pm_esp32.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. // Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <stdbool.h>
  16. #include <string.h>
  17. #include <sys/param.h>
  18. #include "esp_attr.h"
  19. #include "esp_err.h"
  20. #include "esp_pm.h"
  21. #include "esp_log.h"
  22. #include "esp_crosscore_int.h"
  23. #include "esp_clk.h"
  24. #include "soc/rtc.h"
  25. #include "freertos/FreeRTOS.h"
  26. #include "freertos/task.h"
  27. #include "freertos/xtensa_timer.h"
  28. #include "xtensa/core-macros.h"
  29. #include "pm_impl.h"
  30. #include "pm_trace.h"
  31. #include "esp_timer_impl.h"
  32. #include "esp32/pm.h"
  33. /* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
  34. * for the purpose of detecting a deadlock.
  35. */
  36. #define CCOMPARE_UPDATE_TIMEOUT 1000000
  37. /* When changing CCOMPARE, don't allow changes if the difference is less
  38. * than this. This is to prevent setting CCOMPARE below CCOUNT.
  39. */
  40. #define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000
  41. /* When light sleep is used, wake this number of microseconds earlier than
  42. * the next tick.
  43. */
  44. #define LIGHT_SLEEP_EARLY_WAKEUP_US 100
  45. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  46. #define REF_CLK_DIV_MIN 10
  47. #define MHZ 1000000
  48. #ifdef CONFIG_PM_PROFILING
  49. #define WITH_PROFILING
  50. #endif
  51. static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
  52. /* The following state variables are protected using s_switch_lock: */
  53. /* Current sleep mode; When switching, contains old mode until switch is complete */
  54. static pm_mode_t s_mode = PM_MODE_CPU_MAX;
  55. /* True when switch is in progress */
  56. static volatile bool s_is_switching;
  57. /* When switch is in progress, this is the mode we are switching into */
  58. static pm_mode_t s_new_mode = PM_MODE_CPU_MAX;
  59. /* Number of times each mode was locked */
  60. static size_t s_mode_lock_counts[PM_MODE_COUNT];
  61. /* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
  62. static uint32_t s_mode_mask;
  63. /* Divider and multiplier used to adjust (ccompare - ccount) duration.
  64. * Only set to non-zero values when switch is in progress.
  65. */
  66. static uint32_t s_ccount_div;
  67. static uint32_t s_ccount_mul;
  68. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  69. /* Indicates if light sleep entry was skipped in vApplicationSleep for given CPU.
  70. * This in turn gets used in IDLE hook to decide if `waiti` needs
  71. * to be invoked or not.
  72. */
  73. static bool s_skipped_light_sleep[portNUM_PROCESSORS];
  74. #if portNUM_PROCESSORS == 2
  75. /* When light sleep is finished on one CPU, it is possible that the other CPU
  76. * will enter light sleep again very soon, before interrupts on the first CPU
  77. * get a chance to run. To avoid such situation, set a flag for the other CPU to
  78. * skip light sleep attempt.
  79. */
  80. static bool s_skip_light_sleep[portNUM_PROCESSORS];
  81. #endif // portNUM_PROCESSORS == 2
  82. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  83. /* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
  84. * Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
  85. */
  86. static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
  87. /* A flag indicating that Idle hook has run on a given CPU;
  88. * Next interrupt on the same CPU will take s_rtos_lock_handle.
  89. */
  90. static bool s_core_idle[portNUM_PROCESSORS];
  91. /* When no RTOS tasks are active, these locks are released to allow going into
  92. * a lower power mode. Used by ISR hook and idle hook.
  93. */
  94. static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
  95. /* Lookup table of CPU frequency configs to be used in each mode.
  96. * Initialized by esp_pm_impl_init and modified by esp_pm_configure.
  97. */
  98. rtc_cpu_freq_config_t s_cpu_freq_by_mode[PM_MODE_COUNT];
  99. /* Whether automatic light sleep is enabled */
  100. static bool s_light_sleep_en = false;
  101. /* When configuration is changed, current frequency may not match the
  102. * newly configured frequency for the current mode. This is an indicator
  103. * to the mode switch code to get the actual current frequency instead of
  104. * relying on the current mode.
