spiram_psram.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078
  1. /*
  2. Driver bits for PSRAM chips (at the moment only the ESP-PSRAM32 chip).
  3. */
  4. // Copyright 2013-2017 Espressif Systems (Shanghai) PTE LTD
  5. //
  6. // Licensed under the Apache License, Version 2.0 (the "License");
  7. // you may not use this file except in compliance with the License.
  8. // You may obtain a copy of the License at
  9. //
  10. // http://www.apache.org/licenses/LICENSE-2.0
  11. //
  12. // Unless required by applicable law or agreed to in writing, software
  13. // distributed under the License is distributed on an "AS IS" BASIS,
  14. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. // See the License for the specific language governing permissions and
  16. // limitations under the License.
  17. #include "sdkconfig.h"
  18. #include "string.h"
  19. #include "esp_attr.h"
  20. #include "esp_err.h"
  21. #include "esp_types.h"
  22. #include "esp_log.h"
  23. #include "spiram_psram.h"
  24. #include "rom/ets_sys.h"
  25. #include "rom/spi_flash.h"
  26. #include "rom/gpio.h"
  27. #include "rom/cache.h"
  28. #include "rom/efuse.h"
  29. #include "soc/io_mux_reg.h"
  30. #include "soc/dport_reg.h"
  31. #include "soc/gpio_sig_map.h"
  32. #include "soc/efuse_reg.h"
  33. #include "driver/gpio.h"
  34. #include "driver/spi_common.h"
  35. #include "driver/periph_ctrl.h"
  36. #include "bootloader_common.h"
  37. #include "bootloader_flash_config.h"
  38. #if CONFIG_SPIRAM_SUPPORT
  39. #include "soc/rtc.h"
  40. //Commands for PSRAM chip
  41. #define PSRAM_READ 0x03
  42. #define PSRAM_FAST_READ 0x0B
  43. #define PSRAM_FAST_READ_DUMMY 0x3
  44. #define PSRAM_FAST_READ_QUAD 0xEB
  45. #define PSRAM_FAST_READ_QUAD_DUMMY 0x5
  46. #define PSRAM_WRITE 0x02
  47. #define PSRAM_QUAD_WRITE 0x38
  48. #define PSRAM_ENTER_QMODE 0x35
  49. #define PSRAM_EXIT_QMODE 0xF5
  50. #define PSRAM_RESET_EN 0x66
  51. #define PSRAM_RESET 0x99
  52. #define PSRAM_SET_BURST_LEN 0xC0
  53. #define PSRAM_DEVICE_ID 0x9F
  54. typedef enum {
  55. PSRAM_CLK_MODE_NORM = 0, /*!< Normal SPI mode */
  56. PSRAM_CLK_MODE_DCLK = 1, /*!< Two extra clock cycles after CS is set high level */
  57. } psram_clk_mode_t;
  58. #define PSRAM_ID_KGD_M 0xff
  59. #define PSRAM_ID_KGD_S 8
  60. #define PSRAM_ID_KGD 0x5d
  61. #define PSRAM_ID_EID_M 0xff
  62. #define PSRAM_ID_EID_S 16
  63. // Use the [7:5](bit7~bit5) of EID to distinguish the psram size:
  64. //
  65. // BIT7 | BIT6 | BIT5 | SIZE(MBIT)
  66. // -------------------------------------
  67. // 0 | 0 | 0 | 16
  68. // 0 | 0 | 1 | 32
  69. // 0 | 1 | 0 | 64
  70. #define PSRAM_EID_SIZE_M 0x07
  71. #define PSRAM_EID_SIZE_S 5
  72. typedef enum {
  73. PSRAM_EID_SIZE_16MBITS = 0,
  74. PSRAM_EID_SIZE_32MBITS = 1,
  75. PSRAM_EID_SIZE_64MBITS = 2,
  76. } psram_eid_size_t;
  77. #define PSRAM_KGD(id) (((id) >> PSRAM_ID_KGD_S) & PSRAM_ID_KGD_M)
  78. #define PSRAM_EID(id) (((id) >> PSRAM_ID_EID_S) & PSRAM_ID_EID_M)
  79. #define PSRAM_SIZE_ID(id) ((PSRAM_EID(id) >> PSRAM_EID_SIZE_S) & PSRAM_EID_SIZE_M)
  80. #define PSRAM_IS_VALID(id) (PSRAM_KGD(id) == PSRAM_ID_KGD)
  81. // For the old version 32Mbit psram, using the spicial driver */
  82. #define PSRAM_IS_32MBIT_VER0(id) (PSRAM_EID(id) == 0x20)
  83. #define PSRAM_IS_64MBIT_TRIAL(id) (PSRAM_EID(id) == 0x26)
  84. // IO-pins for PSRAM.
  85. // WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines
  86. // hardcode the flash pins as well, making this code incompatible with either a setup
  87. // that has the flash on non-standard pins or ESP32s with built-in flash.
  88. #define PSRAM_SPIQ_SD0_IO 7
  89. #define PSRAM_SPID_SD1_IO 8
  90. #define PSRAM_SPIWP_SD3_IO 10
  91. #define PSRAM_SPIHD_SD2_IO 9
  92. #define FLASH_HSPI_CLK_IO 14
  93. #define FLASH_HSPI_CS_IO 15
  94. #define PSRAM_HSPI_SPIQ_SD0_IO 12
  95. #define PSRAM_HSPI_SPID_SD1_IO 13
  96. #define PSRAM_HSPI_SPIWP_SD3_IO 2
  97. #define PSRAM_HSPI_SPIHD_SD2_IO 4
  98. // PSRAM clock and cs IO should be configured based on hardware design.
  99. // For ESP32-WROVER or ESP32-WROVER-B module, the clock IO is IO17, the cs IO is IO16,
  100. // they are the default value for these two configs.
  101. #define D0WD_PSRAM_CLK_IO CONFIG_D0WD_PSRAM_CLK_IO // Default value is 17
  102. #define D0WD_PSRAM_CS_IO CONFIG_D0WD_PSRAM_CS_IO // Default value is 16
  103. #define D2WD_PSRAM_CLK_IO CONFIG_D2WD_PSRAM_CLK_IO // Default value is 9
  104. #define D2WD_PSRAM_CS_IO CONFIG_D2WD_PSRAM_CS_IO // Default value is 10
  105. // For ESP32-PICO chip, the psram share clock with flash. The flash clock pin is fixed, which is IO6.
