test_efuse.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594
  1. #include <stdio.h>
  2. #include <ctype.h>
  3. #include <errno.h>
  4. #include <stdlib.h>
  5. #include <stdio.h>
  6. #include "unity.h"
  7. #include "esp_log.h"
  8. #include <string.h>
  9. #include "esp_efuse.h"
  10. #include "esp_efuse_table.h"
  11. #include "../src/esp_efuse_utility.h"
  12. #include "esp_efuse_test_table.h"
  13. #include "rom/efuse.h"
  14. #include "bootloader_random.h"
  15. #include "sdkconfig.h"
  16. static const char* TAG = "efuse_test";
  17. static void test_read_blob(void)
  18. {
  19. esp_efuse_utility_update_virt_blocks();
  20. esp_efuse_utility_debug_dump_blocks();
  21. uint8_t mac[6];
  22. ESP_LOGI(TAG, "1. Read MAC address");
  23. memset(mac, 0, sizeof(mac));
  24. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  25. TEST_ASSERT_EQUAL_INT(sizeof(mac) * 8, esp_efuse_get_field_size(ESP_EFUSE_MAC_FACTORY));
  26. ESP_LOGI(TAG, "MAC: %02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  27. ESP_LOGI(TAG, "2. Check CRC by MAC");
  28. uint8_t crc;
  29. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY_CRC, &crc, 8));
  30. TEST_ASSERT_EQUAL_HEX8(crc, esp_crc8(mac, sizeof(mac)));
  31. ESP_LOGI(TAG, "3. Test check args");
  32. uint32_t test_var;
  33. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, NULL, 1));
  34. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &test_var, 0));
  35. uint8_t half_byte;
  36. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &half_byte, 4));
  37. TEST_ASSERT_EQUAL_HEX8(mac[0]&0x0F, half_byte);
  38. uint8_t buff[7] = {0x59};
  39. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &buff, sizeof(buff) * 8));
  40. TEST_ASSERT_TRUE_MESSAGE(memcmp(mac, buff, sizeof(mac)) == 0, "Operation read blob is not success");
  41. TEST_ASSERT_EQUAL_HEX8(0, buff[6]);
  42. }
  43. TEST_CASE("efuse test read_field_blob", "[efuse]")
  44. {
  45. test_read_blob();
  46. }
  47. static void test_read_cnt(void)
  48. {
  49. esp_efuse_utility_update_virt_blocks();
  50. esp_efuse_utility_debug_dump_blocks();
  51. ESP_LOGI(TAG, "1. Test check args");
  52. size_t cnt;
  53. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_read_field_cnt(ESP_EFUSE_MAC_FACTORY, NULL));
  54. ESP_LOGI(TAG, "2. Read MAC address");
  55. uint8_t mac[6];
  56. memset(mac, 0, sizeof(mac));
  57. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, 48));
  58. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_MAC_FACTORY, &cnt));
  59. size_t cnt_summ = 0;
  60. for (int i = 0; i < sizeof(mac); ++i) {
  61. cnt_summ += __builtin_popcount(mac[i]);
  62. }
  63. TEST_ASSERT_EQUAL_INT(cnt_summ, cnt);
  64. }
  65. TEST_CASE("efuse test read_field_cnt", "[efuse]")
  66. {
  67. test_read_cnt();
  68. }
  69. // If using efuse is real, then turn off writing tests.