  105. */
  106. static bool s_config_changed = false;
  107. #ifdef WITH_PROFILING
  108. /* Time, in microseconds, spent so far in each mode */
  109. static pm_time_t s_time_in_mode[PM_MODE_COUNT];
  110. /* Timestamp, in microseconds, when the mode switch last happened */
  111. static pm_time_t s_last_mode_change_time;
  112. /* User-readable mode names, used by esp_pm_impl_dump_stats */
  113. static const char* s_mode_names[] = {
  114. "SLEEP",
  115. "APB_MIN",
  116. "APB_MAX",
  117. "CPU_MAX"
  118. };
  119. #endif // WITH_PROFILING
  120. static const char* TAG = "pm_esp32";
  121. static void update_ccompare();
  122. static void do_switch(pm_mode_t new_mode);
  123. static void leave_idle();
  124. static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
  125. pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
  126. {
  127. (void) arg;
  128. if (type == ESP_PM_CPU_FREQ_MAX) {
  129. return PM_MODE_CPU_MAX;
  130. } else if (type == ESP_PM_APB_FREQ_MAX) {
  131. return PM_MODE_APB_MAX;
  132. } else if (type == ESP_PM_NO_LIGHT_SLEEP) {
  133. return PM_MODE_APB_MIN;
  134. } else {
  135. // unsupported mode
  136. abort();
  137. }
  138. }
  139. esp_err_t esp_pm_configure(const void* vconfig)
  140. {
  141. #ifndef CONFIG_PM_ENABLE
  142. return ESP_ERR_NOT_SUPPORTED;
  143. #endif
  144. const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
  145. #ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  146. if (config->light_sleep_enable) {
  147. return ESP_ERR_NOT_SUPPORTED;
  148. }
  149. #endif
  150. int min_freq_mhz = config->min_freq_mhz;
  151. int max_freq_mhz = config->max_freq_mhz;
  152. if (min_freq_mhz == 0 && max_freq_mhz == 0) {
  153. /* For compatibility, handle deprecated fields, min_cpu_freq and max_cpu_freq. */
  154. #pragma GCC diagnostic push
  155. #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
  156. min_freq_mhz = rtc_clk_cpu_freq_value(config->min_cpu_freq) / MHZ;
  157. max_freq_mhz = rtc_clk_cpu_freq_value(config->max_cpu_freq) / MHZ;
  158. #pragma GCC diagnostic pop
  159. }
  160. if (min_freq_mhz > max_freq_mhz) {
  161. return ESP_ERR_INVALID_ARG;
  162. }
  163. rtc_cpu_freq_config_t freq_config;
  164. if (!rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &freq_config)) {
  165. ESP_LOGW(TAG, "invalid min_freq_mhz value (%d)", min_freq_mhz);
  166. return ESP_ERR_INVALID_ARG;
  167. }
  168. int xtal_freq_mhz = (int) rtc_clk_xtal_freq_get();
  169. if (min_freq_mhz < xtal_freq_mhz && min_freq_mhz * MHZ / REF_CLK_FREQ < REF_CLK_DIV_MIN) {
  170. ESP_LOGW(TAG, "min_freq_mhz should be >= %d", REF_CLK_FREQ * REF_CLK_DIV_MIN / MHZ);
  171. return ESP_ERR_INVALID_ARG;
  172. }
  173. if (!rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &freq_config)) {
  174. ESP_LOGW(TAG, "invalid max_freq_mhz value (%d)", max_freq_mhz);
  175. return ESP_ERR_INVALID_ARG;
  176. }
  177. int apb_max_freq = max_freq_mhz; /* CPU frequency in APB_MAX mode */
  178. if (max_freq_mhz == 240) {
  179. /* We can't switch between 240 and 80/160 without disabling PLL,
  180. * so use 240MHz CPU frequency when 80MHz APB frequency is requested.
  181. */
  182. apb_max_freq = 240;
  183. } else if (max_freq_mhz == 160 || max_freq_mhz == 80) {
  184. /* Otherwise, can use 80MHz
  185. * CPU frequency when 80MHz APB frequency is requested.
