uart.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #include "driver/uart_select.h"
  32. #include "sdkconfig.h"
  33. #ifdef CONFIG_UART_ISR_IN_IRAM
  34. #define UART_ISR_ATTR IRAM_ATTR
  35. #else
  36. #define UART_ISR_ATTR
  37. #endif
  38. #define XOFF (char)0x13
  39. #define XON (char)0x11
  40. static const char* UART_TAG = "uart";
  41. #define UART_CHECK(a, str, ret_val) \
  42. if (!(a)) { \
  43. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  44. return (ret_val); \
  45. }
  46. #define UART_EMPTY_THRESH_DEFAULT (10)
  47. #define UART_FULL_THRESH_DEFAULT (120)
  48. #define UART_TOUT_THRESH_DEFAULT (10)
  49. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  50. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  51. #define UART_TX_IDLE_NUM_DEFAULT (0)
  52. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  53. #define UART_MIN_WAKEUP_THRESH (2)
  54. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  55. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  56. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  57. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  58. // Check actual UART mode set
  59. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  60. typedef struct {
  61. uart_event_type_t type; /*!< UART TX data type */
  62. struct {
  63. int brk_len;
  64. size_t size;
  65. uint8_t data[0];
  66. } tx_data;
  67. } uart_tx_data_t;
  68. typedef struct {
  69. int wr;
  70. int rd;
  71. int len;
  72. int* data;
  73. } uart_pat_rb_t;
  74. typedef struct {
  75. uart_port_t uart_num; /*!< UART port number*/
  76. int queue_size; /*!< UART event queue size*/
  77. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  78. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  79. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  80. bool coll_det_flg; /*!< UART collision detection flag */
  81. //rx parameters
  82. int rx_buffered_len; /*!< UART cached data length */
  83. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  84. int rx_buf_size; /*!< RX ring buffer size */
  85. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  86. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  87. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  88. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  89. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  90. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  91. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  92. uart_pat_rb_t rx_pattern_pos;
  93. //tx parameters
  94. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  95. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  96. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  97. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  98. int tx_buf_size; /*!< TX ring buffer size */
  99. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  100. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  101. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  102. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  103. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  104. uint32_t tx_len_cur;
  105. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  106. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  107. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  108. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  109. } uart_obj_t;
  110. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  111. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  112. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  113. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  114. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  115. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  116. {
  117. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  118. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  119. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  120. UART[uart_num]->conf0.bit_num = data_bit;
  121. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  122. return ESP_OK;
  123. }
  124. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  125. {
  126. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  127. *(data_bit) = UART[uart_num]->conf0.bit_num;
  128. return ESP_OK;
  129. }
  130. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  131. {
  132. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  133. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  134. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  135. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  136. if (stop_bit == UART_STOP_BITS_2) {
  137. stop_bit = UART_STOP_BITS_1;
  138. UART[uart_num]->rs485_conf.dl1_en = 1;
  139. } else {
  140. UART[uart_num]->rs485_conf.dl1_en = 0;
  141. }
  142. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  143. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  144. return ESP_OK;
  145. }
  146. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  147. {
  148. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  149. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  150. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  151. (*stop_bit) = UART_STOP_BITS_2;
  152. } else {
  153. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  154. }
  155. return ESP_OK;
  156. }
  157. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  158. {
  159. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  160. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  161. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  162. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  163. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  164. return ESP_OK;
  165. }
  166. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  167. {
  168. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  169. int val = UART[uart_num]->conf0.val;
  170. if(val & UART_PARITY_EN_M) {
  171. if(val & UART_PARITY_M) {
  172. (*parity_mode) = UART_PARITY_ODD;
  173. } else {
  174. (*parity_mode) = UART_PARITY_EVEN;
  175. }
  176. } else {
  177. (*parity_mode) = UART_PARITY_DISABLE;
  178. }
  179. return ESP_OK;
  180. }
  181. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  182. {
  183. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  184. esp_err_t ret = ESP_OK;
  185. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  186. int uart_clk_freq;
  187. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  188. /* this UART has been configured to use REF_TICK */
  189. uart_clk_freq = REF_CLK_FREQ;
  190. } else {
  191. uart_clk_freq = esp_clk_apb_freq();
  192. }
  193. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  194. if (clk_div < 16) {
  195. /* baud rate is too high for this clock frequency */
  196. ret = ESP_ERR_INVALID_ARG;
  197. } else {
  198. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  199. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  200. }
  201. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  202. return ret;
  203. }
  204. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  205. {
  206. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  207. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  208. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  209. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  210. uint32_t uart_clk_freq = esp_clk_apb_freq();
  211. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  212. uart_clk_freq = REF_CLK_FREQ;
  213. }
  214. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  215. return ESP_OK;
  216. }
  217. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  218. {
  219. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  220. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  221. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  222. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  223. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  224. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  225. return ESP_OK;