  70. #ifdef CONFIG_EFUSE_VIRTUAL
  71. static void test_write_blob(void)
  72. {
  73. esp_efuse_utility_erase_virt_blocks();
  74. esp_efuse_utility_debug_dump_blocks();
  75. ESP_LOGI(TAG, "1. Test check args");
  76. uint16_t test1_len_8 = 0x5FAA;
  77. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_blob(ESP_EFUSE_MAC_FACTORY, &test1_len_8, 0));
  78. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, NULL, 8));
  79. TEST_ASSERT_EQUAL_HEX16(0x5FAA, test1_len_8);
  80. ESP_LOGI(TAG, "2. Test write operation");
  81. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8, 7));
  82. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8, 9));
  83. uint16_t val_read1 = 0;
  84. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST1_LEN_8, &val_read1, 8));
  85. TEST_ASSERT_EQUAL_HEX16(test1_len_8&((1 << 7) - 1), val_read1);
  86. uint16_t test1_len_8_hi = test1_len_8 & ~((1 << 7) - 1);
  87. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8_hi, 8));
  88. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8, 8));
  89. val_read1 = 0;
  90. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST1_LEN_8, &val_read1, 16));
  91. TEST_ASSERT_EQUAL_HEX16(test1_len_8&0x00FF, val_read1);
  92. uint16_t test2_len_16 = 0xAA55;
  93. uint32_t val_32 = test2_len_16;
  94. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST2_LEN_16, &val_32, 17));
  95. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST2_LEN_16, &test2_len_16, 16));
  96. uint16_t test_16 = 0;
  97. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST2_LEN_16, &test_16, 16));
  98. TEST_ASSERT_EQUAL_HEX16(test2_len_16, test_16);
  99. ESP_LOGI(TAG, "3. Test field with one bit");
  100. uint8_t test5_len_1;
  101. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  102. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  103. test5_len_1 = 0;
  104. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  105. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  106. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  107. test5_len_1 = 1;
  108. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  109. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  110. TEST_ASSERT_EQUAL_HEX8(1, test5_len_1);
  111. test5_len_1 = 1;
  112. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  113. esp_efuse_utility_debug_dump_blocks();
  114. }
  115. TEST_CASE("efuse test write_field_blob", "[efuse]")
  116. {
  117. test_write_blob();
  118. }
  119. static void test_write_cnt(void)
  120. {
  121. esp_efuse_utility_erase_virt_blocks();
  122. esp_efuse_utility_debug_dump_blocks();
  123. ESP_LOGI(TAG, "1. Test check args");
  124. size_t test3_len_6 = 5;
  125. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_cnt(ESP_EFUSE_MAC_FACTORY, 0));
  126. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_cnt(NULL, 5));
  127. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 0));
  128. ESP_LOGI(TAG, "2. Test write operation");
  129. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  130. TEST_ASSERT_EQUAL_INT(0, test3_len_6);
  131. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 1));
  132. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  133. TEST_ASSERT_EQUAL_INT(1, test3_len_6);
  134. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 1));
  135. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  136. TEST_ASSERT_EQUAL_INT(2, test3_len_6);
  137. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 3));
  138. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  139. TEST_ASSERT_EQUAL_INT(5, test3_len_6);
  140. esp_efuse_utility_debug_dump_blocks();
  141. ESP_LOGI(TAG, "3. Test field is full set");