  186. */
  187. apb_max_freq = 80;
  188. }
  189. apb_max_freq = MAX(apb_max_freq, min_freq_mhz);
  190. ESP_LOGI(TAG, "Frequency switching config: "
  191. "CPU_MAX: %d, APB_MAX: %d, APB_MIN: %d, Light sleep: %s",
  192. max_freq_mhz,
  193. apb_max_freq,
  194. min_freq_mhz,
  195. config->light_sleep_enable ? "ENABLED" : "DISABLED");
  196. portENTER_CRITICAL(&s_switch_lock);
  197. rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_CPU_MAX]);
  198. rtc_clk_cpu_freq_mhz_to_config(apb_max_freq, &s_cpu_freq_by_mode[PM_MODE_APB_MAX]);
  199. rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_APB_MIN]);
  200. s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = s_cpu_freq_by_mode[PM_MODE_APB_MIN];
  201. s_light_sleep_en = config->light_sleep_enable;
  202. s_config_changed = true;
  203. portEXIT_CRITICAL(&s_switch_lock);
  204. return ESP_OK;
  205. }
  206. static pm_mode_t IRAM_ATTR get_lowest_allowed_mode()
  207. {
  208. /* TODO: optimize using ffs/clz */
  209. if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
  210. return PM_MODE_CPU_MAX;
  211. } else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
  212. return PM_MODE_APB_MAX;
  213. } else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
  214. return PM_MODE_APB_MIN;
  215. } else {
  216. return PM_MODE_LIGHT_SLEEP;
  217. }
  218. }
  219. void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
  220. pm_mode_switch_t lock_or_unlock, pm_time_t now)
  221. {
  222. bool need_switch = false;
  223. uint32_t mode_mask = BIT(mode);
  224. portENTER_CRITICAL_SAFE(&s_switch_lock);
  225. uint32_t count;
  226. if (lock_or_unlock == MODE_LOCK) {
  227. count = ++s_mode_lock_counts[mode];
  228. } else {
  229. count = s_mode_lock_counts[mode]--;
  230. }
  231. if (count == 1) {
  232. if (lock_or_unlock == MODE_LOCK) {
  233. s_mode_mask |= mode_mask;
  234. } else {
  235. s_mode_mask &= ~mode_mask;
  236. }
  237. need_switch = true;
  238. }
  239. pm_mode_t new_mode = s_mode;
  240. if (need_switch) {
  241. new_mode = get_lowest_allowed_mode();
  242. #ifdef WITH_PROFILING
  243. if (s_last_mode_change_time != 0) {
  244. pm_time_t diff = now - s_last_mode_change_time;
  245. s_time_in_mode[s_mode] += diff;
  246. }
  247. s_last_mode_change_time = now;
  248. #endif // WITH_PROFILING
  249. }
  250. portEXIT_CRITICAL_SAFE(&s_switch_lock);
  251. if (need_switch && new_mode != s_mode) {
  252. do_switch(new_mode);
  253. }
  254. }
  255. /**
  256. * @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
  257. * values on both CPUs.
  258. * @param old_ticks_per_us old CPU frequency
  259. * @param ticks_per_us new CPU frequency
  260. */
  261. static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
  262. {
  263. uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
  264. uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
  265. /* Update APB frequency value used by the timer */
  266. if (old_apb_ticks_per_us != apb_ticks_per_us) {
  267. esp_timer_impl_update_apb_freq(apb_ticks_per_us);
  268. }
  269. /* Calculate new tick divisor */
  270. _xt_tick_divisor = ticks_per_us * MHZ / XT_TICK_PER_SEC;
  271. int core_id = xPortGetCoreID();
  272. if (s_rtos_lock_handle[core_id] != NULL) {
  273. ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
  274. /* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
  275. * to calculate new CCOMPARE value.
  276. */
  277. s_ccount_div = old_ticks_per_us;
  278. s_ccount_mul = ticks_per_us;
  279. /* Update CCOMPARE value on this CPU */
  280. update_ccompare();
  281. #if portNUM_PROCESSORS == 2
  282. /* Send interrupt to the other CPU to update CCOMPARE value */
  283. int other_core_id = (core_id == 0) ? 1 : 0;
  284. s_need_update_ccompare[other_core_id] = true;
  285. esp_crosscore_int_send_freq_switch(other_core_id);
  286. int timeout = 0;
  287. while (s_need_update_ccompare[other_core_id]) {
  288. if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
  289. assert(false && "failed to update CCOMPARE, possible deadlock");
  290. }
  291. }
  292. #endif // portNUM_PROCESSORS == 2
  293. s_ccount_mul = 0;
  294. s_ccount_div = 0;
  295. ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
  296. }
  297. }
  298. /**
  299. * Perform the switch to new power mode.
  300. * Currently only changes the CPU frequency and adjusts clock dividers.
  301. * No light sleep yet.
