log.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. /*
  14. * Log library implementation notes.
  15. *
  16. * Log library stores all tags provided to esp_log_level_set as a linked
  17. * list. See uncached_tag_entry_t structure.
  18. *
  19. * To avoid looking up log level for given tag each time message is
  20. * printed, this library caches pointers to tags. Because the suggested
  21. * way of creating tags uses one 'TAG' constant per file, this caching
  22. * should be effective. Cache is a binary min-heap of cached_tag_entry_t
  23. * items, ordering is done on 'generation' member. In this context,
  24. * generation is an integer which is incremented each time an operation
  25. * with cache is performed. When cache is full, new item is inserted in
  26. * place of an oldest item (that is, with smallest 'generation' value).
  27. * After that, bubble-down operation is performed to fix ordering in the
  28. * min-heap.
  29. *
  30. * The potential problem with wrap-around of cache generation counter is
  31. * ignored for now. This will happen if someone happens to output more
  32. * than 4 billion log entries, at which point wrap-around will not be
  33. * the biggest problem.
  34. *
  35. */
  36. #ifndef BOOTLOADER_BUILD
  37. #include <freertos/FreeRTOS.h>
  38. #include <freertos/FreeRTOSConfig.h>
  39. #include <freertos/task.h>
  40. #include <freertos/semphr.h>
  41. #endif
  42. #include "esp_attr.h"
  43. #include "xtensa/hal.h"
  44. #include "soc/soc.h"
  45. #include <stdbool.h>
  46. #include <stdarg.h>
  47. #include <string.h>
  48. #include <stdlib.h>
  49. #include <stdio.h>
  50. #include <assert.h>
  51. #include <ctype.h>
  52. #include "esp_log.h"
  53. #include "rom/queue.h"
  54. #include "soc/soc_memory_layout.h"
  55. //print number of bytes per line for esp_log_buffer_char and esp_log_buffer_hex
  56. #define BYTES_PER_LINE 16
  57. #ifndef BOOTLOADER_BUILD
  58. // Number of tags to be cached. Must be 2**n - 1, n >= 2.
  59. #define TAG_CACHE_SIZE 31
  60. // Maximum time to wait for the mutex in a logging statement.
  61. #define MAX_MUTEX_WAIT_MS 10
  62. #define MAX_MUTEX_WAIT_TICKS ((MAX_MUTEX_WAIT_MS + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS)
  63. // Uncomment this to enable consistency checks and cache statistics in this file.
  64. // #define LOG_BUILTIN_CHECKS
  65. typedef struct {
  66. const char* tag;
  67. uint32_t level : 3;
  68. uint32_t generation : 29;
  69. } cached_tag_entry_t;
  70. typedef struct uncached_tag_entry_{
  71. SLIST_ENTRY(uncached_tag_entry_) entries;
  72. uint8_t level; // esp_log_level_t as uint8_t
  73. char tag[0]; // beginning of a zero-terminated string
  74. } uncached_tag_entry_t;
  75. static esp_log_level_t s_log_default_level = ESP_LOG_VERBOSE;
  76. static SLIST_HEAD(log_tags_head , uncached_tag_entry_) s_log_tags = SLIST_HEAD_INITIALIZER(s_log_tags);
  77. static cached_tag_entry_t s_log_cache[TAG_CACHE_SIZE];
  78. static uint32_t s_log_cache_max_generation = 0;
  79. static uint32_t s_log_cache_entry_count = 0;
  80. static vprintf_like_t s_log_print_func = &vprintf;
  81. static SemaphoreHandle_t s_log_mutex = NULL;
  82. #ifdef LOG_BUILTIN_CHECKS
  83. static uint32_t s_log_cache_misses = 0;
  84. #endif
  85. static inline bool get_cached_log_level(const char* tag, esp_log_level_t* level);
  86. static inline bool get_uncached_log_level(const char* tag, esp_log_level_t* level);
  87. static inline void add_to_cache(const char* tag, esp_log_level_t level);
  88. static void heap_bubble_down(int index);
  89. static inline void heap_swap(int i, int j);
  90. static inline bool should_output(esp_log_level_t level_for_message, esp_log_level_t level_for_tag);
  91. static inline void clear_log_level_list();
  92. vprintf_like_t esp_log_set_vprintf(vprintf_like_t func)
  93. {
  94. if (!s_log_mutex) {
  95. s_log_mutex = xSemaphoreCreateMutex();
  96. }
  97. xSemaphoreTake(s_log_mutex, portMAX_DELAY);
  98. vprintf_like_t orig_func = s_log_print_func;
  99. s_log_print_func = func;
  100. xSemaphoreGive(s_log_mutex);
  101. return orig_func;
  102. }
  103. void esp_log_level_set(const char* tag, esp_log_level_t level)
  104. {
  105. if (!s_log_mutex) {
  106. s_log_mutex = xSemaphoreCreateMutex();
  107. }
  108. xSemaphoreTake(s_log_mutex, portMAX_DELAY);