  226. }
  227. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  228. {
  229. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  230. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  231. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xoff thresh error", ESP_FAIL);
  232. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  233. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  234. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  235. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  236. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  237. UART[uart_num]->swfc_conf.xon_char = XON;
  238. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  239. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  240. return ESP_OK;
  241. }
  242. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  243. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  244. {
  245. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  246. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  247. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  248. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  249. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  250. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  251. UART[uart_num]->conf1.rx_flow_en = 1;
  252. } else {
  253. UART[uart_num]->conf1.rx_flow_en = 0;
  254. }
  255. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  256. UART[uart_num]->conf0.tx_flow_en = 1;
  257. } else {
  258. UART[uart_num]->conf0.tx_flow_en = 0;
  259. }
  260. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  261. return ESP_OK;
  262. }
  263. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  264. {
  265. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  266. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  267. if(UART[uart_num]->conf1.rx_flow_en) {
  268. val |= UART_HW_FLOWCTRL_RTS;
  269. }
  270. if(UART[uart_num]->conf0.tx_flow_en) {
  271. val |= UART_HW_FLOWCTRL_CTS;
  272. }
  273. (*flow_ctrl) = val;
  274. return ESP_OK;
  275. }
  276. static esp_err_t UART_ISR_ATTR uart_reset_rx_fifo(uart_port_t uart_num)
  277. {
  278. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  279. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  280. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  281. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  282. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  283. READ_PERI_REG(UART_FIFO_REG(uart_num));
  284. }
  285. return ESP_OK;
  286. }
  287. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  288. {
  289. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  290. //intr_clr register is write-only
  291. UART[uart_num]->int_clr.val = clr_mask;
  292. return ESP_OK;
  293. }
  294. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  295. {
  296. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  297. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  298. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  299. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  300. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  301. return ESP_OK;
  302. }
  303. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  304. {
  305. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  306. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  307. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  308. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  309. return ESP_OK;
  310. }
  311. static void UART_ISR_ATTR uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  312. {
  313. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  314. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  315. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  316. }
  317. static void UART_ISR_ATTR uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  318. {
  319. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  320. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  321. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  322. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  323. }
  324. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  325. {
  326. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  327. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  328. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  329. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  330. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  331. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  332. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  333. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  334. free(pdata);
  335. }
  336. return ESP_OK;
  337. }
  338. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  339. {
  340. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  341. esp_err_t ret = ESP_OK;
  342. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  343. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  344. int next = p_pos->wr + 1;
  345. if (next >= p_pos->len) {
  346. next = 0;
  347. }
  348. if (next == p_pos->rd) {
  349. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  350. ret = ESP_FAIL;
  351. } else {
  352. p_pos->data[p_pos->wr] = pos;
  353. p_pos->wr = next;
  354. ret = ESP_OK;
  355. }
  356. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  357. return ret;
  358. }
  359. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  360. {
  361. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  362. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  363. return ESP_ERR_INVALID_STATE;
  364. } else {
  365. esp_err_t ret = ESP_OK;
  366. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  367. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  368. if (p_pos->rd == p_pos->wr) {
  369. ret = ESP_FAIL;
  370. } else {
  371. p_pos->rd++;
  372. }
  373. if (p_pos->rd >= p_pos->len) {
  374. p_pos->rd = 0;
  375. }
  376. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  377. return ret;
  378. }
  379. }
  380. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  381. {
  382. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  383. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  384. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  385. int rd = p_pos->rd;
  386. while(rd != p_pos->wr) {
  387. p_pos->data[rd] -= diff_len;
  388. int rd_rec = rd;
  389. rd ++;
  390. if (rd >= p_pos->len) {
  391. rd = 0;
  392. }
  393. if (p_pos->data[rd_rec] < 0) {
  394. p_pos->rd = rd;
  395. }
  396. }
  397. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  398. return ESP_OK;
  399. }
  400. int uart_pattern_pop_pos(uart_port_t uart_num)
  401. {
  402. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  403. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  404. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  405. int pos = -1;
  406. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  407. pos = pat_pos->data[pat_pos->rd];
  408. uart_pattern_dequeue(uart_num);
  409. }
  410. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  411. return pos;
  412. }
  413. int uart_pattern_get_pos(uart_port_t uart_num)
  414. {
  415. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  416. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  417. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  418. int pos = -1;
  419. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  420. pos = pat_pos->data[pat_pos->rd];
  421. }
  422. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  423. return pos;
  424. }
  425. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  426. {
  427. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  428. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  429. int* pdata = (int*) malloc(queue_length * sizeof(int));
  430. if(pdata == NULL) {
  431. return ESP_ERR_NO_MEM;
  432. }
