| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <stdlib.h>
- #include <assert.h>
- #include <string.h>
- #include <stdio.h>
- #include <freertos/FreeRTOS.h>
- #include <freertos/task.h>
- #include <freertos/semphr.h>
- #include <rom/spi_flash.h>
- #include <rom/cache.h>
- #include <soc/soc.h>
- #include <soc/dport_reg.h>
- #include "sdkconfig.h"
- #include "esp_ipc.h"
- #include "esp_attr.h"
- #include "esp_intr_alloc.h"
- #include "esp_spi_flash.h"
- #include "esp_log.h"
- static void IRAM_ATTR spi_flash_disable_cache(uint32_t cpuid, uint32_t* saved_state);
- static void IRAM_ATTR spi_flash_restore_cache(uint32_t cpuid, uint32_t saved_state);
- static uint32_t s_flash_op_cache_state[2];
- #ifndef CONFIG_FREERTOS_UNICORE
- static SemaphoreHandle_t s_flash_op_mutex;
- static volatile bool s_flash_op_can_start = false;
- static volatile bool s_flash_op_complete = false;
- #ifndef NDEBUG
- static volatile int s_flash_op_cpu = -1;
- #endif
- void spi_flash_init_lock()
- {
- s_flash_op_mutex = xSemaphoreCreateRecursiveMutex();
- assert(s_flash_op_mutex != NULL);
- }
- void spi_flash_op_lock()
- {
- xSemaphoreTakeRecursive(s_flash_op_mutex, portMAX_DELAY);
- }
- void spi_flash_op_unlock()
- {
- xSemaphoreGiveRecursive(s_flash_op_mutex);
- }
- /*
- If you're going to modify this, keep in mind that while the flash caches of the pro and app
- cpu are separate, the psram cache is *not*. If one of the CPUs returns from a flash routine
- with its cache enabled but the other CPUs cache is not enabled yet, you will have problems
- when accessing psram from the former CPU.
- */
- void IRAM_ATTR spi_flash_op_block_func(void* arg)
- {
- // Disable scheduler on this CPU
- vTaskSuspendAll();
- // Restore interrupts that aren't located in IRAM
- esp_intr_noniram_disable();
- uint32_t cpuid = (uint32_t) arg;
- // s_flash_op_complete flag is cleared on *this* CPU, otherwise the other
- // CPU may reset the flag back to false before IPC task has a chance to check it
- // (if it is preempted by an ISR taking non-trivial amount of time)
- s_flash_op_complete = false;
- s_flash_op_can_start = true;
- while (!s_flash_op_complete) {
- // busy loop here and wait for the other CPU to finish flash operation
- }
- // Flash operation is complete, re-enable cache
- spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
- // Restore interrupts that aren't located in IRAM
- esp_intr_noniram_enable();
- // Re-enable scheduler
- xTaskResumeAll();
- }
- void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu()
- {
- assert(esp_ptr_in_dram((const void *)get_sp()));
- spi_flash_op_lock();
- const uint32_t cpuid = xPortGetCoreID();
- const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
- #ifndef NDEBUG
- // For sanity check later: record the CPU which has started doing flash operation
- assert(s_flash_op_cpu == -1);
- s_flash_op_cpu = cpuid;
- #endif
- if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
- // Scheduler hasn't been started yet, it means that spi_flash API is being
- // called from the 2nd stage bootloader or from user_start_cpu0, i.e. from
- // PRO CPU. APP CPU is either in reset or spinning inside user_start_cpu1,
- // which is in IRAM. So it is safe to disable cache for the other_cpuid after
- // esp_intr_noniram_disable.
- assert(other_cpuid == 1);
- } else {
- // Temporarily raise current task priority to prevent a deadlock while
- // waiting for IPC task to start on the other CPU
- int old_prio = uxTaskPriorityGet(NULL);
- vTaskPrioritySet(NULL, configMAX_PRIORITIES - 1);
- // Signal to the spi_flash_op_block_task on the other CPU that we need it to
- // disable cache there and block other tasks from executing.
- s_flash_op_can_start = false;
- esp_err_t ret = esp_ipc_call(other_cpuid, &spi_flash_op_block_func, (void*) other_cpuid);
- assert(ret == ESP_OK);
- while (!s_flash_op_can_start) {
- // Busy loop and wait for spi_flash_op_block_func to disable cache
- // on the other CPU
- }
- // Disable scheduler on the current CPU
- vTaskSuspendAll();
- // Can now set the priority back to the normal one
- vTaskPrioritySet(NULL, old_prio);
- // This is guaranteed to run on CPU <cpuid> because the other CPU is now
- // occupied by highest priority task
- assert(xPortGetCoreID() == cpuid);
- }
- // Kill interrupts that aren't located in IRAM
- esp_intr_noniram_disable();
- // This CPU executes this routine, with non-IRAM interrupts and the scheduler
- // disabled. The other CPU is spinning in the spi_flash_op_block_func task, also
- // with non-iram interrupts and the scheduler disabled. None of these CPUs will
- // touch external RAM or flash this way, so we can safely disable caches.
- spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]);
- spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]);
- }
- void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu()
- {
- const uint32_t cpuid = xPortGetCoreID();
- const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
- #ifndef NDEBUG
- // Sanity check: flash operation ends on the same CPU as it has started
- assert(cpuid == s_flash_op_cpu);
- // More sanity check: if scheduler isn't started, only CPU0 can call this.
