test_time.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. #include <stdio.h>
  2. #include <math.h>
  3. #include "unity.h"
  4. #include "driver/adc.h"
  5. #include <time.h>
  6. #include <sys/time.h>
  7. #include "soc/rtc_cntl_reg.h"
  8. #include "freertos/FreeRTOS.h"
  9. #include "freertos/task.h"
  10. #include "freertos/semphr.h"
  11. #include "sdkconfig.h"
  12. #include "soc/rtc.h"
  13. #include "esp_clk.h"
  14. #include "esp_system.h"
  15. #include "test_utils.h"
  16. #if portNUM_PROCESSORS == 2
  17. // https://github.com/espressif/arduino-esp32/issues/120
  18. TEST_CASE("Reading RTC registers on APP CPU doesn't affect clock", "[newlib]")
  19. {
  20. // This runs on APP CPU:
  21. void time_adc_test_task(void* arg)
  22. {
  23. for (int i = 0; i < 200000; ++i) {
  24. // wait for 20us, reading one of RTC registers
  25. uint32_t ccount = xthal_get_ccount();
  26. while (xthal_get_ccount() - ccount < 20 * CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ) {
  27. volatile uint32_t val = REG_READ(RTC_CNTL_STATE0_REG);
  28. (void) val;
  29. }
  30. }
  31. SemaphoreHandle_t * p_done = (SemaphoreHandle_t *) arg;
  32. xSemaphoreGive(*p_done);
  33. vTaskDelay(1);
  34. vTaskDelete(NULL);
  35. }
  36. SemaphoreHandle_t done = xSemaphoreCreateBinary();
  37. xTaskCreatePinnedToCore(&time_adc_test_task, "time_adc", 4096, &done, 5, NULL, 1);
  38. // This runs on PRO CPU:
  39. for (int i = 0; i < 4; ++i) {
  40. struct timeval tv_start;
  41. gettimeofday(&tv_start, NULL);
  42. vTaskDelay(1000/portTICK_PERIOD_MS);
  43. struct timeval tv_stop;
  44. gettimeofday(&tv_stop, NULL);
  45. float time_sec = tv_stop.tv_sec - tv_start.tv_sec + 1e-6f * (tv_stop.tv_usec - tv_start.tv_usec);
  46. printf("(0) time taken: %f sec\n", time_sec);
  47. TEST_ASSERT_TRUE(fabs(time_sec - 1.0f) < 0.1);
  48. }
  49. TEST_ASSERT_TRUE(xSemaphoreTake(done, 5000 / portTICK_RATE_MS));
  50. }
  51. #endif // portNUM_PROCESSORS == 2
  52. TEST_CASE("test adjtime function", "[newlib]")
  53. {
  54. struct timeval tv_time;
  55. struct timeval tv_delta;
  56. struct timeval tv_outdelta;
  57. TEST_ASSERT_EQUAL(adjtime(NULL, NULL), 0);
  58. tv_time.tv_sec = 5000;
  59. tv_time.tv_usec = 5000;
  60. TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
  61. tv_outdelta.tv_sec = 5;
  62. tv_outdelta.tv_usec = 5;
  63. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  64. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  65. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  66. tv_delta.tv_sec = INT_MAX / 1000000L;
  67. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1);
  68. tv_delta.tv_sec = INT_MIN / 1000000L;
  69. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1);
  70. tv_delta.tv_sec = 0;
  71. tv_delta.tv_usec = -900000;
  72. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  73. TEST_ASSERT_TRUE(tv_outdelta.tv_usec <= 0);
  74. tv_delta.tv_sec = 0;
  75. tv_delta.tv_usec = 900000;
  76. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  77. TEST_ASSERT_TRUE(tv_outdelta.tv_usec >= 0);
  78. tv_delta.tv_sec = -4;
  79. tv_delta.tv_usec = -900000;
  80. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  81. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, -4);
  82. TEST_ASSERT_TRUE(tv_outdelta.tv_usec <= 0);
  83. // after settimeofday() adjtime() is stopped
  84. tv_delta.tv_sec = 15;
  85. tv_delta.tv_usec = 900000;
  86. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  87. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
  88. TEST_ASSERT_TRUE(tv_outdelta.tv_usec >= 0);
  89. TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0);
  90. TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
  91. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  92. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  93. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  94. // after gettimeofday() adjtime() is not stopped
  95. tv_delta.tv_sec = 15;
  96. tv_delta.tv_usec = 900000;
  97. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  98. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
  99. TEST_ASSERT_TRUE(tv_outdelta.tv_usec >= 0);
  100. TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0);
  101. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  102. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
  103. TEST_ASSERT_TRUE(tv_outdelta.tv_usec >= 0);
  104. tv_delta.tv_sec = 1;
  105. tv_delta.tv_usec = 0;
  106. TEST_ASSERT_EQUAL(adjtime(&tv_delta, NULL), 0);
  107. vTaskDelay(1000 / portTICK_PERIOD_MS);
  108. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  109. TEST_ASSERT_TRUE(tv_outdelta.tv_sec == 0);
  110. // the correction will be equal to (1_000_000us >> 6) = 15_625 us.