  433. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  434. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  435. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  436. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  437. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  438. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  439. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  440. free(ptmp);
  441. return ESP_OK;
  442. }
  443. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  444. {
  445. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  446. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  447. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  448. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  449. UART[uart_num]->at_cmd_char.data = pattern_chr;
  450. UART[uart_num]->at_cmd_char.char_num = chr_num;
  451. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  452. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  453. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  454. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  455. }
  456. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  457. {
  458. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  459. }
  460. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  461. {
  462. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  463. }
  464. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  465. {
  466. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  467. }
  468. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  469. {
  470. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  471. }
  472. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  473. {
  474. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  475. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  476. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  477. UART[uart_num]->int_clr.txfifo_empty = 1;
  478. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  479. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  480. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  481. return ESP_OK;
  482. }
  483. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  484. {
  485. int ret;
  486. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  487. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  488. switch(uart_num) {
  489. case UART_NUM_1:
  490. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  491. break;
  492. case UART_NUM_2:
  493. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  494. break;
  495. case UART_NUM_0:
  496. default:
  497. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  498. break;
  499. }
  500. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  501. return ret;
  502. }
  503. esp_err_t uart_isr_free(uart_port_t uart_num)
  504. {
  505. esp_err_t ret;
  506. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  507. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  508. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  509. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  510. p_uart_obj[uart_num]->intr_handle=NULL;
  511. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  512. return ret;
  513. }
  514. //internal signal can be output to multiple GPIO pads
  515. //only one GPIO pad can connect with input signal
  516. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  517. {
  518. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  519. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  520. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  521. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  522. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  523. int tx_sig, rx_sig, rts_sig, cts_sig;
  524. switch(uart_num) {
  525. case UART_NUM_0:
  526. tx_sig = U0TXD_OUT_IDX;
  527. rx_sig = U0RXD_IN_IDX;
  528. rts_sig = U0RTS_OUT_IDX;
  529. cts_sig = U0CTS_IN_IDX;
  530. break;
  531. case UART_NUM_1:
  532. tx_sig = U1TXD_OUT_IDX;
  533. rx_sig = U1RXD_IN_IDX;
  534. rts_sig = U1RTS_OUT_IDX;
  535. cts_sig = U1CTS_IN_IDX;
  536. break;
  537. case UART_NUM_2:
  538. tx_sig = U2TXD_OUT_IDX;
  539. rx_sig = U2RXD_IN_IDX;
  540. rts_sig = U2RTS_OUT_IDX;
  541. cts_sig = U2CTS_IN_IDX;
  542. break;
  543. case UART_NUM_MAX:
  544. default:
  545. tx_sig = U0TXD_OUT_IDX;
  546. rx_sig = U0RXD_IN_IDX;
  547. rts_sig = U0RTS_OUT_IDX;
  548. cts_sig = U0CTS_IN_IDX;
  549. break;
  550. }
  551. if(tx_io_num >= 0) {
  552. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  553. gpio_set_level(tx_io_num, 1);
  554. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  555. }
  556. if(rx_io_num >= 0) {
  557. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  558. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  559. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  560. gpio_matrix_in(rx_io_num, rx_sig, 0);
  561. }
  562. if(rts_io_num >= 0) {
  563. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  564. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  565. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  566. }
  567. if(cts_io_num >= 0) {
  568. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  569. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  570. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  571. gpio_matrix_in(cts_io_num, cts_sig, 0);
  572. }
  573. return ESP_OK;
  574. }
  575. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  576. {
  577. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  578. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  579. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  580. UART[uart_num]->conf0.sw_rts = level & 0x1;
  581. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  582. return ESP_OK;
  583. }
  584. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  585. {
  586. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  587. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  588. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  589. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  590. return ESP_OK;
  591. }
  592. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  593. {
  594. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  595. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  596. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  597. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  598. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  599. return ESP_OK;
  600. }
  601. static periph_module_t get_periph_module(uart_port_t uart_num)
  602. {
  603. periph_module_t periph_module = PERIPH_UART0_MODULE;
  604. if (uart_num == UART_NUM_0) {
  605. periph_module = PERIPH_UART0_MODULE;
  606. } else if (uart_num == UART_NUM_1) {
  607. periph_module = PERIPH_UART1_MODULE;
  608. } else if (uart_num == UART_NUM_2) {
  609. periph_module = PERIPH_UART2_MODULE;
  610. } else {
  611. assert(0 && "uart_num error");
  612. }
  613. return periph_module;
  614. }
  615. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  616. {
  617. esp_err_t r;
  618. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  619. UART_CHECK((uart_config), "param null", ESP_FAIL);
  620. periph_module_t periph_module = get_periph_module(uart_num);
  621. if (uart_num != CONFIG_CONSOLE_UART_NUM) {
  622. periph_module_reset(periph_module);
  623. }
  624. periph_module_enable(periph_module);
  625. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  626. if (r != ESP_OK) return r;
  627. UART[uart_num]->conf0.val =
  628. (uart_config->parity << UART_PARITY_S)
  629. | (uart_config->data_bits << UART_BIT_NUM_S)
  630. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  631. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  632. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  633. if (r != ESP_OK) return r;
  634. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  635. if (r != ESP_OK) return r;
  636. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  637. //A hardware reset does not reset the fifo,
  638. //so we need to reset the fifo manually.