  142. int max_bits = esp_efuse_get_field_size(ESP_EFUSE_TEST4_LEN_182);
  143. size_t test4_len_182;
  144. esp_efuse_utility_debug_dump_blocks();
  145. for (int i = 0; i < max_bits / 26; ++i) {
  146. ESP_LOGD(TAG, "# %d", i);
  147. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST4_LEN_182, 26));
  148. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST4_LEN_182, &test4_len_182));
  149. esp_efuse_utility_debug_dump_blocks();
  150. TEST_ASSERT_EQUAL_INT((i + 1) * 26, test4_len_182);
  151. }
  152. esp_efuse_utility_debug_dump_blocks();
  153. ESP_LOGI(TAG, "4. Test field ESP_EFUSE_TEST4_LEN_182 is full");
  154. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_write_field_cnt(ESP_EFUSE_TEST4_LEN_182, 1));
  155. ESP_LOGI(TAG, "3. Test field with one bit");
  156. size_t test5_len_1;
  157. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST5_LEN_1, &test5_len_1));
  158. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  159. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  160. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  161. test5_len_1 = 1;
  162. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST5_LEN_1, test5_len_1));
  163. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST5_LEN_1, &test5_len_1));
  164. TEST_ASSERT_EQUAL_HEX8(1, test5_len_1);
  165. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  166. TEST_ASSERT_EQUAL_HEX8(1, test5_len_1);
  167. test5_len_1 = 1;
  168. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_write_field_cnt(ESP_EFUSE_TEST5_LEN_1, test5_len_1));
  169. esp_efuse_utility_debug_dump_blocks();
  170. ESP_LOGI(TAG, "4. Test field test2_len_16");
  171. size_t test2_len_16 = 11;
  172. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST2_LEN_16, test2_len_16));
  173. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST2_LEN_16, &test2_len_16));
  174. TEST_ASSERT_EQUAL_HEX16(11, test2_len_16);
  175. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST2_LEN_16, &test2_len_16, 16));
  176. TEST_ASSERT_EQUAL_HEX16(0x07FF, test2_len_16);
  177. esp_efuse_utility_debug_dump_blocks();
  178. }
  179. TEST_CASE("efuse test write_field_cnt", "[efuse]")
  180. {
  181. test_write_cnt();
  182. }
  183. void cut_tail_arr(uint8_t *arr, int num_used_bits, size_t count_bits)
  184. {
  185. if ((num_used_bits + count_bits) % 8) {
  186. int start_used_item = (num_used_bits - 1) / 8;
  187. int last_used_item = ((num_used_bits + count_bits) - 1) / 8;
  188. int shift = 0;
  189. int mask = num_used_bits + count_bits;
  190. if (last_used_item == start_used_item) {
  191. shift = (num_used_bits) % 8;
  192. mask = count_bits;
  193. }
  194. arr[last_used_item] &= ((1 << (mask % 8)) - 1) << shift;
  195. }
  196. }
  197. void cut_start_arr(uint8_t *arr, size_t num_used_bits)
  198. {
  199. if (num_used_bits % 8) {
  200. int start_used_item = (num_used_bits - 1) / 8;
  201. arr[start_used_item] &= ~((1 << (num_used_bits % 8)) - 1);
  202. }
  203. }
  204. void get_part_arr(uint8_t *arr_in, uint8_t *arr_out, int num_used_bits, int count_bits)
  205. {
  206. int num_items = esp_efuse_utility_get_number_of_items(num_used_bits + count_bits, 8);
  207. memcpy(arr_out, arr_in, num_items);
  208. memset(arr_out, 0, num_used_bits / 8);
  209. cut_start_arr(arr_out, num_used_bits);
  210. cut_tail_arr(arr_out, num_used_bits, count_bits);
  211. }
  212. void fill_part_arr(uint8_t *arr_in, uint8_t *arr_out, int count_bits)
  213. {
  214. int num_items = esp_efuse_utility_get_number_of_items(count_bits, 8);
  215. memcpy(arr_out, arr_in, num_items);
  216. cut_tail_arr(arr_out, 0, count_bits);
  217. }
  218. // Writes a random array to efuse, then reads and compares it.
