx_brk_flg = 0;
- p_uart->tx_waiting_brk = 0;
- } else {
- xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
- }
- } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
- uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
- uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
- } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
- uart_reg->int_clr.at_cmd_char_det = 1;
- uart_event.type = UART_PATTERN_DET;
- } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
- || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
- || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
- // RS485 collision or frame error interrupt triggered
- uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_reset_rx_fifo(uart_num);
- // Set collision detection flag
- p_uart_obj[uart_num]->coll_det_flg = true;
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_event.type = UART_EVENT_MAX;
- } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
- uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
- uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
- // If RS485 half duplex mode is enable then reset FIFO and
- // reset RTS pin to start receiver driver
- if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
- uart_reg->conf0.sw_rts = 1;
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- }
- xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
- } else {
- uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
- uart_event.type = UART_EVENT_MAX;
- }
- if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
- if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
- ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
- }
- }
- }
- if(HPTaskAwoken == pdTRUE) {
- portYIELD_FROM_ISR();
- }
- }
- /**************************************************************/
- esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- BaseType_t res;
- portTickType ticks_start = xTaskGetTickCount();
- //Take tx_mux
- res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
- if(res == pdFALSE) {
- return ESP_ERR_TIMEOUT;
- }
- xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
- typeof(UART0.status) status = UART[uart_num]->status;
- //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
- if(status.txfifo_cnt == 0 && status.st_utx_out == 0) {
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return ESP_OK;
- }
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), UART_TX_DONE_INT_ENA_M);
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- TickType_t ticks_end = xTaskGetTickCount();
- if (ticks_end - ticks_start > ticks_to_wait) {
- ticks_to_wait = 0;
- } else {
- ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
- }
- //take 2nd tx_done_sem, wait given from ISR
- res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
- if(res == pdFALSE) {
- // The TX_DONE interrupt will be disabled in ISR
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return ESP_ERR_TIMEOUT;
- }
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return ESP_OK;
- }
- static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
- {
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->idle_conf.tx_brk_num = break_num;
- UART[uart_num]->conf0.txd_brk = 1;
- UART[uart_num]->int_clr.tx_brk_done = 1;
- UART[uart_num]->int_ena.tx_brk_done = 1;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- //Fill UART tx_fifo and return a number,
- //This function by itself is not thread-safe, always call from within a muxed section.
- static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
- {
- uint8_t i = 0;
- uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
- uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
- uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
- // Set the RTS pin if RS485 mode is enabled
- if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
- UART[uart_num]->conf0.sw_rts = 0;
- UART[uart_num]->int_ena.tx_done = 1;
- }
- for (i = 0; i < copy_cnt; i++) {
- WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
- }
- return copy_cnt;
- }
- int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
- UART_CHECK(buffer, "buffer null", (-1));
- if(len == 0) {
- return 0;
- }
- xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
- int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return tx_len;
- }
- static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
- {
- if(size == 0) {
- return 0;
- }
- size_t original_size = size;
- //lock for uart_tx
- xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
- p_uart_obj[uart_num]->coll_det_flg = false;
- if(p_uart_obj[uart_num]->tx_buf_size > 0) {
- int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
- int offset = 0;
- uart_tx_data_t evt;
- evt.tx_data.size = size;
- evt.tx_data.brk_len = brk_len;
- if(brk_en) {
- evt.type = UART_DATA_BREAK;
- } else {
- evt.type = UART_DATA;
- }
- xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
- while(size > 0) {
- int send_size = size > max_size / 2 ? max_size / 2 : size;
- xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
- size -= send_size;
- offset += send_size;
- uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
- }
- } else {
- while(size) {
- //semaphore for tx_fifo available
- if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
- size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
- if(sent < size) {
- p_uart_obj[uart_num]->tx_waiting_fifo = true;
- uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
- }
- size -= sent;
- src += sent;
- }
- }
- if(brk_en) {
- uart_set_break(uart_num, brk_len);
- xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
- }
- xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
- }
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return original_size;
- }
- int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
- UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
- UART_CHECK(src, "buffer null", (-1));
- return uart_tx_all(uart_num, src, size, 0, 0);
- }
- int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
- UART_CHECK((size > 0), "uart size error", (-1));
- UART_CHECK((src), "uart data null", (-1));
- UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
- return uart_tx_all(uart_num, src, size, 1, brk_len);
- }
- static bool uart_check_buf_full(uart_port_t uart_num)
- {
- if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
- BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
- if(res == pdTRUE) {
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
- p_uart_obj[uart_num]->rx_buffer_full_flg = false;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
- return true;
- }
- }
- return false;
- }
- int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
- UART_CHECK((buf), "uart data null", (-1));
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
- uint8_t* data = NULL;
- size_t size;
- size_t copy_len = 0;
- int len_tmp;
- if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
- return -1;
- }
- while(length) {
- if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
- data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
- if(data) {
- p_uart_obj[uart_num]->rx_head_ptr = data;
- p_uart_obj[uart_num]->rx_ptr = data;
- p_uart_obj[uart_num]->rx_cur_remain = size;
- } else {
- //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
- //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
- //to solve the possible asynchronous issues.