  106. #define PICO_PSRAM_CLK_IO 6
  107. #define PICO_PSRAM_CS_IO CONFIG_PICO_PSRAM_CS_IO // Default value is 10
  108. #define PICO_V3_02_PSRAM_CLK_IO 10
  109. #define PICO_V3_02_PSRAM_CS_IO 9
  110. typedef struct {
  111. uint8_t flash_clk_io;
  112. uint8_t flash_cs_io;
  113. uint8_t psram_clk_io;
  114. uint8_t psram_cs_io;
  115. uint8_t psram_spiq_sd0_io;
  116. uint8_t psram_spid_sd1_io;
  117. uint8_t psram_spiwp_sd3_io;
  118. uint8_t psram_spihd_sd2_io;
  119. } psram_io_t;
  120. #define PSRAM_INTERNAL_IO_28 28
  121. #define PSRAM_INTERNAL_IO_29 29
  122. #define PSRAM_IO_MATRIX_DUMMY_40M ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_40M
  123. #define PSRAM_IO_MATRIX_DUMMY_80M ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_80M
  124. #define _SPI_CACHE_PORT 0
  125. #define _SPI_FLASH_PORT 1
  126. #define _SPI_80M_CLK_DIV 1
  127. #define _SPI_40M_CLK_DIV 2
  128. //For 4MB PSRAM, we need one more SPI host, select which one to use by kconfig
  129. #ifdef CONFIG_SPIRAM_OCCUPY_HSPI_HOST
  130. #define PSRAM_SPI_MODULE PERIPH_HSPI_MODULE
  131. #define PSRAM_SPI_HOST HSPI_HOST
  132. #define PSRAM_CLK_SIGNAL HSPICLK_OUT_IDX
  133. #define PSRAM_SPI_NUM PSRAM_SPI_2
  134. #define PSRAM_SPICLKEN DPORT_SPI2_CLK_EN
  135. #elif defined CONFIG_SPIRAM_OCCUPY_VSPI_HOST
  136. #define PSRAM_SPI_MODULE PERIPH_VSPI_MODULE
  137. #define PSRAM_SPI_HOST VSPI_HOST
  138. #define PSRAM_CLK_SIGNAL VSPICLK_OUT_IDX
  139. #define PSRAM_SPI_NUM PSRAM_SPI_3
  140. #define PSRAM_SPICLKEN DPORT_SPI3_CLK_EN
  141. #else //set to SPI avoid HSPI and VSPI being used
  142. #define PSRAM_SPI_MODULE PERIPH_SPI_MODULE
  143. #define PSRAM_SPI_HOST SPI_HOST
  144. #define PSRAM_CLK_SIGNAL SPICLK_OUT_IDX
  145. #define PSRAM_SPI_NUM PSRAM_SPI_1
  146. #define PSRAM_SPICLKEN DPORT_SPI01_CLK_EN
  147. #endif
  148. static const char* TAG = "psram";
  149. typedef enum {
  150. PSRAM_SPI_1 = 0x1,
  151. PSRAM_SPI_2,
  152. PSRAM_SPI_3,
  153. PSRAM_SPI_MAX ,
  154. } psram_spi_num_t;
  155. static psram_cache_mode_t s_psram_mode = PSRAM_CACHE_MAX;
  156. static psram_clk_mode_t s_clk_mode = PSRAM_CLK_MODE_DCLK;
  157. static uint64_t s_psram_id = 0;
  158. static bool s_2t_mode_enabled = false;
  159. /* dummy_len_plus values defined in ROM for SPI flash configuration */
  160. extern uint8_t g_rom_spiflash_dummy_len_plus[];
  161. static int extra_dummy = 0;
  162. typedef enum {
  163. PSRAM_CMD_QPI,
  164. PSRAM_CMD_SPI,
  165. } psram_cmd_mode_t;
  166. typedef struct {
  167. uint16_t cmd; /*!< Command value */
  168. uint16_t cmdBitLen; /*!< Command byte length*/
  169. uint32_t *addr; /*!< Point to address value*/
  170. uint16_t addrBitLen; /*!< Address byte length*/
  171. uint32_t *txData; /*!< Point to send data buffer*/
  172. uint16_t txDataBitLen; /*!< Send data byte length.*/
  173. uint32_t *rxData; /*!< Point to recevie data buffer*/
  174. uint16_t rxDataBitLen; /*!< Recevie Data byte length.*/
  175. uint32_t dummyBitLen;
  176. } psram_cmd_t;
  177. static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode);
  178. static void psram_clear_spi_fifo(psram_spi_num_t spi_num)
  179. {
  180. int i;
  181. for (i = 0; i < 16; i++) {
  182. WRITE_PERI_REG(SPI_W0_REG(spi_num)+i*4, 0);
  183. }
  184. }
  185. //set basic SPI write mode
  186. static void psram_set_basic_write_mode(psram_spi_num_t spi_num)
  187. {
  188. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
  189. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
  190. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
  191. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
  192. }
  193. //set QPI write mode
  194. static void psram_set_qio_write_mode(psram_spi_num_t spi_num)
  195. {
  196. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
  197. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
  198. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
  199. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
  200. }
  201. //set QPI read mode
  202. static void psram_set_qio_read_mode(psram_spi_num_t spi_num)
  203. {
  204. SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
  205. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
  206. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
  207. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
  208. }
  209. //set SPI read mode
  210. static void psram_set_basic_read_mode(psram_spi_num_t spi_num)
  211. {
  212. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
  213. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
  214. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
  215. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
  216. }
  217. //start sending cmd/addr and optionally, receiving data
  218. static void IRAM_ATTR psram_cmd_recv_start(psram_spi_num_t spi_num, uint32_t* pRxData, uint16_t rxByteLen,
  219. psram_cmd_mode_t cmd_mode)
  220. {
  221. //get cs1
  222. CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
  223. SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
  224. uint32_t mode_backup = (READ_PERI_REG(SPI_USER_REG(spi_num)) >> SPI_FWRITE_DUAL_S) & 0xf;
  225. uint32_t rd_mode_backup = READ_PERI_REG(SPI_CTRL_REG(spi_num)) & (SPI_FREAD_DIO_M | SPI_FREAD_DUAL_M | SPI_FREAD_QUAD_M | SPI_FREAD_QIO_M);
  226. if (cmd_mode == PSRAM_CMD_SPI) {
  227. psram_set_basic_write_mode(spi_num);
  228. psram_set_basic_read_mode(spi_num);
  229. } else if (cmd_mode == PSRAM_CMD_QPI) {
  230. psram_set_qio_write_mode(spi_num);
  231. psram_set_qio_read_mode(spi_num);
  232. }
  233. //Wait for SPI0 to idle
  234. while ( READ_PERI_REG(SPI_EXT2_REG(0)) != 0);
  235. DPORT_SET_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
  236. // Start send data
  237. SET_PERI_REG_MASK(SPI_CMD_REG(spi_num), SPI_USR);
  238. while ((READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR));
  239. DPORT_CLEAR_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
  240. //recover spi mode
  241. SET_PERI_REG_BITS(SPI_USER_REG(spi_num), (pRxData?SPI_FWRITE_DUAL_M:0xf), mode_backup, SPI_FWRITE_DUAL_S);
  242. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), (SPI_FREAD_DIO_M|SPI_FREAD_DUAL_M|SPI_FREAD_QUAD_M|SPI_FREAD_QIO_M));
  243. SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), rd_mode_backup);
  244. //return cs to cs0
  245. SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
  246. CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
  247. if (pRxData) {
  248. int idx = 0;
  249. // Read data out
  250. do {
  251. *pRxData++ = READ_PERI_REG(SPI_W0_REG(spi_num) + (idx << 2));
  252. } while (++idx < ((rxByteLen / 4) + ((rxByteLen % 4) ? 1 : 0)));
  253. }
  254. }
  255. static uint32_t backup_usr[3];
  256. static uint32_t backup_usr1[3];
  257. static uint32_t backup_usr2[3];
  258. //setup spi command/addr/data/dummy in user mode
  259. static int psram_cmd_config(psram_spi_num_t spi_num, psram_cmd_t* pInData)
  260. {
  261. while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
  262. backup_usr[spi_num]=READ_PERI_REG(SPI_USER_REG(spi_num));
  263. backup_usr1[spi_num]=READ_PERI_REG(SPI_USER1_REG(spi_num));
  264. backup_usr2[spi_num]=READ_PERI_REG(SPI_USER2_REG(spi_num));
  265. // Set command by user.