  219. void test_blob(const esp_efuse_desc_t* field[], uint8_t *arr_w, uint8_t *arr_r, uint8_t *arr_temp, int arr_size, size_t field_size)
  220. {
  221. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_w, arr_size, ESP_LOG_INFO);
  222. TEST_ESP_OK(esp_efuse_write_field_blob(field, arr_w, field_size));
  223. memset(arr_r, 0, arr_size);
  224. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  225. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_r, arr_size, ESP_LOG_INFO);
  226. esp_efuse_utility_debug_dump_blocks();
  227. TEST_ASSERT_TRUE_MESSAGE(memcmp(arr_w, arr_r, arr_size) == 0, "Operation write/read blob is not success");
  228. int count_once = 0;
  229. for (int i = 0; i < arr_size; ++i) {
  230. count_once += __builtin_popcount(arr_w[i]);
  231. }
  232. size_t num_bits_r = 0;
  233. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  234. TEST_ASSERT_EQUAL_INT(count_once, num_bits_r);
  235. size_t num_bits_w = field_size - count_once;
  236. if (num_bits_w == 0) {
  237. esp_efuse_utility_erase_virt_blocks();
  238. num_bits_w = field_size;
  239. }
  240. TEST_ESP_OK(esp_efuse_write_field_cnt(field, num_bits_w));
  241. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  242. esp_efuse_utility_debug_dump_blocks();
  243. TEST_ASSERT_EQUAL_INT(field_size, num_bits_r);
  244. memset(arr_r, 0, arr_size);
  245. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  246. memset(arr_temp, 0xFF, arr_size);
  247. cut_tail_arr(arr_temp, 0, field_size);
  248. esp_efuse_utility_debug_dump_blocks();
  249. TEST_ASSERT_TRUE_MESSAGE(memcmp(arr_temp, arr_r, arr_size) == 0, "Operation write/read blob is not success");
  250. }
  251. // Records a random number of bits (as "1") in the efuse field, then reads and compares.
  252. void test_cnt_part(const esp_efuse_desc_t* field[], uint8_t *arr_r, int arr_size, size_t field_size)
  253. {
  254. size_t num_bits_r = 0;
  255. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  256. TEST_ASSERT_EQUAL_INT(0, num_bits_r);
  257. TEST_ESP_OK(esp_efuse_write_field_cnt(field, field_size));
  258. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  259. TEST_ASSERT_EQUAL_INT(field_size, num_bits_r);
  260. esp_efuse_utility_erase_virt_blocks();
  261. int num_bits_summ_r = 0;
  262. int num_bits_w = 0;
  263. while(field_size > num_bits_summ_r) {
  264. num_bits_w = 0;
  265. while(num_bits_w == 0 || (num_bits_summ_r + num_bits_w) > field_size) {
  266. bootloader_random_enable();
  267. bootloader_fill_random(&num_bits_w, 1);
  268. bootloader_random_disable();
  269. num_bits_w = num_bits_w * field_size / 255;
  270. if (num_bits_w != 0 && (num_bits_summ_r + num_bits_w) <= field_size) {
  271. break;
  272. }
  273. }
  274. TEST_ESP_OK(esp_efuse_write_field_cnt(field, num_bits_w));
  275. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  276. num_bits_summ_r += num_bits_w;
  277. TEST_ASSERT_EQUAL_INT(num_bits_summ_r, num_bits_r);
  278. memset(arr_r, 0, arr_size);
  279. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  280. int count_once = 0;
  281. for (int i = 0; i < arr_size; ++i) {
  282. count_once += __builtin_popcount(arr_r[i]);
  283. }
  284. TEST_ASSERT_EQUAL_INT(num_bits_summ_r, count_once);
  285. ESP_LOGI(TAG, "Once bits=%d, step=%d", num_bits_summ_r, num_bits_w);
  286. }
  287. esp_efuse_utility_debug_dump_blocks();
  288. }
  289. // From a random array takes a random number of bits and write to efuse, it repeats until the entire length of the field is written down.