- if(uart_check_buf_full(uart_num)) {
- //This condition will never be true if `uart_read_bytes`
- //and `uart_rx_intr_handler_default` are scheduled on the same core.
- continue;
- } else {
- xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
- return copy_len;
- }
- }
- }
- if(p_uart_obj[uart_num]->rx_cur_remain > length) {
- len_tmp = length;
- } else {
- len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
- }
- memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
- uart_pattern_queue_update(uart_num, len_tmp);
- p_uart_obj[uart_num]->rx_ptr += len_tmp;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
- copy_len += len_tmp;
- length -= len_tmp;
- if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
- vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
- p_uart_obj[uart_num]->rx_head_ptr = NULL;
- p_uart_obj[uart_num]->rx_ptr = NULL;
- uart_check_buf_full(uart_num);
- }
- }
- xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
- return copy_len;
- }
- esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- *size = p_uart_obj[uart_num]->rx_buffered_len;
- return ESP_OK;
- }
- esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
- esp_err_t uart_flush_input(uart_port_t uart_num)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- uart_obj_t* p_uart = p_uart_obj[uart_num];
- uint8_t* data;
- size_t size;
- //rx sem protect the ring buffer read related functions
- xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
- uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
- while(true) {
- if(p_uart->rx_head_ptr) {
- vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
- uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- p_uart->rx_ptr = NULL;
- p_uart->rx_cur_remain = 0;
- p_uart->rx_head_ptr = NULL;
- }
- data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
- if(data == NULL) {
- if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
- ESP_LOGE(UART_TAG, "rx_buffered_len error");
- p_uart_obj[uart_num]->rx_buffered_len = 0;
- }
- //We also need to clear the `rx_buffer_full_flg` here.
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_buffer_full_flg = false;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- break;
- }
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_buffered_len -= size;
- uart_pattern_queue_update(uart_num, size);
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- vRingbufferReturnItem(p_uart->rx_ring_buf, data);
- if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
- BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
- if(res == pdTRUE) {
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
- p_uart_obj[uart_num]->rx_buffer_full_flg = false;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- }
- }
- }
- p_uart->rx_ptr = NULL;
- p_uart->rx_cur_remain = 0;
- p_uart->rx_head_ptr = NULL;
- uart_reset_rx_fifo(uart_num);
- uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
- xSemaphoreGive(p_uart->rx_mux);
- return ESP_OK;
- }
- esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
- {
- esp_err_t r;
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
- UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
- #if CONFIG_UART_ISR_IN_IRAM
- UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0,
- "should set ESP_INTR_FLAG_IRAM flag when CONFIG_UART_ISR_IN_IRAM is enabled", ESP_FAIL);
- #else
- UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0,
- "should not set ESP_INTR_FLAG_IRAM when CONFIG_UART_ISR_IN_IRAM is not enabled", ESP_FAIL);
- #endif
- if(p_uart_obj[uart_num] == NULL) {
- p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
- if(p_uart_obj[uart_num] == NULL) {
- ESP_LOGE(UART_TAG, "UART driver malloc error");
- return ESP_FAIL;
- }
- p_uart_obj[uart_num]->uart_num = uart_num;
- p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
- p_uart_obj[uart_num]->coll_det_flg = false;
- p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
- xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
- p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
- p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
- p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
- p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
- p_uart_obj[uart_num]->queue_size = queue_size;
- p_uart_obj[uart_num]->tx_ptr = NULL;
- p_uart_obj[uart_num]->tx_head = NULL;
- p_uart_obj[uart_num]->tx_len_tot = 0;
- p_uart_obj[uart_num]->tx_brk_flg = 0;
- p_uart_obj[uart_num]->tx_brk_len = 0;
- p_uart_obj[uart_num]->tx_waiting_brk = 0;
- p_uart_obj[uart_num]->rx_buffered_len = 0;
- uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
- if(uart_queue) {
- p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
- *uart_queue = p_uart_obj[uart_num]->xQueueUart;
- ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
- } else {
- p_uart_obj[uart_num]->xQueueUart = NULL;
- }
- p_uart_obj[uart_num]->rx_buffer_full_flg = false;
- p_uart_obj[uart_num]->tx_waiting_fifo = false;
- p_uart_obj[uart_num]->rx_ptr = NULL;
- p_uart_obj[uart_num]->rx_cur_remain = 0;
- p_uart_obj[uart_num]->rx_head_ptr = NULL;
- p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
- if(tx_buffer_size > 0) {
- p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
- p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
- } else {
- p_uart_obj[uart_num]->tx_ring_buf = NULL;
- p_uart_obj[uart_num]->tx_buf_size = 0;
- }
- p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
- } else {
- ESP_LOGE(UART_TAG, "UART driver already installed");
- return ESP_FAIL;
- }
- r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
- if (r!=ESP_OK) goto err;
- uart_intr_config_t uart_intr = {
- .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
- | UART_RXFIFO_TOUT_INT_ENA_M
- | UART_FRM_ERR_INT_ENA_M
- | UART_RXFIFO_OVF_INT_ENA_M
- | UART_BRK_DET_INT_ENA_M
- | UART_PARITY_ERR_INT_ENA_M,
- .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