  302. * @param new_mode mode to switch to
  303. */
  304. static void IRAM_ATTR do_switch(pm_mode_t new_mode)
  305. {
  306. const int core_id = xPortGetCoreID();
  307. do {
  308. portENTER_CRITICAL_ISR(&s_switch_lock);
  309. if (!s_is_switching) {
  310. break;
  311. }
  312. if (s_new_mode <= new_mode) {
  313. portEXIT_CRITICAL_ISR(&s_switch_lock);
  314. return;
  315. }
  316. if (s_need_update_ccompare[core_id]) {
  317. s_need_update_ccompare[core_id] = false;
  318. }
  319. portEXIT_CRITICAL_ISR(&s_switch_lock);
  320. } while (true);
  321. s_new_mode = new_mode;
  322. s_is_switching = true;
  323. bool config_changed = s_config_changed;
  324. s_config_changed = false;
  325. portEXIT_CRITICAL_ISR(&s_switch_lock);
  326. rtc_cpu_freq_config_t new_config = s_cpu_freq_by_mode[new_mode];
  327. rtc_cpu_freq_config_t old_config;
  328. if (!config_changed) {
  329. old_config = s_cpu_freq_by_mode[s_mode];
  330. } else {
  331. rtc_clk_cpu_freq_get_config(&old_config);
  332. }
  333. if (new_config.freq_mhz != old_config.freq_mhz) {
  334. uint32_t old_ticks_per_us = old_config.freq_mhz;
  335. uint32_t new_ticks_per_us = new_config.freq_mhz;
  336. bool switch_down = new_ticks_per_us < old_ticks_per_us;
  337. ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
  338. if (switch_down) {
  339. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  340. }
  341. rtc_clk_cpu_freq_set_config_fast(&new_config);
  342. if (!switch_down) {
  343. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  344. }
  345. ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
  346. }
  347. portENTER_CRITICAL_ISR(&s_switch_lock);
  348. s_mode = new_mode;
  349. s_is_switching = false;
  350. portEXIT_CRITICAL_ISR(&s_switch_lock);
  351. }
  352. /**
  353. * @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
  354. *
  355. * Adjusts CCOMPARE value so that the interrupt happens at the same time as it
  356. * would happen without the frequency change.
  357. * Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
  358. */
  359. static void IRAM_ATTR update_ccompare()
  360. {
  361. uint32_t ccount = XTHAL_GET_CCOUNT();
  362. uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
  363. if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) {
  364. uint32_t diff = ccompare - ccount;
  365. uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
  366. if (diff_scaled < _xt_tick_divisor) {
  367. uint32_t new_ccompare = ccount + diff_scaled;
  368. XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
  369. }
  370. }
  371. }
  372. static void IRAM_ATTR leave_idle()
  373. {
  374. int core_id = xPortGetCoreID();
  375. if (s_core_idle[core_id]) {
  376. // TODO: possible optimization: raise frequency here first
  377. esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
  378. s_core_idle[core_id] = false;
  379. }
  380. }
  381. void esp_pm_impl_idle_hook()
  382. {
  383. int core_id = xPortGetCoreID();
  384. uint32_t state = portENTER_CRITICAL_NESTED();
  385. if (!s_core_idle[core_id]) {
  386. esp_pm_lock_release(s_rtos_lock_handle[core_id]);
  387. s_core_idle[core_id] = true;
  388. }
  389. portEXIT_CRITICAL_NESTED(state);
  390. ESP_PM_TRACE_ENTER(IDLE, core_id);
  391. }
  392. void IRAM_ATTR esp_pm_impl_isr_hook()
  393. {
  394. int core_id = xPortGetCoreID();
  395. ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
  396. /* Prevent higher level interrupts (than the one this function was called from)
  397. * from happening in this section, since they will also call into esp_pm_impl_isr_hook.
  398. */
  399. uint32_t state = portENTER_CRITICAL_NESTED();
  400. #if portNUM_PROCESSORS == 2
  401. if (s_need_update_ccompare[core_id]) {
  402. update_ccompare();
  403. s_need_update_ccompare[core_id] = false;
  404. } else {
  405. leave_idle();
  406. }
  407. #else
  408. leave_idle();
  409. #endif // portNUM_PROCESSORS == 2
  410. portEXIT_CRITICAL_NESTED(state);
  411. ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
  412. }
  413. void esp_pm_impl_waiti()
  414. {
  415. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  416. int core_id = xPortGetCoreID();
  417. if (s_skipped_light_sleep[core_id]) {
  418. asm("waiti 0");
  419. /* Interrupt took the CPU out of waiti and s_rtos_lock_handle[core_id]
  420. * is now taken. However since we are back to idle task, we can release
  421. * the lock so that vApplicationSleep can attempt to enter light sleep.