  109. // for wildcard tag, remove all linked list items and clear the cache
  110. if (strcmp(tag, "*") == 0) {
  111. s_log_default_level = level;
  112. clear_log_level_list();
  113. xSemaphoreGive(s_log_mutex);
  114. return;
  115. }
  116. //searching exist tag
  117. uncached_tag_entry_t *it = NULL;
  118. SLIST_FOREACH( it, &s_log_tags, entries ) {
  119. if ( strcmp(it->tag, tag)==0 ) {
  120. //one tag in the linked list match, update the level
  121. it->level = level;
  122. //quit with it != NULL
  123. break;
  124. }
  125. }
  126. //no exist tag, append new one
  127. if ( it == NULL ) {
  128. // allocate new linked list entry and append it to the head of the list
  129. size_t entry_size = offsetof(uncached_tag_entry_t, tag) + strlen(tag) + 1;
  130. uncached_tag_entry_t* new_entry = (uncached_tag_entry_t*) malloc(entry_size);
  131. if (!new_entry) {
  132. xSemaphoreGive(s_log_mutex);
  133. return;
  134. }
  135. new_entry->level = (uint8_t) level;
  136. strcpy(new_entry->tag, tag);
  137. SLIST_INSERT_HEAD( &s_log_tags, new_entry, entries );
  138. }
  139. //search in the cache and update it if exist
  140. for (int i = 0; i < s_log_cache_entry_count; ++i) {
  141. #ifdef LOG_BUILTIN_CHECKS
  142. assert(i == 0 || s_log_cache[(i - 1) / 2].generation < s_log_cache[i].generation);
  143. #endif
  144. if (strcmp(s_log_cache[i].tag,tag) == 0) {
  145. s_log_cache[i].level = level;
  146. break;
  147. }
  148. }
  149. xSemaphoreGive(s_log_mutex);
  150. }
  151. void clear_log_level_list()
  152. {
  153. while( !SLIST_EMPTY(&s_log_tags)) {
  154. SLIST_REMOVE_HEAD(&s_log_tags, entries );
  155. }
  156. s_log_cache_entry_count = 0;
  157. s_log_cache_max_generation = 0;
  158. #ifdef LOG_BUILTIN_CHECKS
  159. s_log_cache_misses = 0;
  160. #endif
  161. }
  162. void IRAM_ATTR esp_log_writev(esp_log_level_t level,
  163. const char* tag,
  164. const char* format,
  165. va_list args)
  166. {
  167. if (!s_log_mutex) {
  168. s_log_mutex = xSemaphoreCreateMutex();
  169. }
  170. if (xSemaphoreTake(s_log_mutex, MAX_MUTEX_WAIT_TICKS) == pdFALSE) {
  171. return;
  172. }
  173. esp_log_level_t level_for_tag;
  174. // Look for the tag in cache first, then in the linked list of all tags
  175. if (!get_cached_log_level(tag, &level_for_tag)) {
  176. if (!get_uncached_log_level(tag, &level_for_tag)) {
  177. level_for_tag = s_log_default_level;
  178. }
  179. add_to_cache(tag, level_for_tag);
  180. #ifdef LOG_BUILTIN_CHECKS
  181. ++s_log_cache_misses;
  182. #endif
  183. }
  184. xSemaphoreGive(s_log_mutex);
  185. if (!should_output(level, level_for_tag)) {
  186. return;
  187. }
  188. (*s_log_print_func)(format, args);
  189. }
  190. void esp_log_write(esp_log_level_t level,
  191. const char *tag,
  192. const char *format, ...)
  193. {
  194. va_list list;
  195. va_start(list, format);
  196. esp_log_writev(level, tag, format, list);
  197. va_end(list);
  198. }
  199. static inline bool get_cached_log_level(const char* tag, esp_log_level_t* level)
  200. {
  201. // Look for `tag` in cache
  202. int i;
  203. for (i = 0; i < s_log_cache_entry_count; ++i) {
  204. #ifdef LOG_BUILTIN_CHECKS
  205. assert(i == 0 || s_log_cache[(i - 1) / 2].generation < s_log_cache[i].generation);
  206. #endif
  207. if (s_log_cache[i].tag == tag) {
  208. break;
  209. }
  210. }
  211. if (i == s_log_cache_entry_count) { // Not found in cache
  212. return false;
  213. }
  214. // Return level from cache
  215. *level = (esp_log_level_t) s_log_cache[i].level;
  216. // If cache has been filled, start taking ordering into account
  217. // (other options are: dynamically resize cache, add "dummy" entries
  218. // to the cache; this option was chosen because code is much simpler,
  219. // and the unfair behavior of cache will show it self at most once, when
  220. // it has just been filled)
  221. if (s_log_cache_entry_count == TAG_CACHE_SIZE) {
  222. // Update item generation
  223. s_log_cache[i].generation = s_log_cache_max_generation++;
  224. // Restore heap ordering
  225. heap_bubble_down(i);
  226. }
  227. return true;
  228. }
  229. static inline void add_to_cache(const char* tag, esp_log_level_t level)
  230. {
  231. uint32_t generation = s_log_cache_max_generation++;
  232. // First consider the case when cache is not filled yet.