  639. uart_reset_rx_fifo(uart_num);
  640. return r;
  641. }
  642. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  643. {
  644. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  645. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  646. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  647. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  648. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  649. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  650. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  651. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  652. UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
  653. } else {
  654. UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
  655. }
  656. UART[uart_num]->conf1.rx_tout_en = 1;
  657. } else {
  658. UART[uart_num]->conf1.rx_tout_en = 0;
  659. }
  660. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  661. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  662. }
  663. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  664. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  665. }
  666. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  667. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  668. return ESP_OK;
  669. }
  670. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  671. {
  672. int cnt = 0;
  673. int len = length;
  674. while (len >= 0) {
  675. if (buf[len] == pat_chr) {
  676. cnt++;
  677. } else {
  678. cnt = 0;
  679. }
  680. if (cnt >= pat_num) {
  681. break;
  682. }
  683. len --;
  684. }
  685. return len;
  686. }
  687. //internal isr handler for default driver code.
  688. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  689. {
  690. uart_obj_t *p_uart = (uart_obj_t*) param;
  691. uint8_t uart_num = p_uart->uart_num;
  692. uart_dev_t* uart_reg = UART[uart_num];
  693. int rx_fifo_len = 0;
  694. uint8_t buf_idx = 0;
  695. uint32_t uart_intr_status = 0;
  696. uart_event_t uart_event;
  697. portBASE_TYPE HPTaskAwoken = 0;
  698. static uint8_t pat_flg = 0;
  699. while(1) {
  700. uart_intr_status = uart_reg->int_st.val;
  701. // The `continue statement` may cause the interrupt to loop infinitely
  702. // we exit the interrupt here
  703. if(uart_intr_status == 0) {
  704. break;
  705. }
  706. uart_event.type = UART_EVENT_MAX;
  707. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  708. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  709. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  710. if(p_uart->tx_waiting_brk) {
  711. continue;
  712. }
  713. //TX semaphore will only be used when tx_buf_size is zero.
  714. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  715. p_uart->tx_waiting_fifo = false;
  716. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  717. } else {
  718. //We don't use TX ring buffer, because the size is zero.
  719. if(p_uart->tx_buf_size == 0) {
  720. continue;
  721. }
  722. int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
  723. bool en_tx_flg = false;
  724. //We need to put a loop here, in case all the buffer items are very short.
  725. //That would cause a watch_dog reset because empty interrupt happens so often.
  726. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  727. while(tx_fifo_rem) {
  728. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  729. size_t size;
  730. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  731. if(p_uart->tx_head) {
  732. //The first item is the data description
  733. //Get the first item to get the data information
  734. if(p_uart->tx_len_tot == 0) {
  735. p_uart->tx_ptr = NULL;
  736. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  737. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  738. p_uart->tx_brk_flg = 1;
  739. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  740. }
  741. //We have saved the data description from the 1st item, return buffer.
  742. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  743. }else if(p_uart->tx_ptr == NULL) {
  744. //Update the TX item pointer, we will need this to return item to buffer.
  745. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  746. en_tx_flg = true;
  747. p_uart->tx_len_cur = size;
  748. }
  749. }
  750. else {
  751. //Can not get data from ring buffer, return;
  752. break;
  753. }
  754. }
  755. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  756. //To fill the TX FIFO.
  757. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  758. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  759. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  760. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  761. uart_reg->conf0.sw_rts = 0;
  762. uart_reg->int_ena.tx_done = 1;
  763. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  764. }
  765. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  766. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  767. *(p_uart->tx_ptr++) & 0xff);
  768. }
  769. p_uart->tx_len_tot -= send_len;
  770. p_uart->tx_len_cur -= send_len;
  771. tx_fifo_rem -= send_len;
  772. if (p_uart->tx_len_cur == 0) {
  773. //Return item to ring buffer.
  774. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  775. p_uart->tx_head = NULL;
  776. p_uart->tx_ptr = NULL;
  777. //Sending item done, now we need to send break if there is a record.
  778. //Set TX break signal after FIFO is empty
  779. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  780. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  781. uart_reg->int_ena.tx_brk_done = 0;
  782. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  783. uart_reg->conf0.txd_brk = 1;
  784. uart_reg->int_clr.tx_brk_done = 1;
  785. uart_reg->int_ena.tx_brk_done = 1;
  786. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  787. p_uart->tx_waiting_brk = 1;
  788. //do not enable TX empty interrupt
  789. en_tx_flg = false;
  790. } else {
  791. //enable TX empty interrupt
  792. en_tx_flg = true;
  793. }
  794. } else {
  795. //enable TX empty interrupt
  796. en_tx_flg = true;
  797. }
  798. }
  799. }
  800. if (en_tx_flg) {
  801. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  802. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  803. }
  804. }
  805. }
  806. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  807. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  808. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  809. ) {
  810. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  811. typeof(uart_reg->mem_rx_status) rx_status = uart_reg->mem_rx_status;
  812. // When using DPort to read fifo, fifo_cnt is not credible, we need to calculate the real cnt based on the fifo read and write pointer.
  813. // When using AHB to read FIFO, we can use fifo_cnt to indicate the data length in fifo.