- assert(!(xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED && cpuid != 0));
- s_flash_op_cpu = -1;
- #endif
- // Re-enable cache on both CPUs. After this, cache (flash and external RAM) should work again.
- spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
- spi_flash_restore_cache(other_cpuid, s_flash_op_cache_state[other_cpuid]);
- if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
- // Signal to spi_flash_op_block_task that flash operation is complete
- s_flash_op_complete = true;
- }
- // Re-enable non-iram interrupts
- esp_intr_noniram_enable();
- // Resume tasks on the current CPU, if the scheduler has started.
- // NOTE: enabling non-IRAM interrupts has to happen before this,
- // because once the scheduler has started, due to preemption the
- // current task can end up being moved to the other CPU.
- // But esp_intr_noniram_enable has to be called on the same CPU which
- // called esp_intr_noniram_disable
- if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
- xTaskResumeAll();
- }
- // Release API lock
- spi_flash_op_unlock();
- }
- void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os()
- {
- const uint32_t cpuid = xPortGetCoreID();
- const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
- // do not care about other CPU, it was halted upon entering panic handler
- spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]);
- // Kill interrupts that aren't located in IRAM
- esp_intr_noniram_disable();
- // Disable cache on this CPU as well
- spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]);
- }
- void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os()
- {
- const uint32_t cpuid = xPortGetCoreID();
- // Re-enable cache on this CPU
- spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
- // Re-enable non-iram interrupts
- esp_intr_noniram_enable();
- }
- #else // CONFIG_FREERTOS_UNICORE
- void spi_flash_init_lock()
- {
- }
- void spi_flash_op_lock()
- {
- vTaskSuspendAll();
- }
- void spi_flash_op_unlock()
- {
- xTaskResumeAll();
- }
- void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu()
- {
- spi_flash_op_lock();
- esp_intr_noniram_disable();
- spi_flash_disable_cache(0, &s_flash_op_cache_state[0]);
- }
- void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu()
- {
- spi_flash_restore_cache(0, s_flash_op_cache_state[0]);
- esp_intr_noniram_enable();
- spi_flash_op_unlock();
- }
- void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os()
- {
- // Kill interrupts that aren't located in IRAM
- esp_intr_noniram_disable();
- // Disable cache on this CPU as well
- spi_flash_disable_cache(0, &s_flash_op_cache_state[0]);
- }
- void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os()
- {
- // Re-enable cache on this CPU
- spi_flash_restore_cache(0, s_flash_op_cache_state[0]);
- // Re-enable non-iram interrupts
- esp_intr_noniram_enable();
- }
- #endif // CONFIG_FREERTOS_UNICORE
- /**
- * The following two functions are replacements for Cache_Read_Disable and Cache_Read_Enable
- * function in ROM. They are used to work around a bug where Cache_Read_Disable requires a call to
- * Cache_Flush before Cache_Read_Enable, even if cached data was not modified.
- */
- static const uint32_t cache_mask = DPORT_APP_CACHE_MASK_OPSDRAM | DPORT_APP_CACHE_MASK_DROM0 |
- DPORT_APP_CACHE_MASK_DRAM1 | DPORT_APP_CACHE_MASK_IROM0 |
- DPORT_APP_CACHE_MASK_IRAM1 | DPORT_APP_CACHE_MASK_IRAM0;
- static void IRAM_ATTR spi_flash_disable_cache(uint32_t cpuid, uint32_t* saved_state)
- {
- uint32_t ret = 0;
- if (cpuid == 0) {
- ret |= DPORT_GET_PERI_REG_BITS2(DPORT_PRO_CACHE_CTRL1_REG, cache_mask, 0);
- while (DPORT_GET_PERI_REG_BITS2(DPORT_PRO_DCACHE_DBUG0_REG, DPORT_PRO_CACHE_STATE, DPORT_PRO_CACHE_STATE_S) != 1) {
- ;
- }
- DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL_REG, 1, 0, DPORT_PRO_CACHE_ENABLE_S);
- } else {
- ret |= DPORT_GET_PERI_REG_BITS2(DPORT_APP_CACHE_CTRL1_REG, cache_mask, 0);
- while (DPORT_GET_PERI_REG_BITS2(DPORT_APP_DCACHE_DBUG0_REG, DPORT_APP_CACHE_STATE, DPORT_APP_CACHE_STATE_S) != 1) {
- ;
- }
- DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL_REG, 1, 0, DPORT_APP_CACHE_ENABLE_S);
- }
- *saved_state = ret;
- }
- static void IRAM_ATTR spi_flash_restore_cache(uint32_t cpuid, uint32_t saved_state)
- {
- if (cpuid == 0) {
- DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL_REG, 1, 1, DPORT_PRO_CACHE_ENABLE_S);
- DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL1_REG, cache_mask, saved_state, 0);
- } else {
- DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL_REG, 1, 1, DPORT_APP_CACHE_ENABLE_S);
- DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL1_REG, cache_mask, saved_state, 0);
- }
- }
- IRAM_ATTR bool spi_flash_cache_enabled()
- {
- bool result = (DPORT_REG_GET_BIT(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_CACHE_ENABLE) != 0);
- #if portNUM_PROCESSORS == 2
- result = result && (DPORT_REG_GET_BIT(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_CACHE_ENABLE) != 0);
- #endif
- return result;
- }
|