  111. TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec >= 15600);
  112. TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec <= 15650);
  113. }
  114. static volatile bool exit_flag;
  115. static void adjtimeTask2(void *pvParameters)
  116. {
  117. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  118. struct timeval delta = {.tv_sec = 0, .tv_usec = 0};
  119. struct timeval outdelta;
  120. // although exit flag is set in another task, checking (exit_flag == false) is safe
  121. while (exit_flag == false) {
  122. delta.tv_sec += 1;
  123. delta.tv_usec = 900000;
  124. if (delta.tv_sec >= 2146) delta.tv_sec = 1;
  125. adjtime(&delta, &outdelta);
  126. }
  127. xSemaphoreGive(*sema);
  128. vTaskDelete(NULL);
  129. }
  130. static void timeTask(void *pvParameters)
  131. {
  132. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  133. struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 };
  134. // although exit flag is set in another task, checking (exit_flag == false) is safe
  135. while (exit_flag == false) {
  136. tv_time.tv_sec += 1;
  137. settimeofday(&tv_time, NULL);
  138. gettimeofday(&tv_time, NULL);
  139. }
  140. xSemaphoreGive(*sema);
  141. vTaskDelete(NULL);
  142. }
  143. TEST_CASE("test for no interlocking adjtime, gettimeofday and settimeofday functions", "[newlib]")
  144. {
  145. TaskHandle_t th[4];
  146. exit_flag = false;
  147. struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 };
  148. TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
  149. const int max_tasks = 2;
  150. xSemaphoreHandle exit_sema[max_tasks];
  151. for (int i = 0; i < max_tasks; ++i) {
  152. exit_sema[i] = xSemaphoreCreateBinary();
  153. }
  154. #ifndef CONFIG_FREERTOS_UNICORE
  155. printf("CPU0 and CPU1. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask \n");
  156. xTaskCreatePinnedToCore(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0], 0);
  157. xTaskCreatePinnedToCore(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1], 1);
  158. #else
  159. printf("Only one CPU. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask\n");
  160. xTaskCreate(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0]);
  161. xTaskCreate(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1]);
  162. #endif
  163. printf("start wait for 5 seconds\n");
  164. vTaskDelay(5000 / portTICK_PERIOD_MS);
  165. // set exit flag to let thread exit
  166. exit_flag = true;
  167. for (int i = 0; i < max_tasks; ++i) {
  168. if (!xSemaphoreTake(exit_sema[i], 2000/portTICK_PERIOD_MS)) {
  169. TEST_FAIL_MESSAGE("exit_sema not released by test task");
  170. }
  171. vSemaphoreDelete(exit_sema[i]);
  172. }
  173. }
  174. #ifndef CONFIG_FREERTOS_UNICORE
  175. #define ADJTIME_CORRECTION_FACTOR 6
  176. static int64_t result_adjtime_correction_us[2];
  177. static void get_time_task(void *pvParameters)
  178. {
  179. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  180. struct timeval tv_time;
  181. // although exit flag is set in another task, checking (exit_flag == false) is safe
  182. while (exit_flag == false) {
  183. gettimeofday(&tv_time, NULL);
  184. vTaskDelay(1500 / portTICK_PERIOD_MS);
  185. }
  186. xSemaphoreGive(*sema);
  187. vTaskDelete(NULL);
  188. }
  189. static void start_measure(int64_t* sys_time, int64_t* real_time)
  190. {
  191. struct timeval tv_time;
  192. // there shouldn't be much time between gettimeofday and esp_timer_get_time
  193. gettimeofday(&tv_time, NULL);
  194. *real_time = esp_timer_get_time();
  195. *sys_time = (int64_t)tv_time.tv_sec * 1000000L + tv_time.tv_usec;
  196. }
  197. static int64_t calc_correction(const char* tag, int64_t* sys_time, int64_t* real_time)