  290. void test_blob_part(const esp_efuse_desc_t* field[], uint8_t *arr_w, uint8_t *arr_r, uint8_t *arr_temp, int arr_size, size_t field_size)
  291. {
  292. esp_efuse_utility_debug_dump_blocks();
  293. int num_bits_summ_r = 0;
  294. int num_bits_w = 0;
  295. memset(arr_w, 0, arr_size);
  296. bootloader_random_enable();
  297. bootloader_fill_random(arr_w, arr_size);
  298. bootloader_random_disable();
  299. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_w, arr_size, ESP_LOG_INFO);
  300. while(field_size > num_bits_summ_r) {
  301. num_bits_w = 0;
  302. while(num_bits_w == 0 || (num_bits_summ_r + num_bits_w) > field_size) {
  303. bootloader_random_enable();
  304. bootloader_fill_random(&num_bits_w, 1);
  305. bootloader_random_disable();
  306. num_bits_w = num_bits_w * field_size / 255;
  307. if (num_bits_w != 0 && (num_bits_summ_r + num_bits_w) <= field_size) {
  308. break;
  309. }
  310. }
  311. ESP_LOGI(TAG, "Summ bits=%d, step=%d", num_bits_summ_r, num_bits_w);
  312. memset(arr_temp, 0, arr_size);
  313. get_part_arr(arr_w, arr_temp, num_bits_summ_r, num_bits_w);
  314. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_temp, arr_size, ESP_LOG_INFO);
  315. TEST_ESP_OK(esp_efuse_write_field_blob(field, arr_temp, field_size));
  316. memset(arr_r, 0, arr_size);
  317. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  318. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_r, arr_size, ESP_LOG_INFO);
  319. esp_efuse_utility_debug_dump_blocks();
  320. num_bits_summ_r += num_bits_w;
  321. memset(arr_temp, 0, arr_size);
  322. fill_part_arr(arr_w, arr_temp, num_bits_summ_r);
  323. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_temp, arr_size, ESP_LOG_INFO);
  324. TEST_ASSERT_TRUE_MESSAGE(memcmp(arr_temp, arr_r, arr_size) == 0, "Operation write/read blob is not success");
  325. }
  326. }
  327. void check_efuse_table_test(int cycle)
  328. {
  329. int num_test = 0;
  330. while(1) {
  331. const esp_efuse_desc_t** field;
  332. switch (num_test++) {
  333. case 0: field = ESP_EFUSE_TEST1_LEN_8; break;
  334. case 1: field = ESP_EFUSE_TEST2_LEN_16; break;
  335. case 2: field = ESP_EFUSE_TEST3_LEN_6; break;
  336. case 3: field = ESP_EFUSE_TEST4_LEN_182; break;
  337. case 4: field = ESP_EFUSE_TEST5_LEN_1; break;
  338. case 5: field = ESP_EFUSE_TEST6_LEN_17; break;
  339. default:
  340. return;
  341. break;
  342. }
  343. size_t field_size = esp_efuse_get_field_size(field);
  344. int arr_size = esp_efuse_utility_get_number_of_items(field_size, 8);
  345. uint8_t *arr_w = (uint8_t *) malloc(arr_size);
  346. uint8_t *arr_r = (uint8_t *) malloc(arr_size);
  347. uint8_t *arr_temp = (uint8_t *) malloc(arr_size);
  348. ESP_LOGI(TAG, "Test#%d", num_test);
  349. for (int c = 1; c <= cycle; ++c) {
  350. ESP_LOGI(TAG, "Cycle#%d/%d", c, cycle);
  351. memset(arr_w, 0, arr_size);
  352. bootloader_random_enable();
  353. bootloader_fill_random(arr_w, arr_size);
  354. bootloader_random_disable();
  355. cut_tail_arr(arr_w, 0, field_size);
  356. esp_efuse_utility_erase_virt_blocks();
  357. ESP_LOGI(TAG, "1) blob write/read");
  358. test_blob(field, arr_w, arr_r, arr_temp, arr_size, field_size);
  359. esp_efuse_utility_erase_virt_blocks();
  360. ESP_LOGI(TAG, "2) cnt part write/read");
  361. test_cnt_part(field, arr_r, arr_size, field_size);
  362. esp_efuse_utility_erase_virt_blocks();
  363. ESP_LOGI(TAG, "3) blob part write/read");
  364. test_blob_part(field, arr_w, arr_r, arr_temp, arr_size, field_size);
  365. }
  366. free(arr_temp);
  367. free(arr_r);
  368. free(arr_w);
  369. }
  370. }