  266. if (pInData->cmdBitLen != 0) {
  267. // Max command length 16 bits.
  268. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, pInData->cmdBitLen - 1,
  269. SPI_USR_COMMAND_BITLEN_S);
  270. // Enable command
  271. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
  272. // Load command,bit15-0 is cmd value.
  273. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_VALUE, pInData->cmd, SPI_USR_COMMAND_VALUE_S);
  274. } else {
  275. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
  276. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, 0, SPI_USR_COMMAND_BITLEN_S);
  277. }
  278. // Set Address by user.
  279. if (pInData->addrBitLen != 0) {
  280. SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, (pInData->addrBitLen - 1), SPI_USR_ADDR_BITLEN_S);
  281. // Enable address
  282. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
  283. // Set address
  284. WRITE_PERI_REG(SPI_ADDR_REG(spi_num), *pInData->addr);
  285. } else {
  286. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
  287. SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, 0, SPI_USR_ADDR_BITLEN_S);
  288. }
  289. // Set data by user.
  290. uint32_t* p_tx_val = pInData->txData;
  291. if (pInData->txDataBitLen != 0) {
  292. // Enable MOSI
  293. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
  294. // Load send buffer
  295. int len = (pInData->txDataBitLen + 31) / 32;
  296. if (p_tx_val != NULL) {
  297. memcpy((void*)SPI_W0_REG(spi_num), p_tx_val, len * 4);
  298. }
  299. // Set data send buffer length.Max data length 64 bytes.
  300. SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, (pInData->txDataBitLen - 1),
  301. SPI_USR_MOSI_DBITLEN_S);
  302. } else {
  303. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
  304. SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, 0, SPI_USR_MOSI_DBITLEN_S);
  305. }
  306. // Set rx data by user.
  307. if (pInData->rxDataBitLen != 0) {
  308. // Enable MOSI
  309. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
  310. // Set data send buffer length.Max data length 64 bytes.
  311. SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, (pInData->rxDataBitLen - 1),
  312. SPI_USR_MISO_DBITLEN_S);
  313. } else {
  314. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
  315. SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, 0, SPI_USR_MISO_DBITLEN_S);
  316. }
  317. if (pInData->dummyBitLen != 0) {
  318. SET_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
  319. SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, pInData->dummyBitLen - 1,
  320. SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  321. } else {
  322. CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
  323. SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, 0, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  324. }
  325. return 0;
  326. }
  327. static void psram_cmd_end(int spi_num) {
  328. while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
  329. WRITE_PERI_REG(SPI_USER_REG(spi_num), backup_usr[spi_num]);
  330. WRITE_PERI_REG(SPI_USER1_REG(spi_num), backup_usr1[spi_num]);
  331. WRITE_PERI_REG(SPI_USER2_REG(spi_num), backup_usr2[spi_num]);
  332. }
  333. //exit QPI mode(set back to SPI mode)
  334. static void psram_disable_qio_mode(psram_spi_num_t spi_num)
  335. {
  336. psram_cmd_t ps_cmd;
  337. uint32_t cmd_exit_qpi;
  338. cmd_exit_qpi = PSRAM_EXIT_QMODE;
  339. ps_cmd.txDataBitLen = 8;
  340. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  341. switch (s_psram_mode) {
  342. case PSRAM_CACHE_F80M_S80M:
  343. break;
  344. case PSRAM_CACHE_F80M_S40M:
  345. case PSRAM_CACHE_F40M_S40M:
  346. default:
  347. cmd_exit_qpi = PSRAM_EXIT_QMODE << 8;
  348. ps_cmd.txDataBitLen = 16;
  349. break;
  350. }
  351. }
  352. ps_cmd.txData = &cmd_exit_qpi;
  353. ps_cmd.cmd = 0;
  354. ps_cmd.cmdBitLen = 0;
  355. ps_cmd.addr = 0;
  356. ps_cmd.addrBitLen = 0;
  357. ps_cmd.rxData = NULL;
  358. ps_cmd.rxDataBitLen = 0;
  359. ps_cmd.dummyBitLen = 0;
  360. psram_cmd_config(spi_num, &ps_cmd);
  361. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_QPI);
  362. psram_cmd_end(spi_num);
  363. }
  364. //read psram id, should issue `psram_disable_qio_mode` before calling this
  365. static void psram_read_id(psram_spi_num_t spi_num, uint64_t* dev_id)
  366. {
  367. uint32_t dummy_bits = 0 + extra_dummy;
  368. uint32_t psram_id[2] = {0};
  369. psram_cmd_t ps_cmd;
  370. uint32_t addr = 0;
  371. ps_cmd.addrBitLen = 3 * 8;
  372. ps_cmd.cmd = PSRAM_DEVICE_ID;
  373. ps_cmd.cmdBitLen = 8;