  814. if (rx_status.wr_addr > rx_status.rd_addr) {
  815. rx_fifo_len = rx_status.wr_addr - rx_status.rd_addr;
  816. } else if (rx_status.wr_addr < rx_status.rd_addr) {
  817. rx_fifo_len = (rx_status.wr_addr + 128) - rx_status.rd_addr;
  818. } else {
  819. rx_fifo_len = rx_fifo_len > 0 ? 128 : 0;
  820. }
  821. if(pat_flg == 1) {
  822. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  823. pat_flg = 0;
  824. }
  825. if (p_uart->rx_buffer_full_flg == false) {
  826. //We have to read out all data in RX FIFO to clear the interrupt signal
  827. for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
  828. p_uart->rx_data_buf[buf_idx] = uart_reg->fifo.rw_byte;
  829. }
  830. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  831. int pat_num = uart_reg->at_cmd_char.char_num;
  832. int pat_idx = -1;
  833. //Get the buffer from the FIFO
  834. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  835. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  836. uart_event.type = UART_PATTERN_DET;
  837. uart_event.size = rx_fifo_len;
  838. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  839. } else {
  840. //After Copying the Data From FIFO ,Clear intr_status
  841. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  842. uart_event.type = UART_DATA;
  843. uart_event.size = rx_fifo_len;
  844. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  845. if (p_uart->uart_select_notif_callback) {
  846. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  847. }
  848. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  849. }
  850. p_uart->rx_stash_len = rx_fifo_len;
  851. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  852. //Mainly for applications that uses flow control or small ring buffer.
  853. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  854. p_uart->rx_buffer_full_flg = true;
  855. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  856. if (uart_event.type == UART_PATTERN_DET) {
  857. if (rx_fifo_len < pat_num) {
  858. //some of the characters are read out in last interrupt
  859. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  860. } else {
  861. uart_pattern_enqueue(uart_num,
  862. pat_idx <= -1 ?
  863. //can not find the pattern in buffer,
  864. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  865. // find the pattern in buffer
  866. p_uart->rx_buffered_len + pat_idx);
  867. }
  868. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  869. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  870. }
  871. }
  872. uart_event.type = UART_BUFFER_FULL;
  873. } else {
  874. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  875. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  876. if (rx_fifo_len < pat_num) {
  877. //some of the characters are read out in last interrupt
  878. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  879. } else if(pat_idx >= 0) {
  880. // find pattern in statsh buffer.
  881. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  882. }
  883. }
  884. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  885. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  886. }
  887. } else {
  888. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  889. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  890. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  891. uart_reg->int_clr.at_cmd_char_det = 1;
  892. uart_event.type = UART_PATTERN_DET;
  893. uart_event.size = rx_fifo_len;
  894. pat_flg = 1;
  895. }
  896. }
  897. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  898. // When fifo overflows, we reset the fifo.
  899. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  900. uart_reset_rx_fifo(uart_num);
  901. uart_reg->int_clr.rxfifo_ovf = 1;
  902. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  903. uart_event.type = UART_FIFO_OVF;
  904. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  905. if (p_uart->uart_select_notif_callback) {
  906. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  907. }
  908. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  909. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  910. uart_reg->int_clr.brk_det = 1;
  911. uart_event.type = UART_BREAK;
  912. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  913. uart_reg->int_clr.frm_err = 1;
  914. uart_event.type = UART_FRAME_ERR;
  915. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  916. if (p_uart->uart_select_notif_callback) {
  917. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  918. }
  919. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  920. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  921. uart_reg->int_clr.parity_err = 1;
  922. uart_event.type = UART_PARITY_ERR;
  923. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  924. if (p_uart->uart_select_notif_callback) {
  925. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  926. }
  927. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  928. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  929. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  930. uart_reg->conf0.txd_brk = 0;
  931. uart_reg->int_ena.tx_brk_done = 0;
  932. uart_reg->int_clr.tx_brk_done = 1;
  933. if(p_uart->tx_brk_flg == 1) {
  934. uart_reg->int_ena.txfifo_empty = 1;
  935. }
  936. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  937. if(p_uart->tx_brk_flg == 1) {
  938. p_uart->tx_brk_flg = 0;
  939. p_uart->tx_waiting_brk = 0;
  940. } else {
  941. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  942. }
  943. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  944. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  945. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  946. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  947. uart_reg->int_clr.at_cmd_char_det = 1;
  948. uart_event.type = UART_PATTERN_DET;
  949. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  950. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  951. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  952. // RS485 collision or frame error interrupt triggered
  953. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  954. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  955. uart_reset_rx_fifo(uart_num);
  956. // Set collision detection flag
  957. p_uart_obj[uart_num]->coll_det_flg = true;
  958. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  959. uart_event.type = UART_EVENT_MAX;
  960. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  961. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  962. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  963. // If RS485 half duplex mode is enable then reset FIFO and
  964. // reset RTS pin to start receiver driver
  965. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  966. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  967. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  968. uart_reg->conf0.sw_rts = 1;
  969. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  970. }
  971. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  972. } else {
  973. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  974. uart_event.type = UART_EVENT_MAX;
  975. }
  976. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  977. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  978. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  979. }