  422. */
  423. esp_pm_impl_idle_hook();
  424. s_skipped_light_sleep[core_id] = false;
  425. }
  426. #else
  427. asm("waiti 0");
  428. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  429. }
  430. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  431. static inline bool IRAM_ATTR should_skip_light_sleep(int core_id)
  432. {
  433. #if portNUM_PROCESSORS == 2
  434. if (s_skip_light_sleep[core_id]) {
  435. s_skip_light_sleep[core_id] = false;
  436. s_skipped_light_sleep[core_id] = true;
  437. return true;
  438. }
  439. #endif // portNUM_PROCESSORS == 2
  440. if (s_mode != PM_MODE_LIGHT_SLEEP || s_is_switching) {
  441. s_skipped_light_sleep[core_id] = true;
  442. } else {
  443. s_skipped_light_sleep[core_id] = false;
  444. }
  445. return s_skipped_light_sleep[core_id];
  446. }
  447. static inline void IRAM_ATTR other_core_should_skip_light_sleep(int core_id)
  448. {
  449. #if portNUM_PROCESSORS == 2
  450. s_skip_light_sleep[!core_id] = true;
  451. #endif
  452. }
  453. void IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime )
  454. {
  455. portENTER_CRITICAL(&s_switch_lock);
  456. int core_id = xPortGetCoreID();
  457. if (!should_skip_light_sleep(core_id)) {
  458. /* Calculate how much we can sleep */
  459. int64_t next_esp_timer_alarm = esp_timer_get_next_alarm();
  460. int64_t now = esp_timer_get_time();
  461. int64_t time_until_next_alarm = next_esp_timer_alarm - now;
  462. int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime;
  463. int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm);
  464. if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) {
  465. esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US);
  466. #ifdef CONFIG_PM_TRACE
  467. /* to force tracing GPIOs to keep state */
  468. esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
  469. #endif
  470. /* Enter sleep */
  471. ESP_PM_TRACE_ENTER(SLEEP, core_id);
  472. int64_t sleep_start = esp_timer_get_time();
  473. esp_light_sleep_start();
  474. int64_t slept_us = esp_timer_get_time() - sleep_start;
  475. ESP_PM_TRACE_EXIT(SLEEP, core_id);
  476. uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL);
  477. if (slept_ticks > 0) {
  478. /* Adjust RTOS tick count based on the amount of time spent in sleep */
  479. vTaskStepTick(slept_ticks);
  480. /* Trigger tick interrupt, since sleep time was longer
  481. * than portTICK_PERIOD_MS. Note that setting INTSET does not
  482. * work for timer interrupt, and changing CCOMPARE would clear
  483. * the interrupt flag.
  484. */
  485. XTHAL_SET_CCOUNT(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16);
  486. while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) {
  487. ;
  488. }
  489. }
  490. other_core_should_skip_light_sleep(core_id);
  491. }
  492. }
  493. portEXIT_CRITICAL(&s_switch_lock);
  494. }
  495. #endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE
  496. #ifdef WITH_PROFILING
  497. void esp_pm_impl_dump_stats(FILE* out)
  498. {
  499. pm_time_t time_in_mode[PM_MODE_COUNT];
  500. portENTER_CRITICAL_ISR(&s_switch_lock);
  501. memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
  502. pm_time_t last_mode_change_time = s_last_mode_change_time;
  503. pm_mode_t cur_mode = s_mode;
  504. pm_time_t now = pm_get_time();
  505. portEXIT_CRITICAL_ISR(&s_switch_lock);
  506. time_in_mode[cur_mode] += now - last_mode_change_time;
  507. fprintf(out, "Mode stats:\n");
  508. for (int i = 0; i < PM_MODE_COUNT; ++i) {
  509. if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) {
  510. /* don't display light sleep mode if it's not enabled */
  511. continue;
  512. }
  513. fprintf(out, "%8s %3dM %12lld %2d%%\n",
  514. s_mode_names[i],
  515. s_cpu_freq_by_mode[i].freq_mhz,
  516. time_in_mode[i],
  517. (int) (time_in_mode[i] * 100 / now));
  518. }
  519. }
  520. #endif // WITH_PROFILING
  521. void esp_pm_impl_init()
  522. {
  523. #ifdef CONFIG_PM_TRACE
  524. esp_pm_trace_init();
  525. #endif
  526. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
  527. &s_rtos_lock_handle[0]));
  528. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
  529. #if portNUM_PROCESSORS == 2
  530. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
  531. &s_rtos_lock_handle[1]));
  532. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
  533. #endif // portNUM_PROCESSORS == 2
  534. /* Configure all modes to use the default CPU frequency.
  535. * This will be modified later by a call to esp_pm_configure.
  536. */
  537. rtc_cpu_freq_config_t default_config;
  538. if (!rtc_clk_cpu_freq_mhz_to_config(CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ, &default_config)) {
  539. assert(false && "unsupported frequency");
  540. }
  541. for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
  542. s_cpu_freq_by_mode[i] = default_config;
  543. }
  544. }