- .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
- .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
- };
- r=uart_intr_config(uart_num, &uart_intr);
- if (r!=ESP_OK) goto err;
- return r;
- err:
- uart_driver_delete(uart_num);
- return r;
- }
- //Make sure no other tasks are still using UART before you call this function
- esp_err_t uart_driver_delete(uart_port_t uart_num)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- if(p_uart_obj[uart_num] == NULL) {
- ESP_LOGI(UART_TAG, "ALREADY NULL");
- return ESP_OK;
- }
- esp_intr_free(p_uart_obj[uart_num]->intr_handle);
- uart_disable_rx_intr(uart_num);
- uart_disable_tx_intr(uart_num);
- uart_pattern_link_free(uart_num);
- if(p_uart_obj[uart_num]->tx_fifo_sem) {
- vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
- p_uart_obj[uart_num]->tx_fifo_sem = NULL;
- }
- if(p_uart_obj[uart_num]->tx_done_sem) {
- vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
- p_uart_obj[uart_num]->tx_done_sem = NULL;
- }
- if(p_uart_obj[uart_num]->tx_brk_sem) {
- vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
- p_uart_obj[uart_num]->tx_brk_sem = NULL;
- }
- if(p_uart_obj[uart_num]->tx_mux) {
- vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
- p_uart_obj[uart_num]->tx_mux = NULL;
- }
- if(p_uart_obj[uart_num]->rx_mux) {
- vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
- p_uart_obj[uart_num]->rx_mux = NULL;
- }
- if(p_uart_obj[uart_num]->xQueueUart) {
- vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
- p_uart_obj[uart_num]->xQueueUart = NULL;
- }
- if(p_uart_obj[uart_num]->rx_ring_buf) {
- vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
- p_uart_obj[uart_num]->rx_ring_buf = NULL;
- }
- if(p_uart_obj[uart_num]->tx_ring_buf) {
- vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
- p_uart_obj[uart_num]->tx_ring_buf = NULL;
- }
- free(p_uart_obj[uart_num]);
- p_uart_obj[uart_num] = NULL;
- if (uart_num != CONFIG_CONSOLE_UART_NUM) {
- periph_module_t periph_module = get_periph_module(uart_num);
- periph_module_disable(periph_module);
- }
- return ESP_OK;
- }
- void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
- {
- if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
- p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
- }
- }
- portMUX_TYPE *uart_get_selectlock()
- {
- return &uart_selectlock;
- }
- // Set UART mode
- esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
- if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
- || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
- UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
- "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
- }
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->rs485_conf.en = 0;
- UART[uart_num]->rs485_conf.tx_rx_en = 0;
- UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
- UART[uart_num]->conf0.irda_en = 0;
- UART[uart_num]->conf0.sw_rts = 0;
- switch (mode) {
- case UART_MODE_UART:
- break;
- case UART_MODE_RS485_COLLISION_DETECT:
- // This mode allows read while transmitting that allows collision detection
- p_uart_obj[uart_num]->coll_det_flg = false;
- // Transmitters output signal loop back to the receivers input signal
- UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
- // Transmitter should send data when its receiver is busy
- UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
- UART[uart_num]->rs485_conf.en = 1;
- // Enable collision detection interrupts
- uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
- | UART_RXFIFO_FULL_INT_ENA
- | UART_RS485_CLASH_INT_ENA
- | UART_RS485_FRM_ERR_INT_ENA
- | UART_RS485_PARITY_ERR_INT_ENA);
- break;
- case UART_MODE_RS485_APP_CTRL:
- // Application software control, remove echo
- UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
- UART[uart_num]->rs485_conf.en = 1;
- break;
- case UART_MODE_RS485_HALF_DUPLEX:
- // Enable receiver, sw_rts = 1 generates low level on RTS pin
- UART[uart_num]->conf0.sw_rts = 1;
- UART[uart_num]->rs485_conf.en = 1;
- // Must be set to 0 to automatically remove echo
- UART[uart_num]->rs485_conf.tx_rx_en = 0;
- // This is to void collision
- UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
- break;
- case UART_MODE_IRDA:
- UART[uart_num]->conf0.irda_en = 1;
- break;
- default:
- UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
- break;
- }
- p_uart_obj[uart_num]->uart_mode = mode;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
- UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- // The tout_thresh = 1, defines TOUT interrupt timeout equal to
- // transmission time of one symbol (~11 bit) on current baudrate
- if (tout_thresh > 0) {
- //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
- //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
- if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
- UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT;
- } else {
- UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh;
- }
- UART[uart_num]->conf1.rx_tout_en = 1;
- } else {
- UART[uart_num]->conf1.rx_tout_en = 0;
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
- UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
- UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
- || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
- "wrong mode", ESP_ERR_INVALID_ARG);
- *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
- return ESP_OK;
- }
- esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
- UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
- wakeup_threshold > UART_MIN_WAKEUP_THRESH),
- "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
- UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
- return ESP_OK;
- }
- esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
- UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
- *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
- return ESP_OK;
- }
|