  980. }
  981. }
  982. if(HPTaskAwoken == pdTRUE) {
  983. portYIELD_FROM_ISR();
  984. }
  985. }
  986. /**************************************************************/
  987. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  988. {
  989. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  990. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  991. BaseType_t res;
  992. portTickType ticks_start = xTaskGetTickCount();
  993. //Take tx_mux
  994. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  995. if(res == pdFALSE) {
  996. return ESP_ERR_TIMEOUT;
  997. }
  998. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  999. typeof(UART0.status) status = UART[uart_num]->status;
  1000. //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
  1001. if(status.txfifo_cnt == 0 && status.st_utx_out == 0) {
  1002. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1003. return ESP_OK;
  1004. }
  1005. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1006. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), UART_TX_DONE_INT_ENA_M);
  1007. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1008. TickType_t ticks_end = xTaskGetTickCount();
  1009. if (ticks_end - ticks_start > ticks_to_wait) {
  1010. ticks_to_wait = 0;
  1011. } else {
  1012. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1013. }
  1014. //take 2nd tx_done_sem, wait given from ISR
  1015. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1016. if(res == pdFALSE) {
  1017. // The TX_DONE interrupt will be disabled in ISR
  1018. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1019. return ESP_ERR_TIMEOUT;
  1020. }
  1021. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1022. return ESP_OK;
  1023. }
  1024. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1025. {
  1026. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1027. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1028. UART[uart_num]->conf0.txd_brk = 1;
  1029. UART[uart_num]->int_clr.tx_brk_done = 1;
  1030. UART[uart_num]->int_ena.tx_brk_done = 1;
  1031. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1032. return ESP_OK;
  1033. }
  1034. //Fill UART tx_fifo and return a number,
  1035. //This function by itself is not thread-safe, always call from within a muxed section.
  1036. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1037. {
  1038. uint8_t i = 0;
  1039. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1040. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1041. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1042. // Set the RTS pin if RS485 mode is enabled
  1043. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1044. UART[uart_num]->conf0.sw_rts = 0;
  1045. UART[uart_num]->int_ena.tx_done = 1;
  1046. }
  1047. for (i = 0; i < copy_cnt; i++) {
  1048. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1049. }
  1050. return copy_cnt;
  1051. }
  1052. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1053. {
  1054. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1055. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1056. UART_CHECK(buffer, "buffer null", (-1));
  1057. if(len == 0) {
  1058. return 0;
  1059. }
  1060. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1061. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1062. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1063. return tx_len;
  1064. }
  1065. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1066. {
  1067. if(size == 0) {
  1068. return 0;
  1069. }
  1070. size_t original_size = size;
  1071. //lock for uart_tx
  1072. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1073. p_uart_obj[uart_num]->coll_det_flg = false;
  1074. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1075. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1076. int offset = 0;
  1077. uart_tx_data_t evt;
  1078. evt.tx_data.size = size;
  1079. evt.tx_data.brk_len = brk_len;
  1080. if(brk_en) {
  1081. evt.type = UART_DATA_BREAK;
  1082. } else {
  1083. evt.type = UART_DATA;
  1084. }
  1085. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1086. while(size > 0) {
  1087. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1088. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1089. size -= send_size;
  1090. offset += send_size;
  1091. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1092. }
  1093. } else {
  1094. while(size) {
  1095. //semaphore for tx_fifo available
  1096. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1097. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1098. if(sent < size) {
  1099. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1100. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1101. }
  1102. size -= sent;
  1103. src += sent;
  1104. }
  1105. }
  1106. if(brk_en) {
  1107. uart_set_break(uart_num, brk_len);
  1108. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1109. }
  1110. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1111. }
  1112. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1113. return original_size;
  1114. }
  1115. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1116. {
  1117. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1118. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1119. UART_CHECK(src, "buffer null", (-1));
  1120. return uart_tx_all(uart_num, src, size, 0, 0);
  1121. }
  1122. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1123. {
  1124. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1125. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1126. UART_CHECK((size > 0), "uart size error", (-1));
  1127. UART_CHECK((src), "uart data null", (-1));
  1128. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1129. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1130. }
  1131. static bool uart_check_buf_full(uart_port_t uart_num)
  1132. {
  1133. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1134. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1135. if(res == pdTRUE) {
  1136. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1137. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1138. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1139. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1140. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1141. return true;
  1142. }
  1143. }
  1144. return false;
  1145. }
  1146. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1147. {
  1148. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1149. UART_CHECK((buf), "uart data null", (-1));
  1150. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1151. uint8_t* data = NULL;
  1152. size_t size;
  1153. size_t copy_len = 0;
  1154. int len_tmp;
  1155. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1156. return -1;
  1157. }
  1158. while(length) {
  1159. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1160. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1161. if(data) {
  1162. p_uart_obj[uart_num]->rx_head_ptr = data;
  1163. p_uart_obj[uart_num]->rx_ptr = data;
  1164. p_uart_obj[uart_num]->rx_cur_remain = size;
  1165. } else {
  1166. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1167. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1168. //to solve the possible asynchronous issues.