  374. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  375. switch (s_psram_mode) {
  376. case PSRAM_CACHE_F80M_S80M:
  377. break;
  378. case PSRAM_CACHE_F80M_S40M:
  379. case PSRAM_CACHE_F40M_S40M:
  380. default:
  381. ps_cmd.cmdBitLen = 2; //this two bits is used to delay 2 clock cycle
  382. ps_cmd.cmd = 0;
  383. addr = (PSRAM_DEVICE_ID << 24) | 0;
  384. ps_cmd.addrBitLen = 4 * 8;
  385. break;
  386. }
  387. }
  388. ps_cmd.addr = &addr;
  389. ps_cmd.txDataBitLen = 0;
  390. ps_cmd.txData = NULL;
  391. ps_cmd.rxDataBitLen = 8 * 8;
  392. ps_cmd.rxData = psram_id;
  393. ps_cmd.dummyBitLen = dummy_bits;
  394. psram_cmd_config(spi_num, &ps_cmd);
  395. psram_clear_spi_fifo(spi_num);
  396. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_SPI);
  397. psram_cmd_end(spi_num);
  398. *dev_id = (uint64_t)(((uint64_t)psram_id[1] << 32) | psram_id[0]);
  399. }
  400. //enter QPI mode
  401. static esp_err_t IRAM_ATTR psram_enable_qio_mode(psram_spi_num_t spi_num)
  402. {
  403. psram_cmd_t ps_cmd;
  404. uint32_t addr = (PSRAM_ENTER_QMODE << 24) | 0;
  405. ps_cmd.cmdBitLen = 0;
  406. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  407. switch (s_psram_mode) {
  408. case PSRAM_CACHE_F80M_S80M:
  409. break;
  410. case PSRAM_CACHE_F80M_S40M:
  411. case PSRAM_CACHE_F40M_S40M:
  412. default:
  413. ps_cmd.cmdBitLen = 2;
  414. break;
  415. }
  416. }
  417. ps_cmd.cmd = 0;
  418. ps_cmd.addr = &addr;
  419. ps_cmd.addrBitLen = 8;
  420. ps_cmd.txData = NULL;
  421. ps_cmd.txDataBitLen = 0;
  422. ps_cmd.rxData = NULL;
  423. ps_cmd.rxDataBitLen = 0;
  424. ps_cmd.dummyBitLen = 0;
  425. psram_cmd_config(spi_num, &ps_cmd);
  426. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  427. psram_cmd_end(spi_num);
  428. return ESP_OK;
  429. }
  430. #if CONFIG_SPIRAM_2T_MODE
  431. // use SPI user mode to write psram
  432. static void spi_user_psram_write(psram_spi_num_t spi_num, uint32_t address, uint32_t *data_buffer, uint32_t data_len)
  433. {
  434. uint32_t addr = (PSRAM_QUAD_WRITE << 24) | (address & 0x7fffff);
  435. psram_cmd_t ps_cmd;
  436. ps_cmd.cmdBitLen = 0;
  437. ps_cmd.cmd = 0;
  438. ps_cmd.addr = &addr;
  439. ps_cmd.addrBitLen = 4 * 8;
  440. ps_cmd.txDataBitLen = 32 * 8;
  441. ps_cmd.txData = NULL;
  442. ps_cmd.rxDataBitLen = 0;
  443. ps_cmd.rxData = NULL;
  444. ps_cmd.dummyBitLen = 0;
  445. for(uint32_t i=0; i<data_len; i+=32) {
  446. psram_clear_spi_fifo(spi_num);
  447. addr = (PSRAM_QUAD_WRITE << 24) | ((address & 0x7fffff) + i);
  448. ps_cmd.txData = data_buffer + (i / 4);
  449. psram_cmd_config(spi_num, &ps_cmd);
  450. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_QPI);
  451. }
  452. psram_cmd_end(spi_num);
  453. }
  454. // use SPI user mode to read psram
  455. static void spi_user_psram_read(psram_spi_num_t spi_num, uint32_t address, uint32_t *data_buffer, uint32_t data_len)
  456. {
  457. uint32_t addr = (PSRAM_FAST_READ_QUAD << 24) | (address & 0x7fffff);
  458. uint32_t dummy_bits = PSRAM_FAST_READ_QUAD_DUMMY + 1;
  459. psram_cmd_t ps_cmd;
  460. ps_cmd.cmdBitLen = 0;
  461. ps_cmd.cmd = 0;
  462. ps_cmd.addr = &addr;
  463. ps_cmd.addrBitLen = 4 * 8;
  464. ps_cmd.txDataBitLen = 0;
  465. ps_cmd.txData = NULL;
  466. ps_cmd.rxDataBitLen = 32 * 8;
  467. ps_cmd.dummyBitLen = dummy_bits + extra_dummy;
  468. for(uint32_t i=0; i<data_len; i+=32) {
  469. psram_clear_spi_fifo(spi_num);
  470. addr = (PSRAM_FAST_READ_QUAD << 24) | ((address & 0x7fffff) + i);
  471. ps_cmd.rxData = data_buffer + (i / 4);
  472. psram_cmd_config(spi_num, &ps_cmd);
  473. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_QPI);
  474. }
  475. psram_cmd_end(spi_num);
  476. }
  477. //enable psram 2T mode
  478. static esp_err_t IRAM_ATTR psram_2t_mode_enable(psram_spi_num_t spi_num)
  479. {
  480. psram_disable_qio_mode(spi_num);
  481. // configure psram clock as 5 MHz
  482. uint32_t div = rtc_clk_apb_freq_get() / 5000000;
  483. esp_rom_spiflash_config_clk(div, spi_num);
  484. psram_cmd_t ps_cmd;
  485. // setp1: send cmd 0x5e
  486. // send one more bit clock after send cmd
  487. ps_cmd.cmd = 0x5e;
  488. ps_cmd.cmdBitLen = 8;
  489. ps_cmd.addrBitLen = 0;
  490. ps_cmd.addr = 0;
  491. ps_cmd.txDataBitLen = 0;
  492. ps_cmd.txData = NULL;
  493. ps_cmd.rxDataBitLen =0;
  494. ps_cmd.rxData = NULL;
  495. ps_cmd.dummyBitLen = 1;
  496. psram_cmd_config(spi_num, &ps_cmd);
  497. psram_clear_spi_fifo(spi_num);
  498. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  499. psram_cmd_end(spi_num);
  500. // setp2: send cmd 0x5f