  233. // In this case, just add new entry at the end.
  234. // This happens to satisfy binary min-heap ordering.
  235. if (s_log_cache_entry_count < TAG_CACHE_SIZE) {
  236. s_log_cache[s_log_cache_entry_count] = (cached_tag_entry_t) {
  237. .generation = generation,
  238. .level = level,
  239. .tag = tag
  240. };
  241. ++s_log_cache_entry_count;
  242. return;
  243. }
  244. // Cache is full, so we replace the oldest entry (which is at index 0
  245. // because this is a min-heap) with the new one, and do bubble-down
  246. // operation to restore min-heap ordering.
  247. s_log_cache[0] = (cached_tag_entry_t) {
  248. .tag = tag,
  249. .level = level,
  250. .generation = generation
  251. };
  252. heap_bubble_down(0);
  253. }
  254. static inline bool get_uncached_log_level(const char* tag, esp_log_level_t* level)
  255. {
  256. // Walk the linked list of all tags and see if given tag is present in the list.
  257. // This is slow because tags are compared as strings.
  258. uncached_tag_entry_t *it;
  259. SLIST_FOREACH( it, &s_log_tags, entries ) {
  260. if (strcmp(tag, it->tag) == 0) {
  261. *level = it->level;
  262. return true;
  263. }
  264. }
  265. return false;
  266. }
  267. static inline bool should_output(esp_log_level_t level_for_message, esp_log_level_t level_for_tag)
  268. {
  269. return level_for_message <= level_for_tag;
  270. }
  271. static void heap_bubble_down(int index)
  272. {
  273. while (index < TAG_CACHE_SIZE / 2) {
  274. int left_index = index * 2 + 1;
  275. int right_index = left_index + 1;
  276. int next = (s_log_cache[left_index].generation < s_log_cache[right_index].generation) ? left_index : right_index;
  277. heap_swap(index, next);
  278. index = next;
  279. }
  280. }
  281. static inline void heap_swap(int i, int j)
  282. {
  283. cached_tag_entry_t tmp = s_log_cache[i];
  284. s_log_cache[i] = s_log_cache[j];
  285. s_log_cache[j] = tmp;
  286. }
  287. #endif //BOOTLOADER_BUILD
  288. #ifndef BOOTLOADER_BUILD
  289. #define ATTR IRAM_ATTR
  290. #else
  291. #define ATTR
  292. #endif // BOOTLOADER_BUILD
  293. //the variable defined in ROM is the cpu frequency in MHz.
  294. //as a workaround before the interface for this variable
  295. extern uint32_t g_ticks_per_us_pro;
  296. uint32_t ATTR esp_log_early_timestamp()
  297. {
  298. return xthal_get_ccount() / (g_ticks_per_us_pro * 1000);
  299. }
  300. #ifndef BOOTLOADER_BUILD
  301. uint32_t IRAM_ATTR esp_log_timestamp()
  302. {
  303. if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
  304. return esp_log_early_timestamp();
  305. }
  306. static uint32_t base = 0;
  307. if (base == 0 && xPortGetCoreID() == 0) {
  308. base = esp_log_early_timestamp();
  309. }
  310. TickType_t tick_count = xPortInIsrContext() ? xTaskGetTickCountFromISR() : xTaskGetTickCount();
  311. return base + tick_count * (1000 / configTICK_RATE_HZ);
  312. }
  313. #else
  314. uint32_t esp_log_timestamp() __attribute__((alias("esp_log_early_timestamp")));
  315. #endif //BOOTLOADER_BUILD
  316. void esp_log_buffer_hex_internal(const char *tag, const void *buffer, uint16_t buff_len,
  317. esp_log_level_t log_level)
  318. {
  319. if ( buff_len == 0 ) return;
  320. char temp_buffer[BYTES_PER_LINE+3]; //for not-byte-accessible memory
  321. char hex_buffer[3*BYTES_PER_LINE+1];
  322. const char *ptr_line;
  323. int bytes_cur_line;
  324. do {