  1169. if(uart_check_buf_full(uart_num)) {
  1170. //This condition will never be true if `uart_read_bytes`
  1171. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1172. continue;
  1173. } else {
  1174. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1175. return copy_len;
  1176. }
  1177. }
  1178. }
  1179. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1180. len_tmp = length;
  1181. } else {
  1182. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1183. }
  1184. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1185. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1186. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1187. uart_pattern_queue_update(uart_num, len_tmp);
  1188. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1189. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1190. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1191. copy_len += len_tmp;
  1192. length -= len_tmp;
  1193. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1194. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1195. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1196. p_uart_obj[uart_num]->rx_ptr = NULL;
  1197. uart_check_buf_full(uart_num);
  1198. }
  1199. }
  1200. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1201. return copy_len;
  1202. }
  1203. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1204. {
  1205. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1206. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1207. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1208. return ESP_OK;
  1209. }
  1210. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1211. esp_err_t uart_flush_input(uart_port_t uart_num)
  1212. {
  1213. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1214. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1215. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1216. uint8_t* data;
  1217. size_t size;
  1218. //rx sem protect the ring buffer read related functions
  1219. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1220. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1221. while(true) {
  1222. if(p_uart->rx_head_ptr) {
  1223. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1224. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1225. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1226. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1227. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1228. p_uart->rx_ptr = NULL;
  1229. p_uart->rx_cur_remain = 0;
  1230. p_uart->rx_head_ptr = NULL;
  1231. }
  1232. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1233. if(data == NULL) {
  1234. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1235. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1236. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1237. }
  1238. //We also need to clear the `rx_buffer_full_flg` here.
  1239. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1240. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1241. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1242. break;
  1243. }
  1244. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1245. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1246. uart_pattern_queue_update(uart_num, size);
  1247. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1248. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1249. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1250. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1251. if(res == pdTRUE) {
  1252. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1253. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1254. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1255. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1256. }
  1257. }
  1258. }
  1259. p_uart->rx_ptr = NULL;
  1260. p_uart->rx_cur_remain = 0;
  1261. p_uart->rx_head_ptr = NULL;
  1262. uart_reset_rx_fifo(uart_num);
  1263. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1264. xSemaphoreGive(p_uart->rx_mux);
  1265. return ESP_OK;
  1266. }
  1267. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1268. {
  1269. esp_err_t r;
  1270. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1271. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1272. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1273. #if CONFIG_UART_ISR_IN_IRAM
  1274. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0,
  1275. "should set ESP_INTR_FLAG_IRAM flag when CONFIG_UART_ISR_IN_IRAM is enabled", ESP_FAIL);
  1276. #else
  1277. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0,
  1278. "should not set ESP_INTR_FLAG_IRAM when CONFIG_UART_ISR_IN_IRAM is not enabled", ESP_FAIL);
  1279. #endif
  1280. if(p_uart_obj[uart_num] == NULL) {
  1281. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1282. if(p_uart_obj[uart_num] == NULL) {
  1283. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1284. return ESP_FAIL;
  1285. }
  1286. p_uart_obj[uart_num]->uart_num = uart_num;
  1287. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1288. p_uart_obj[uart_num]->coll_det_flg = false;
  1289. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1290. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1291. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1292. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1293. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1294. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1295. p_uart_obj[uart_num]->queue_size = queue_size;
  1296. p_uart_obj[uart_num]->tx_ptr = NULL;
  1297. p_uart_obj[uart_num]->tx_head = NULL;
  1298. p_uart_obj[uart_num]->tx_len_tot = 0;
  1299. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1300. p_uart_obj[uart_num]->tx_brk_len = 0;
  1301. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1302. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1303. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1304. if(uart_queue) {
  1305. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1306. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1307. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1308. } else {
  1309. p_uart_obj[uart_num]->xQueueUart = NULL;
  1310. }
  1311. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1312. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1313. p_uart_obj[uart_num]->rx_ptr = NULL;
  1314. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1315. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1316. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1317. if(tx_buffer_size > 0) {
  1318. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1319. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1320. } else {
  1321. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1322. p_uart_obj[uart_num]->tx_buf_size = 0;
  1323. }
  1324. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1325. } else {
  1326. ESP_LOGE(UART_TAG, "UART driver already installed");
  1327. return ESP_FAIL;
  1328. }
  1329. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1330. if (r!=ESP_OK) goto err;
  1331. uart_intr_config_t uart_intr = {
  1332. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1333. | UART_RXFIFO_TOUT_INT_ENA_M
  1334. | UART_FRM_ERR_INT_ENA_M
  1335. | UART_RXFIFO_OVF_INT_ENA_M
  1336. | UART_BRK_DET_INT_ENA_M
  1337. | UART_PARITY_ERR_INT_ENA_M,