  501. // send one more bit clock after send cmd
  502. ps_cmd.cmd = 0x5f;
  503. psram_cmd_config(spi_num, &ps_cmd);
  504. psram_clear_spi_fifo(spi_num);
  505. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  506. psram_cmd_end(spi_num);
  507. // setp3: keep cs as high level
  508. // send 128 cycles clock
  509. // send 1 bit high levle in ninth clock from the back to PSRAM SIO1
  510. GPIO_OUTPUT_SET(D0WD_PSRAM_CS_IO, 1);
  511. gpio_matrix_out(D0WD_PSRAM_CS_IO, SIG_GPIO_OUT_IDX, 0, 0);
  512. gpio_matrix_out(PSRAM_SPID_SD1_IO, SPIQ_OUT_IDX, 0, 0);
  513. gpio_matrix_in(PSRAM_SPID_SD1_IO, SPIQ_IN_IDX, 0);
  514. gpio_matrix_out(PSRAM_SPIQ_SD0_IO, SPID_OUT_IDX, 0, 0);
  515. gpio_matrix_in(PSRAM_SPIQ_SD0_IO, SPID_IN_IDX, 0);
  516. uint32_t w_data_2t[4] = {0x0, 0x0, 0x0, 0x00010000};
  517. ps_cmd.cmd = 0;
  518. ps_cmd.cmdBitLen = 0;
  519. ps_cmd.txDataBitLen = 128;
  520. ps_cmd.txData = w_data_2t;
  521. ps_cmd.dummyBitLen = 0;
  522. psram_clear_spi_fifo(spi_num);
  523. psram_cmd_config(spi_num, &ps_cmd);
  524. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  525. psram_cmd_end(spi_num);
  526. gpio_matrix_out(PSRAM_SPIQ_SD0_IO, SPIQ_OUT_IDX, 0, 0);
  527. gpio_matrix_in(PSRAM_SPIQ_SD0_IO, SPIQ_IN_IDX, 0);
  528. gpio_matrix_out(PSRAM_SPID_SD1_IO, SPID_OUT_IDX, 0, 0);
  529. gpio_matrix_in(PSRAM_SPID_SD1_IO, SPID_IN_IDX, 0);
  530. gpio_matrix_out(D0WD_PSRAM_CS_IO, SPICS1_OUT_IDX, 0, 0);
  531. // setp4: send cmd 0x5f
  532. // send one more bit clock after send cmd
  533. ps_cmd.cmd = 0x5f;
  534. ps_cmd.cmdBitLen = 8;
  535. ps_cmd.txDataBitLen = 0;
  536. ps_cmd.txData = NULL;
  537. ps_cmd.dummyBitLen = 1;
  538. psram_cmd_config(spi_num, &ps_cmd);
  539. psram_clear_spi_fifo(spi_num);
  540. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  541. psram_cmd_end(spi_num);
  542. // configure psram clock back to the default value
  543. switch (s_psram_mode) {
  544. case PSRAM_CACHE_F80M_S40M:
  545. case PSRAM_CACHE_F40M_S40M:
  546. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, spi_num);
  547. break;
  548. case PSRAM_CACHE_F80M_S80M:
  549. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, spi_num);
  550. break;
  551. default:
  552. break;
  553. }
  554. psram_enable_qio_mode(spi_num);
  555. return ESP_OK;
  556. }
  557. #define CHECK_DATA_LEN (1024)
  558. #define CHECK_ADDR_STEP (0x100000)
  559. #define SIZE_32MBIT (0x400000)
  560. #define SIZE_64MBIT (0x800000)
  561. static esp_err_t psram_2t_mode_check(psram_spi_num_t spi_num)
  562. {
  563. uint8_t w_check_data[CHECK_DATA_LEN] = {0};
  564. uint8_t r_check_data[CHECK_DATA_LEN] = {0};
  565. for (uint32_t addr=0; addr<SIZE_32MBIT; addr+=CHECK_ADDR_STEP) {
  566. spi_user_psram_write(spi_num, addr, (uint32_t *)w_check_data, CHECK_DATA_LEN);
  567. }
  568. memset(w_check_data, 0xff, sizeof(w_check_data));
  569. for (uint32_t addr=SIZE_32MBIT; addr<SIZE_64MBIT; addr+=CHECK_ADDR_STEP) {
  570. spi_user_psram_write(spi_num, addr, (uint32_t *)w_check_data, CHECK_DATA_LEN);
  571. }
  572. for (uint32_t addr=0; addr<SIZE_32MBIT; addr+=CHECK_ADDR_STEP) {
  573. spi_user_psram_read(spi_num, addr, (uint32_t *)r_check_data, CHECK_DATA_LEN);
  574. for (uint32_t j=0; j<CHECK_DATA_LEN; j++) {
  575. if (r_check_data[j] != 0xff) {
  576. return ESP_FAIL;
  577. }
  578. }
  579. }
  580. return ESP_OK;
  581. }
  582. #endif
  583. void psram_set_cs_timing(psram_spi_num_t spi_num, psram_clk_mode_t clk_mode)
  584. {
  585. if (clk_mode == PSRAM_CLK_MODE_NORM) {
  586. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
  587. // Set cs time.
  588. SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_HOLD_TIME_V, 1, SPI_HOLD_TIME_S);
  589. SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_SETUP_TIME_V, 0, SPI_SETUP_TIME_S);
  590. } else {
  591. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
  592. }
  593. }
  594. //spi param init for psram
  595. void IRAM_ATTR psram_spi_init(psram_spi_num_t spi_num, psram_cache_mode_t mode)
  596. {
  597. CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_TRANS_DONE << 5);
  598. // SPI_CPOL & SPI_CPHA
  599. CLEAR_PERI_REG_MASK(SPI_PIN_REG(spi_num), SPI_CK_IDLE_EDGE);
  600. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CK_OUT_EDGE);
  601. // SPI bit order
  602. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_WR_BIT_ORDER);
  603. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_RD_BIT_ORDER);
  604. // SPI bit order
  605. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_DOUTDIN);
  606. // May be not must to do.