  325. if ( buff_len > BYTES_PER_LINE ) {
  326. bytes_cur_line = BYTES_PER_LINE;
  327. } else {
  328. bytes_cur_line = buff_len;
  329. }
  330. if ( !esp_ptr_byte_accessible(buffer) ) {
  331. //use memcpy to get around alignment issue
  332. memcpy( temp_buffer, buffer, (bytes_cur_line+3)/4*4 );
  333. ptr_line = temp_buffer;
  334. } else {
  335. ptr_line = buffer;
  336. }
  337. for( int i = 0; i < bytes_cur_line; i ++ ) {
  338. sprintf( hex_buffer + 3*i, "%02x ", ptr_line[i] );
  339. }
  340. ESP_LOG_LEVEL( log_level, tag, "%s", hex_buffer );
  341. buffer += bytes_cur_line;
  342. buff_len -= bytes_cur_line;
  343. } while( buff_len );
  344. }
  345. void esp_log_buffer_char_internal(const char *tag, const void *buffer, uint16_t buff_len,
  346. esp_log_level_t log_level)
  347. {
  348. if ( buff_len == 0 ) return;
  349. char temp_buffer[BYTES_PER_LINE+3]; //for not-byte-accessible memory
  350. char char_buffer[BYTES_PER_LINE+1];
  351. const char *ptr_line;
  352. int bytes_cur_line;
  353. do {
  354. if ( buff_len > BYTES_PER_LINE ) {
  355. bytes_cur_line = BYTES_PER_LINE;
  356. } else {
  357. bytes_cur_line = buff_len;
  358. }
  359. if ( !esp_ptr_byte_accessible(buffer) ) {
  360. //use memcpy to get around alignment issue
  361. memcpy( temp_buffer, buffer, (bytes_cur_line+3)/4*4 );
  362. ptr_line = temp_buffer;
  363. } else {
  364. ptr_line = buffer;
  365. }
  366. for( int i = 0; i < bytes_cur_line; i ++ ) {
  367. sprintf( char_buffer + i, "%c", ptr_line[i] );
  368. }
  369. ESP_LOG_LEVEL( log_level, tag, "%s", char_buffer );
  370. buffer += bytes_cur_line;
  371. buff_len -= bytes_cur_line;
  372. } while( buff_len );
  373. }
  374. void esp_log_buffer_hexdump_internal( const char *tag, const void *buffer, uint16_t buff_len, esp_log_level_t log_level)
  375. {
  376. if ( buff_len == 0 ) return;
  377. char temp_buffer[BYTES_PER_LINE+3]; //for not-byte-accessible memory
  378. const char *ptr_line;
  379. //format: field[length]
  380. // ADDR[10]+" "+DATA_HEX[8*3]+" "+DATA_HEX[8*3]+" |"+DATA_CHAR[8]+"|"
  381. char hd_buffer[10+3+BYTES_PER_LINE*3+3+BYTES_PER_LINE+1+1];
  382. char *ptr_hd;
  383. int bytes_cur_line;
  384. do {
  385. if ( buff_len > BYTES_PER_LINE ) {
  386. bytes_cur_line = BYTES_PER_LINE;
  387. } else {
  388. bytes_cur_line = buff_len;
  389. }
  390. if ( !esp_ptr_byte_accessible(buffer) ) {
  391. //use memcpy to get around alignment issue
  392. memcpy( temp_buffer, buffer, (bytes_cur_line+3)/4*4 );
  393. ptr_line = temp_buffer;
  394. } else {
  395. ptr_line = buffer;
  396. }
  397. ptr_hd = hd_buffer;
  398. ptr_hd += sprintf( ptr_hd, "%p ", buffer );
  399. for( int i = 0; i < BYTES_PER_LINE; i ++ ) {
  400. if ( (i&7)==0 ) {
  401. ptr_hd += sprintf( ptr_hd, " " );
  402. }
  403. if ( i < bytes_cur_line ) {
  404. ptr_hd += sprintf( ptr_hd, " %02x", ptr_line[i] );
  405. } else {
  406. ptr_hd += sprintf( ptr_hd, " " );
  407. }
  408. }
  409. ptr_hd += sprintf( ptr_hd, " |" );
  410. for( int i = 0; i < bytes_cur_line; i ++ ) {
  411. if ( isprint((int)ptr_line[i]) ) {
  412. ptr_hd += sprintf( ptr_hd, "%c", ptr_line[i] );
  413. } else {
  414. ptr_hd += sprintf( ptr_hd, "." );
  415. }
  416. }
  417. ptr_hd += sprintf( ptr_hd, "|" );
  418. ESP_LOG_LEVEL( log_level, tag, "%s", hd_buffer );
  419. buffer += bytes_cur_line;
  420. buff_len -= bytes_cur_line;
  421. } while( buff_len );
  422. }