  371. TEST_CASE("efuse esp_efuse_table_test", "[efuse]")
  372. {
  373. check_efuse_table_test(2);
  374. }
  375. TEST_CASE("Test esp_efuse_read_block esp_efuse_write_block functions", "[efuse]")
  376. {
  377. int count_useful_reg = 0;
  378. esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(EFUSE_BLK2);
  379. if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {
  380. printf("EFUSE_CODING_SCHEME_NONE\n");
  381. count_useful_reg = 8;
  382. } else if (coding_scheme == EFUSE_CODING_SCHEME_3_4) {
  383. printf("EFUSE_CODING_SCHEME_3_4\n");
  384. count_useful_reg = 6;
  385. } else if (coding_scheme == EFUSE_CODING_SCHEME_REPEAT) {
  386. printf("EFUSE_CODING_SCHEME_REPEAT\n");
  387. count_useful_reg = 4;
  388. }
  389. esp_efuse_utility_reset();
  390. esp_efuse_utility_erase_virt_blocks();
  391. uint8_t src_key[32] = { 0 };
  392. uint8_t dst_key[32] = { 0 };
  393. int offset_in_bits = 0;
  394. for (int i = 0; i < count_useful_reg * 4; ++i) {
  395. src_key[i] = 0xAB + i;
  396. }
  397. TEST_ESP_OK(esp_efuse_write_block(EFUSE_BLK2, src_key, offset_in_bits, count_useful_reg * 32));
  398. TEST_ESP_OK(esp_efuse_read_block(EFUSE_BLK2, dst_key, offset_in_bits, count_useful_reg * 32));
  399. esp_efuse_utility_debug_dump_blocks();
  400. TEST_ASSERT_EQUAL_HEX8_ARRAY(src_key, dst_key, sizeof(src_key));
  401. esp_efuse_utility_erase_virt_blocks();
  402. memset(src_key, 0, sizeof(src_key));
  403. memset(dst_key, 0, sizeof(dst_key));
  404. offset_in_bits = count_useful_reg * 32 / 2;
  405. for (int i = 0; i < count_useful_reg * 4 / 2; ++i) {
  406. src_key[i] = 0xCD + i;
  407. }
  408. TEST_ESP_OK(esp_efuse_write_block(EFUSE_BLK2, src_key, offset_in_bits, count_useful_reg * 32 / 2));
  409. TEST_ESP_OK(esp_efuse_read_block(EFUSE_BLK2, dst_key, offset_in_bits, count_useful_reg * 32 / 2));
  410. esp_efuse_utility_debug_dump_blocks();
  411. TEST_ASSERT_EQUAL_HEX8_ARRAY(src_key, dst_key, count_useful_reg * 4 / 2);
  412. esp_efuse_utility_erase_virt_blocks();
  413. }
  414. TEST_CASE("Test Bits are not empty. Write operation is forbidden", "[efuse]")
  415. {
  416. esp_efuse_utility_update_virt_blocks();
  417. esp_efuse_utility_debug_dump_blocks();
  418. int count_useful_reg = 0;
  419. uint8_t r_buff[32];
  420. int st_offset = -1;
  421. int num_block;
  422. for (num_block = EFUSE_BLK1; num_block < 4; ++num_block) {
  423. memset(r_buff, 0, sizeof(r_buff));
  424. esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(num_block);
  425. if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {
  426. printf("EFUSE_CODING_SCHEME_NONE. The test is not applicable.\n");
  427. count_useful_reg = 8;
  428. return;
  429. } else if (coding_scheme == EFUSE_CODING_SCHEME_3_4) {
  430. printf("EFUSE_CODING_SCHEME_3_4\n");
  431. count_useful_reg = 6;
  432. } else if (coding_scheme == EFUSE_CODING_SCHEME_REPEAT) {
  433. printf("EFUSE_CODING_SCHEME_REPEAT\n");
  434. count_useful_reg = 4;
  435. }
  436. TEST_ESP_OK(esp_efuse_read_block(num_block, r_buff, 0, count_useful_reg * 32));
  437. for (int i = 0; i < count_useful_reg * 4; ++i) {
  438. if (r_buff[i] != 0) {
  439. // found used byte
  440. for (int j = 0; j < 8; ++j) {
  441. if ((r_buff[i] & (1 << j)) == 0) {
  442. // found empty bit into this byte
  443. st_offset = i * 8 + j;
  444. printf("Byte = 0x%02x. offset is = %d\n", r_buff[i], st_offset);
  445. break;
  446. }
  447. }
  448. if (st_offset != -1) {
  449. break;
  450. }
  451. }
  452. }
  453. if (st_offset != -1) {
  454. break;
  455. }
  456. }
  457. if (st_offset != -1) {
  458. // write 1 bit to empty place.