  607. WRITE_PERI_REG(SPI_USER1_REG(spi_num), 0);
  608. // SPI mode type
  609. CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_SLAVE_MODE);
  610. memset((void*)SPI_W0_REG(spi_num), 0, 16 * 4);
  611. psram_set_cs_timing(spi_num, s_clk_mode);
  612. }
  613. //psram gpio init , different working frequency we have different solutions
  614. static void IRAM_ATTR psram_gpio_config(psram_io_t *psram_io, psram_cache_mode_t mode)
  615. {
  616. int spi_cache_dummy = 0;
  617. uint32_t rd_mode_reg = READ_PERI_REG(SPI_CTRL_REG(0));
  618. if (rd_mode_reg & SPI_FREAD_QIO_M) {
  619. spi_cache_dummy = SPI0_R_QIO_DUMMY_CYCLELEN;
  620. } else if (rd_mode_reg & SPI_FREAD_DIO_M) {
  621. spi_cache_dummy = SPI0_R_DIO_DUMMY_CYCLELEN;
  622. SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_ADDR_BITLEN_V, SPI0_R_DIO_ADDR_BITSLEN, SPI_USR_ADDR_BITLEN_S);
  623. } else if (rd_mode_reg & (SPI_FREAD_QUAD_M | SPI_FREAD_DUAL_M)) {
  624. spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
  625. } else {
  626. spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
  627. }
  628. switch (mode) {
  629. case PSRAM_CACHE_F80M_S40M:
  630. extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
  631. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  632. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  633. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  634. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
  635. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
  636. //set drive ability for clock
  637. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
  638. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
  639. break;
  640. case PSRAM_CACHE_F80M_S80M:
  641. extra_dummy = PSRAM_IO_MATRIX_DUMMY_80M;
  642. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  643. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  644. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  645. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
  646. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_FLASH_PORT);
  647. //set drive ability for clock
  648. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
  649. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 3, FUN_DRV_S);
  650. break;
  651. case PSRAM_CACHE_F40M_S40M:
  652. extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
  653. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  654. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  655. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_40M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  656. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_CACHE_PORT);
  657. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
  658. //set drive ability for clock
  659. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 2, FUN_DRV_S);
  660. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
  661. break;
  662. default:
  663. break;
  664. }
  665. SET_PERI_REG_MASK(SPI_USER_REG(0), SPI_USR_DUMMY); // dummy enable
  666. // In bootloader, all the signals are already configured,
  667. // We keep the following code in case the bootloader is some older version.
  668. gpio_matrix_out(psram_io->flash_cs_io, SPICS0_OUT_IDX, 0, 0);
  669. gpio_matrix_out(psram_io->psram_cs_io, SPICS1_OUT_IDX, 0, 0);
  670. gpio_matrix_out(psram_io->psram_spiq_sd0_io, SPIQ_OUT_IDX, 0, 0);
  671. gpio_matrix_in(psram_io->psram_spiq_sd0_io, SPIQ_IN_IDX, 0);
  672. gpio_matrix_out(psram_io->psram_spid_sd1_io, SPID_OUT_IDX, 0, 0);
  673. gpio_matrix_in(psram_io->psram_spid_sd1_io, SPID_IN_IDX, 0);
  674. gpio_matrix_out(psram_io->psram_spiwp_sd3_io, SPIWP_OUT_IDX, 0, 0);
  675. gpio_matrix_in(psram_io->psram_spiwp_sd3_io, SPIWP_IN_IDX, 0);
  676. gpio_matrix_out(psram_io->psram_spihd_sd2_io, SPIHD_OUT_IDX, 0, 0);
  677. gpio_matrix_in(psram_io->psram_spihd_sd2_io, SPIHD_IN_IDX, 0);
  678. //select pin function gpio
  679. if ((psram_io->flash_clk_io == SPI_IOMUX_PIN_NUM_CLK) && (psram_io->flash_clk_io != psram_io->psram_clk_io)) {
  680. //flash clock signal should come from IO MUX.
  681. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUNC_SD_CLK_SPICLK);
  682. } else {
  683. //flash clock signal should come from GPIO matrix.
  684. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], PIN_FUNC_GPIO);
  685. }
  686. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_cs_io], PIN_FUNC_GPIO);
  687. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_cs_io], PIN_FUNC_GPIO);
  688. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], PIN_FUNC_GPIO);
  689. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io], PIN_FUNC_GPIO);
  690. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io], PIN_FUNC_GPIO);
  691. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], PIN_FUNC_GPIO);
  692. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], PIN_FUNC_GPIO);
  693. uint32_t flash_id = g_rom_flashchip.device_id;
  694. if (flash_id == FLASH_ID_GD25LQ32C) {
  695. // Set drive ability for 1.8v flash in 80Mhz.
  696. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_cs_io], FUN_DRV_V, 3, FUN_DRV_S);
  697. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
  698. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_cs_io], FUN_DRV_V, 3, FUN_DRV_S);
  699. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
  700. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io], FUN_DRV_V, 3, FUN_DRV_S);
  701. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io], FUN_DRV_V, 3, FUN_DRV_S);
  702. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], FUN_DRV_V, 3, FUN_DRV_S);
  703. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], FUN_DRV_V, 3, FUN_DRV_S);
  704. }
  705. }
  706. psram_size_t psram_get_size()
  707. {
  708. if ((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id)) {
  709. return s_2t_mode_enabled ? PSRAM_SIZE_32MBITS : PSRAM_SIZE_64MBITS;
  710. } else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_32MBITS) {
  711. return PSRAM_SIZE_32MBITS;
  712. } else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_16MBITS) {
  713. return PSRAM_SIZE_16MBITS;
  714. } else {
  715. return PSRAM_SIZE_MAX;
  716. }
  717. }
  718. //used in UT only
  719. bool psram_is_32mbit_ver0(void)
  720. {
  721. return PSRAM_IS_32MBIT_VER0(s_psram_id);
  722. }
  723. /*
  724. * Psram mode init will overwrite original flash speed mode, so that it is possible to change psram and flash speed after OTA.
  725. * Flash read mode(QIO/QOUT/DIO/DOUT) will not be changed in app bin. It is decided by bootloader, OTA can not change this mode.