  198. {
  199. int64_t dt_real_time_us = real_time[1] - real_time[0];
  200. int64_t dt_sys_time_us = sys_time[1] - sys_time[0];
  201. int64_t calc_correction_us = dt_real_time_us >> ADJTIME_CORRECTION_FACTOR;
  202. int64_t real_correction_us = dt_sys_time_us - dt_real_time_us;
  203. int64_t error_us = calc_correction_us - real_correction_us;
  204. printf("%s: dt_real_time = %lli us, dt_sys_time = %lli us, calc_correction = %lli us, error = %lli us\n",
  205. tag, dt_real_time_us, dt_sys_time_us, calc_correction_us, error_us);
  206. TEST_ASSERT_TRUE(dt_sys_time_us > 0 && dt_real_time_us > 0);
  207. TEST_ASSERT_INT_WITHIN(100, 0, error_us);
  208. return real_correction_us;
  209. }
  210. static void measure_time_task(void *pvParameters)
  211. {
  212. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  213. int64_t main_real_time_us[2];
  214. int64_t main_sys_time_us[2];
  215. struct timeval tv_time = {.tv_sec = 1550000000, .tv_usec = 0};
  216. TEST_ASSERT_EQUAL(0, settimeofday(&tv_time, NULL));
  217. struct timeval delta = {.tv_sec = 2000, .tv_usec = 900000};
  218. adjtime(&delta, NULL);
  219. gettimeofday(&tv_time, NULL);
  220. start_measure(&main_sys_time_us[0], &main_real_time_us[0]);
  221. {
  222. int64_t real_time_us[2] = { main_real_time_us[0], 0};
  223. int64_t sys_time_us[2] = { main_sys_time_us[0], 0};
  224. // although exit flag is set in another task, checking (exit_flag == false) is safe
  225. while (exit_flag == false) {
  226. vTaskDelay(2000 / portTICK_PERIOD_MS);
  227. start_measure(&sys_time_us[1], &real_time_us[1]);
  228. result_adjtime_correction_us[1] += calc_correction("measure", sys_time_us, real_time_us);
  229. sys_time_us[0] = sys_time_us[1];
  230. real_time_us[0] = real_time_us[1];
  231. }
  232. main_sys_time_us[1] = sys_time_us[1];
  233. main_real_time_us[1] = real_time_us[1];
  234. }
  235. result_adjtime_correction_us[0] = calc_correction("main", main_sys_time_us, main_real_time_us);
  236. int64_t delta_us = result_adjtime_correction_us[0] - result_adjtime_correction_us[1];
  237. printf("\nresult of adjtime correction: %lli us, %lli us. delta = %lli us\n", result_adjtime_correction_us[0], result_adjtime_correction_us[1], delta_us);
  238. TEST_ASSERT_INT_WITHIN(100, 0, delta_us);
  239. xSemaphoreGive(*sema);
  240. vTaskDelete(NULL);
  241. }
  242. TEST_CASE("test time adjustment happens linearly", "[newlib][timeout=15]")
  243. {
  244. exit_flag = false;
  245. xSemaphoreHandle exit_sema[2];
  246. for (int i = 0; i < 2; ++i) {
  247. exit_sema[i] = xSemaphoreCreateBinary();
  248. result_adjtime_correction_us[i] = 0;
  249. }
  250. xTaskCreatePinnedToCore(get_time_task, "get_time_task", 4096, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, NULL, 0);
  251. xTaskCreatePinnedToCore(measure_time_task, "measure_time_task", 4096, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
  252. printf("start waiting for 10 seconds\n");
  253. vTaskDelay(10000 / portTICK_PERIOD_MS);
  254. // set exit flag to let thread exit
  255. exit_flag = true;
  256. for (int i = 0; i < 2; ++i) {
  257. if (!xSemaphoreTake(exit_sema[i], 2100/portTICK_PERIOD_MS)) {
  258. TEST_FAIL_MESSAGE("exit_sema not released by test task");
  259. }
  260. }
  261. for (int i = 0; i < 2; ++i) {
  262. vSemaphoreDelete(exit_sema[i]);
  263. }
  264. }
  265. #endif
  266. #if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 )
  267. #define WITH_RTC 1
  268. #endif
  269. #if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 )
  270. #define WITH_FRC 1
  271. #endif
  272. void test_posix_timers_clock (void)
  273. {
  274. #ifndef _POSIX_TIMERS
  275. TEST_ASSERT_MESSAGE(false, "_POSIX_TIMERS - is not defined");