  459. uint8_t val = 1;
  460. TEST_ESP_ERR(ESP_ERR_CODING, esp_efuse_write_block(num_block, &val, st_offset, 1));
  461. } else {
  462. printf("Test skipped. It is not applicable, the device has no written bits.");
  463. }
  464. }
  465. TEST_CASE("Test a write/read protection", "[efuse]")
  466. {
  467. esp_efuse_utility_reset();
  468. esp_efuse_utility_erase_virt_blocks();
  469. esp_efuse_utility_debug_dump_blocks();
  470. TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, esp_efuse_set_write_protect(EFUSE_BLK0));
  471. TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, esp_efuse_set_read_protect(EFUSE_BLK0));
  472. size_t out_cnt;
  473. esp_efuse_read_field_cnt(ESP_EFUSE_WR_DIS_BLK1, &out_cnt);
  474. TEST_ASSERT_EQUAL_INT(0, out_cnt);
  475. TEST_ESP_OK(esp_efuse_set_write_protect(EFUSE_BLK1));
  476. esp_efuse_read_field_cnt(ESP_EFUSE_WR_DIS_BLK1, &out_cnt);
  477. TEST_ASSERT_EQUAL_INT(1, out_cnt);
  478. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_set_write_protect(EFUSE_BLK1));
  479. TEST_ESP_OK(esp_efuse_set_write_protect(EFUSE_BLK2));
  480. esp_efuse_read_field_cnt(ESP_EFUSE_WR_DIS_BLK2, &out_cnt);
  481. TEST_ASSERT_EQUAL_INT(1, out_cnt);
  482. TEST_ESP_OK(esp_efuse_set_write_protect(EFUSE_BLK3));
  483. esp_efuse_read_field_cnt(ESP_EFUSE_WR_DIS_BLK3, &out_cnt);
  484. TEST_ASSERT_EQUAL_INT(1, out_cnt);
  485. esp_efuse_utility_debug_dump_blocks();
  486. esp_efuse_read_field_cnt(ESP_EFUSE_RD_DIS_BLK1, &out_cnt);
  487. TEST_ASSERT_EQUAL_INT(0, out_cnt);
  488. TEST_ESP_OK(esp_efuse_set_read_protect(EFUSE_BLK1));
  489. esp_efuse_read_field_cnt(ESP_EFUSE_RD_DIS_BLK1, &out_cnt);
  490. TEST_ASSERT_EQUAL_INT(1, out_cnt);
  491. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_set_read_protect(EFUSE_BLK1));
  492. TEST_ESP_OK(esp_efuse_set_read_protect(EFUSE_BLK2));
  493. esp_efuse_read_field_cnt(ESP_EFUSE_RD_DIS_BLK2, &out_cnt);
  494. TEST_ASSERT_EQUAL_INT(1, out_cnt);
  495. TEST_ESP_OK(esp_efuse_set_read_protect(EFUSE_BLK3));
  496. esp_efuse_read_field_cnt(ESP_EFUSE_RD_DIS_BLK3, &out_cnt);
  497. TEST_ASSERT_EQUAL_INT(1, out_cnt);
  498. esp_efuse_utility_debug_dump_blocks();
  499. esp_efuse_utility_reset();
  500. esp_efuse_utility_erase_virt_blocks();
  501. }
  502. #endif // #ifdef CONFIG_EFUSE_VIRTUAL