  1338. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1339. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1340. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1341. };
  1342. r=uart_intr_config(uart_num, &uart_intr);
  1343. if (r!=ESP_OK) goto err;
  1344. return r;
  1345. err:
  1346. uart_driver_delete(uart_num);
  1347. return r;
  1348. }
  1349. //Make sure no other tasks are still using UART before you call this function
  1350. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1351. {
  1352. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1353. if(p_uart_obj[uart_num] == NULL) {
  1354. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1355. return ESP_OK;
  1356. }
  1357. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1358. uart_disable_rx_intr(uart_num);
  1359. uart_disable_tx_intr(uart_num);
  1360. uart_pattern_link_free(uart_num);
  1361. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1362. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1363. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1364. }
  1365. if(p_uart_obj[uart_num]->tx_done_sem) {
  1366. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1367. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1368. }
  1369. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1370. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1371. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1372. }
  1373. if(p_uart_obj[uart_num]->tx_mux) {
  1374. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1375. p_uart_obj[uart_num]->tx_mux = NULL;
  1376. }
  1377. if(p_uart_obj[uart_num]->rx_mux) {
  1378. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1379. p_uart_obj[uart_num]->rx_mux = NULL;
  1380. }
  1381. if(p_uart_obj[uart_num]->xQueueUart) {
  1382. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1383. p_uart_obj[uart_num]->xQueueUart = NULL;
  1384. }
  1385. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1386. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1387. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1388. }
  1389. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1390. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1391. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1392. }
  1393. free(p_uart_obj[uart_num]);
  1394. p_uart_obj[uart_num] = NULL;
  1395. if (uart_num != CONFIG_CONSOLE_UART_NUM) {
  1396. periph_module_t periph_module = get_periph_module(uart_num);
  1397. periph_module_disable(periph_module);
  1398. }
  1399. return ESP_OK;
  1400. }
  1401. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1402. {
  1403. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1404. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1405. }
  1406. }
  1407. portMUX_TYPE *uart_get_selectlock()
  1408. {
  1409. return &uart_selectlock;
  1410. }
  1411. // Set UART mode
  1412. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1413. {
  1414. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1415. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1416. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1417. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1418. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1419. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1420. }
  1421. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1422. UART[uart_num]->rs485_conf.en = 0;
  1423. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1424. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1425. UART[uart_num]->conf0.irda_en = 0;
  1426. UART[uart_num]->conf0.sw_rts = 0;
  1427. switch (mode) {
  1428. case UART_MODE_UART:
  1429. break;
  1430. case UART_MODE_RS485_COLLISION_DETECT:
  1431. // This mode allows read while transmitting that allows collision detection
  1432. p_uart_obj[uart_num]->coll_det_flg = false;
  1433. // Transmitter’s output signal loop back to the receiver’s input signal
  1434. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1435. // Transmitter should send data when its receiver is busy
  1436. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1437. UART[uart_num]->rs485_conf.en = 1;
  1438. // Enable collision detection interrupts
  1439. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1440. | UART_RXFIFO_FULL_INT_ENA
  1441. | UART_RS485_CLASH_INT_ENA
  1442. | UART_RS485_FRM_ERR_INT_ENA
  1443. | UART_RS485_PARITY_ERR_INT_ENA);
  1444. break;
  1445. case UART_MODE_RS485_APP_CTRL:
  1446. // Application software control, remove echo
  1447. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1448. UART[uart_num]->rs485_conf.en = 1;
  1449. break;
  1450. case UART_MODE_RS485_HALF_DUPLEX:
  1451. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1452. UART[uart_num]->conf0.sw_rts = 1;
  1453. UART[uart_num]->rs485_conf.en = 1;
  1454. // Must be set to 0 to automatically remove echo
  1455. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1456. // This is to void collision
  1457. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1458. break;
  1459. case UART_MODE_IRDA:
  1460. UART[uart_num]->conf0.irda_en = 1;
  1461. break;
  1462. default:
  1463. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1464. break;
  1465. }
  1466. p_uart_obj[uart_num]->uart_mode = mode;
  1467. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1468. return ESP_OK;
  1469. }
  1470. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1471. {
  1472. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1473. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1474. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1475. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1476. // transmission time of one symbol (~11 bit) on current baudrate
  1477. if (tout_thresh > 0) {
  1478. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  1479. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  1480. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  1481. UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT;
  1482. } else {
  1483. UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh;
  1484. }
  1485. UART[uart_num]->conf1.rx_tout_en = 1;
  1486. } else {
  1487. UART[uart_num]->conf1.rx_tout_en = 0;
  1488. }
  1489. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1490. return ESP_OK;
  1491. }
  1492. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1493. {
  1494. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1495. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1496. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1497. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1498. "wrong mode", ESP_ERR_INVALID_ARG);
  1499. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1500. return ESP_OK;
  1501. }
  1502. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1503. {
  1504. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1505. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1506. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1507. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1508. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1509. return ESP_OK;
  1510. }
  1511. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1512. {
  1513. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1514. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1515. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1516. return ESP_OK;
  1517. }