  276. #endif
  277. #if defined( WITH_FRC )
  278. printf("WITH_FRC ");
  279. #endif
  280. #if defined( WITH_RTC )
  281. printf("WITH_RTC ");
  282. #endif
  283. #ifdef CONFIG_ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
  284. printf("External (crystal) Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz());
  285. #else
  286. printf("Internal Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz());
  287. #endif
  288. TEST_ASSERT(clock_settime(CLOCK_REALTIME, NULL) == -1);
  289. TEST_ASSERT(clock_gettime(CLOCK_REALTIME, NULL) == -1);
  290. TEST_ASSERT(clock_getres(CLOCK_REALTIME, NULL) == -1);
  291. TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, NULL) == -1);
  292. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, NULL) == -1);
  293. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, NULL) == -1);
  294. #if defined( WITH_FRC ) || defined( WITH_RTC )
  295. struct timeval now = {0};
  296. now.tv_sec = 10L;
  297. now.tv_usec = 100000L;
  298. TEST_ASSERT(settimeofday(&now, NULL) == 0);
  299. TEST_ASSERT(gettimeofday(&now, NULL) == 0);
  300. struct timespec ts = {0};
  301. TEST_ASSERT(clock_settime(0xFFFFFFFF, &ts) == -1);
  302. TEST_ASSERT(clock_gettime(0xFFFFFFFF, &ts) == -1);
  303. TEST_ASSERT(clock_getres(0xFFFFFFFF, &ts) == 0);
  304. TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == 0);
  305. TEST_ASSERT(now.tv_sec == ts.tv_sec);
  306. TEST_ASSERT_INT_WITHIN(5000000L, ts.tv_nsec, now.tv_usec * 1000L);
  307. ts.tv_sec = 20;
  308. ts.tv_nsec = 100000000L;
  309. TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == 0);
  310. TEST_ASSERT(gettimeofday(&now, NULL) == 0);
  311. TEST_ASSERT(now.tv_sec == ts.tv_sec);
  312. TEST_ASSERT_INT_WITHIN(5000L, now.tv_usec, ts.tv_nsec / 1000L);
  313. TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
  314. uint64_t delta_monotonic_us = 0;
  315. #if defined( WITH_FRC )
  316. TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0);
  317. TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec);
  318. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0);
  319. TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec);
  320. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
  321. delta_monotonic_us = esp_timer_get_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L);
  322. TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0);
  323. TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us);
  324. #elif defined( WITH_RTC )
  325. TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0);
  326. TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec);
  327. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0);
  328. TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec);
  329. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
  330. delta_monotonic_us = esp_clk_rtc_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L);
  331. TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0);
  332. TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us);
  333. #endif // WITH_FRC
  334. #else
  335. struct timespec ts = {0};
  336. TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == -1);
  337. TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == -1);
  338. TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == -1);
  339. TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
  340. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == -1);
  341. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == -1);
  342. #endif // defined( WITH_FRC ) || defined( WITH_RTC )
  343. }
  344. TEST_CASE("test posix_timers clock_... functions", "[newlib]")
  345. {
  346. test_posix_timers_clock();
  347. }