  726. */
  727. esp_err_t IRAM_ATTR psram_enable(psram_cache_mode_t mode, psram_vaddr_mode_t vaddrmode) //psram init
  728. {
  729. psram_io_t psram_io = {0};
  730. uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
  731. uint32_t pkg_ver = chip_ver & 0x7;
  732. if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
  733. ESP_EARLY_LOGI(TAG, "This chip is ESP32-D2WD");
  734. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  735. if (cfg.tieh != RTC_VDDSDIO_TIEH_1_8V) {
  736. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 1.8V");
  737. return ESP_FAIL;
  738. }
  739. psram_io.psram_clk_io = D2WD_PSRAM_CLK_IO;
  740. psram_io.psram_cs_io = D2WD_PSRAM_CS_IO;
  741. } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4)) {
  742. ESP_EARLY_LOGI(TAG, "This chip is ESP32-PICO");
  743. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  744. if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
  745. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
  746. return ESP_FAIL;
  747. }
  748. s_clk_mode = PSRAM_CLK_MODE_NORM;
  749. psram_io.psram_clk_io = PICO_PSRAM_CLK_IO;
  750. psram_io.psram_cs_io = PICO_PSRAM_CS_IO;
  751. } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOV302) {
  752. ESP_EARLY_LOGI(TAG, "This chip is ESP32-PICO-V3-02");
  753. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  754. if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
  755. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
  756. return ESP_FAIL;
  757. }
  758. s_clk_mode = PSRAM_CLK_MODE_NORM;
  759. psram_io.psram_clk_io = PICO_V3_02_PSRAM_CLK_IO;
  760. psram_io.psram_cs_io = PICO_V3_02_PSRAM_CS_IO;
  761. } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5)){
  762. ESP_EARLY_LOGI(TAG, "This chip is ESP32-D0WD");
  763. psram_io.psram_clk_io = D0WD_PSRAM_CLK_IO;
  764. psram_io.psram_cs_io = D0WD_PSRAM_CS_IO;
  765. } else {
  766. ESP_EARLY_LOGE(TAG, "Not a valid or known package id: %d", pkg_ver);
  767. abort();
  768. }
  769. const uint32_t spiconfig = ets_efuse_get_spiconfig();
  770. if (spiconfig == EFUSE_SPICONFIG_SPI_DEFAULTS) {
  771. psram_io.flash_clk_io = SPI_IOMUX_PIN_NUM_CLK;
  772. psram_io.flash_cs_io = SPI_IOMUX_PIN_NUM_CS;
  773. psram_io.psram_spiq_sd0_io = PSRAM_SPIQ_SD0_IO;
  774. psram_io.psram_spid_sd1_io = PSRAM_SPID_SD1_IO;
  775. psram_io.psram_spiwp_sd3_io = PSRAM_SPIWP_SD3_IO;
  776. psram_io.psram_spihd_sd2_io = PSRAM_SPIHD_SD2_IO;
  777. } else if (spiconfig == EFUSE_SPICONFIG_HSPI_DEFAULTS) {
  778. psram_io.flash_clk_io = FLASH_HSPI_CLK_IO;
  779. psram_io.flash_cs_io = FLASH_HSPI_CS_IO;
  780. psram_io.psram_spiq_sd0_io = PSRAM_HSPI_SPIQ_SD0_IO;
  781. psram_io.psram_spid_sd1_io = PSRAM_HSPI_SPID_SD1_IO;
  782. psram_io.psram_spiwp_sd3_io = PSRAM_HSPI_SPIWP_SD3_IO;
  783. psram_io.psram_spihd_sd2_io = PSRAM_HSPI_SPIHD_SD2_IO;
  784. } else {
  785. psram_io.flash_clk_io = EFUSE_SPICONFIG_RET_SPICLK(spiconfig);
  786. psram_io.flash_cs_io = EFUSE_SPICONFIG_RET_SPICS0(spiconfig);
  787. psram_io.psram_spiq_sd0_io = EFUSE_SPICONFIG_RET_SPIQ(spiconfig);
  788. psram_io.psram_spid_sd1_io = EFUSE_SPICONFIG_RET_SPID(spiconfig);
  789. psram_io.psram_spihd_sd2_io = EFUSE_SPICONFIG_RET_SPIHD(spiconfig);
  790. psram_io.psram_spiwp_sd3_io = bootloader_flash_get_wp_pin();
  791. }
  792. assert(mode < PSRAM_CACHE_MAX && "we don't support any other mode for now.");
  793. s_psram_mode = mode;
  794. WRITE_PERI_REG(SPI_EXT3_REG(0), 0x1);
  795. CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_PREP_HOLD_M);
  796. psram_spi_init(PSRAM_SPI_1, mode);
  797. switch (mode) {
  798. case PSRAM_CACHE_F80M_S80M:
  799. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  800. break;
  801. case PSRAM_CACHE_F80M_S40M:
  802. case PSRAM_CACHE_F40M_S40M:
  803. default:
  804. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  805. /* We need to delay CLK to the PSRAM with respect to the clock signal as output by the SPI peripheral.
  806. We do this by routing it signal to signal 224/225, which are used as a loopback; the extra run through
  807. the GPIO matrix causes the delay. We use GPIO20 (which is not in any package but has pad logic in
  808. silicon) as a temporary pad for this. So the signal path is:
  809. SPI CLK --> GPIO28 --> signal224(in then out) --> internal GPIO29 --> signal225(in then out) --> GPIO17(PSRAM CLK)
  810. */
  811. gpio_matrix_out(PSRAM_INTERNAL_IO_28, SPICLK_OUT_IDX, 0, 0);
  812. gpio_matrix_in(PSRAM_INTERNAL_IO_28, SIG_IN_FUNC224_IDX, 0);
  813. gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC224_IDX, 0, 0);
  814. gpio_matrix_in(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC225_IDX, 0);
  815. gpio_matrix_out(psram_io.psram_clk_io, SIG_IN_FUNC225_IDX, 0, 0);
  816. } else {
  817. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  818. }
  819. break;
  820. }
  821. // Rise VDDSIO for 1.8V psram.
  822. bootloader_common_vddsdio_configure();
  823. // GPIO related settings
  824. psram_gpio_config(&psram_io, mode);
  825. psram_spi_num_t spi_num = PSRAM_SPI_1;
  826. psram_disable_qio_mode(spi_num);
  827. psram_read_id(spi_num, &s_psram_id);
  828. if (!PSRAM_IS_VALID(s_psram_id)) {
  829. /* 16Mbit psram ID read error workaround:
  830. * treat the first read id as a dummy one as the pre-condition,
  831. * Send Read ID command again
  832. */
  833. psram_read_id(spi_num, &s_psram_id);
  834. if (!PSRAM_IS_VALID(s_psram_id)) {
  835. ESP_EARLY_LOGE(TAG, "PSRAM ID read error: 0x%08x", (uint32_t)s_psram_id);
  836. return ESP_FAIL;
  837. }
  838. }
  839. if (psram_is_32mbit_ver0()) {
  840. s_clk_mode = PSRAM_CLK_MODE_DCLK;
  841. if (mode == PSRAM_CACHE_F80M_S80M) {
  842. #ifdef CONFIG_SPIRAM_OCCUPY_NO_HOST
  843. ESP_EARLY_LOGE(TAG, "This version of PSRAM needs to claim an extra SPI peripheral at 80MHz. Please either: choose lower frequency by SPIRAM_SPEED_, or select one SPI peripheral it by SPIRAM_OCCUPY_*SPI_HOST in the menuconfig.");
  844. abort();
  845. #else
  846. /* note: If the third mode(80Mhz+80Mhz) is enabled for 32MBit 1V8 psram, one of HSPI/VSPI port will be
  847. occupied by the system (according to kconfig).
  848. Application code should never touch HSPI/VSPI hardware in this case. We try to stop applications
  849. from doing this using the drivers by claiming the port for ourselves */
  850. periph_module_enable(PSRAM_SPI_MODULE);
  851. bool r=spicommon_periph_claim(PSRAM_SPI_HOST, "psram");
  852. if (!r) {
  853. return ESP_ERR_INVALID_STATE;
  854. }
  855. gpio_matrix_out(psram_io.psram_clk_io, PSRAM_CLK_SIGNAL, 0, 0);
  856. //use spi3 clock,but use spi1 data/cs wires
  857. //We get a solid 80MHz clock from SPI3 by setting it up, starting a transaction, waiting until it
  858. //is in progress, then cutting the clock (but not the reset!) to that peripheral.
  859. WRITE_PERI_REG(SPI_ADDR_REG(PSRAM_SPI_NUM), 32 << 24);
  860. SET_PERI_REG_MASK(SPI_CMD_REG(PSRAM_SPI_NUM), SPI_FLASH_READ_M);
  861. uint32_t spi_status;
  862. while (1) {
  863. spi_status = READ_PERI_REG(SPI_EXT2_REG(PSRAM_SPI_NUM));
  864. if (spi_status != 0 && spi_status != 1) {
  865. DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, PSRAM_SPICLKEN);
  866. break;
  867. }
  868. }
  869. #endif
  870. }
  871. } else {
  872. // For other psram, we don't need any extra clock cycles after cs get back to high level
  873. s_clk_mode = PSRAM_CLK_MODE_NORM;
  874. gpio_matrix_out(PSRAM_INTERNAL_IO_28, SIG_GPIO_OUT_IDX, 0, 0);
  875. gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_GPIO_OUT_IDX, 0, 0);
  876. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  877. }
  878. // Update cs timing according to psram driving method.
  879. psram_set_cs_timing(PSRAM_SPI_1, s_clk_mode);
  880. psram_set_cs_timing(_SPI_CACHE_PORT, s_clk_mode);
  881. psram_enable_qio_mode(PSRAM_SPI_1);
  882. if(((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id))) {
  883. #if CONFIG_SPIRAM_2T_MODE
  884. #if CONFIG_SPIRAM_BANKSWITCH_ENABLE
  885. ESP_EARLY_LOGE(TAG, "PSRAM 2T mode and SPIRAM bank switching can not enabled meanwhile. Please read the help text for SPIRAM_2T_MODE in the project configuration menu.");
  886. abort();
  887. #endif
  888. /* Note: 2T mode command should not be sent twice,
  889. otherwise psram would get back to normal mode. */
  890. if (psram_2t_mode_check(PSRAM_SPI_1) != ESP_OK) {
  891. psram_2t_mode_enable(PSRAM_SPI_1);
  892. if (psram_2t_mode_check(PSRAM_SPI_1) != ESP_OK) {
  893. ESP_EARLY_LOGE(TAG, "PSRAM 2T mode enable fail!");
  894. return ESP_FAIL;
  895. }
  896. }
  897. s_2t_mode_enabled = true;
  898. ESP_EARLY_LOGI(TAG, "PSRAM is in 2T mode");
  899. #endif
  900. }
  901. psram_cache_init(mode, vaddrmode);
  902. return ESP_OK;
  903. }
  904. //register initialization for sram cache params and r/w commands
  905. static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode)
  906. {
  907. switch (psram_cache_mode) {
  908. case PSRAM_CACHE_F80M_S80M:
  909. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk,80+40;
  910. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0. FLASH DIV 2+SRAM DIV4
  911. break;
  912. case PSRAM_CACHE_F80M_S40M:
  913. CLEAR_PERI_REG_MASK(SPI_CLOCK_REG(0), SPI_CLK_EQU_SYSCLK_M);
  914. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKDIV_PRE_V, 0, SPI_CLKDIV_PRE_S);
  915. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_N, 1, SPI_CLKCNT_N_S);
  916. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_H, 0, SPI_CLKCNT_H_S);
  917. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_L, 1, SPI_CLKCNT_L_S);
  918. SET_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
  919. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0.
  920. break;
  921. case PSRAM_CACHE_F40M_S40M:
  922. default:
  923. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
  924. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div
  925. break;
  926. }
  927. CLEAR_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_DIO_M); //disable dio mode for cache command
  928. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_QIO_M); //enable qio mode for cache command
  929. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_RCMD_M); //enable cache read command
  930. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_WCMD_M); //enable cache write command
  931. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_ADDR_BITLEN_V, 23, SPI_SRAM_ADDR_BITLEN_S); //write address for cache command.
  932. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_RD_SRAM_DUMMY_M); //enable cache read dummy
  933. //config sram cache r/w command
  934. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 7,
  935. SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S);
  936. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, PSRAM_FAST_READ_QUAD,
  937. SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB
  938. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 7,
  939. SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S);
  940. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, PSRAM_QUAD_WRITE,
  941. SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38
  942. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
  943. SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
  944. switch (psram_cache_mode) {
  945. case PSRAM_CACHE_F80M_S80M: //in this mode , no delay is needed
  946. break;
  947. case PSRAM_CACHE_F80M_S40M: //if sram is @40M, need 2 cycles of delay
  948. case PSRAM_CACHE_F40M_S40M:
  949. default:
  950. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  951. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 15,
  952. SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S); //read command length, 2 bytes(1byte for delay),sending in qio mode in cache
  953. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, ((PSRAM_FAST_READ_QUAD) << 8),
  954. SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB, read command value,(0x00 for delay,0xeb for cmd)
  955. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 15,
  956. SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S); //write command length,2 bytes(1byte for delay,send in qio mode in cache)
  957. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, ((PSRAM_QUAD_WRITE) << 8),
  958. SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38, write command value,(0x00 for delay)
  959. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
  960. SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
  961. }
  962. break;
  963. }
  964. DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL|DPORT_PRO_DRAM_SPLIT);
  965. DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL|DPORT_APP_DRAM_SPLIT);
  966. if (vaddrmode == PSRAM_VADDR_MODE_LOWHIGH) {
  967. DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL);
  968. DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL);
  969. } else if (vaddrmode == PSRAM_VADDR_MODE_EVENODD) {
  970. DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_SPLIT);
  971. DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_SPLIT);
  972. }
  973. DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DRAM1|DPORT_PRO_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
  974. //cache page mode : 1 -->16k 4 -->2k 0-->32k,(accord with the settings in cache_sram_mmu_set)
  975. DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CMMU_SRAM_PAGE_MODE, 0, DPORT_PRO_CMMU_SRAM_PAGE_MODE_S);
  976. DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DRAM1|DPORT_APP_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
  977. //cache page mode : 1 -->16k 4 -->2k 0-->32k,(accord with the settings in cache_sram_mmu_set)
  978. DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CMMU_SRAM_PAGE_MODE, 0, DPORT_APP_CMMU_SRAM_PAGE_MODE_S);
  979. CLEAR_PERI_REG_MASK(SPI_PIN_REG(0), SPI_CS1_DIS_M); //ENABLE SPI0 CS1 TO PSRAM(CS0--FLASH; CS1--SRAM)
  980. }
  981. #endif // CONFIG_SPIRAM_SUPPORT