ref_clock.c 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. // Copyright 2017 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. /* Unit tests need to have access to reliable timestamps even if CPU and APB
  15. * clock frequencies change over time. This reference clock is built upon two
  16. * peripherals: one RMT channel and one PCNT channel, plus one GPIO to connect
  17. * these peripherals.
  18. *
  19. * RMT channel is configured to use REF_TICK as clock source, which is a 1 MHz
  20. * clock derived from APB_CLK using a set of dividers. The divider is changed
  21. * automatically by hardware depending on the current clock source of APB_CLK.
  22. * For example, if APB_CLK is derived from PLL, one divider is used, and when
  23. * APB_CLK is derived from XTAL, another divider is used. RMT channel clocked
  24. * by REF_TICK is configured to generate a continuous 0.5 MHz signal, which is
  25. * connected to a GPIO. PCNT takes the input signal from this GPIO and counts
  26. * the edges (which occur at 1MHz frequency). PCNT counter is only 16 bit wide,
  27. * so an interrupt is configured to trigger when the counter reaches 30000,
  28. * incrementing a 32-bit millisecond counter maintained by software.
  29. * Together these two counters may be used at any time to obtain the timestamp.
  30. */
  31. #include "test_utils.h"
  32. #include "soc/rmt_struct.h"
  33. #include "soc/pcnt_struct.h"
  34. #include "soc/pcnt_reg.h"
  35. #include "soc/gpio_sig_map.h"
  36. #include "soc/dport_reg.h"
  37. #include "rom/gpio.h"
  38. #include "rom/ets_sys.h"
  39. #include "driver/gpio.h"
  40. #include "esp_intr_alloc.h"
  41. #include "freertos/FreeRTOS.h"
  42. #include "driver/periph_ctrl.h"
  43. /* Select which RMT and PCNT channels, and GPIO to use */
  44. #define REF_CLOCK_RMT_CHANNEL 7
  45. #define REF_CLOCK_PCNT_UNIT 0
  46. #define REF_CLOCK_GPIO 21
  47. #define REF_CLOCK_PRESCALER_MS 30
  48. static void IRAM_ATTR pcnt_isr(void* arg);
  49. static intr_handle_t s_intr_handle;
  50. static portMUX_TYPE s_lock = portMUX_INITIALIZER_UNLOCKED;
  51. static volatile uint32_t s_milliseconds;
  52. void ref_clock_init()
  53. {
  54. assert(s_intr_handle == NULL && "already initialized");
  55. // Route RMT output to GPIO matrix
  56. gpio_matrix_out(REF_CLOCK_GPIO, RMT_SIG_OUT0_IDX + REF_CLOCK_RMT_CHANNEL, false, false);
  57. // Initialize RMT
  58. periph_module_enable(PERIPH_RMT_MODULE);
  59. RMT.apb_conf.fifo_mask = 1;
  60. rmt_item32_t data = {
  61. .duration0 = 1,
  62. .level0 = 1,
  63. .duration1 = 0,
  64. .level1 = 0
  65. };
  66. RMTMEM.chan[REF_CLOCK_RMT_CHANNEL].data32[0] = data;
  67. RMTMEM.chan[REF_CLOCK_RMT_CHANNEL].data32[1].val = 0;
  68. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.clk_en = 1;
  69. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_start = 0;
  70. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.mem_owner = 0;
  71. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.mem_rd_rst = 1;
  72. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.apb_mem_rst = 1;
  73. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.carrier_en = 0;
  74. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.div_cnt = 1;
  75. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.mem_size = 1;
  76. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.ref_always_on = 0;
  77. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_conti_mode = 1;
  78. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_start = 1;
  79. // Route signal to PCNT
  80. int pcnt_sig_idx = (REF_CLOCK_PCNT_UNIT < 5) ?
  81. PCNT_SIG_CH0_IN0_IDX + 4 * REF_CLOCK_PCNT_UNIT :
  82. PCNT_SIG_CH0_IN5_IDX + 4 * (REF_CLOCK_PCNT_UNIT - 5);
  83. gpio_matrix_in(REF_CLOCK_GPIO, pcnt_sig_idx, false);
  84. if (REF_CLOCK_GPIO != 20) {
  85. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[REF_CLOCK_GPIO]);
  86. } else {
  87. PIN_INPUT_ENABLE(PERIPHS_IO_MUX_GPIO20_U);
  88. }
  89. // Initialize PCNT
  90. periph_module_enable(PERIPH_PCNT_MODULE);
  91. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_hctrl_mode = 0;
  92. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_lctrl_mode = 0;
  93. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_pos_mode = 1;
  94. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_neg_mode = 1;
  95. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_l_lim_en = 0;
  96. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_h_lim_en = 1;
  97. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_zero_en = 0;
  98. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_thres0_en = 0;
  99. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_thres1_en = 0;
  100. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf2.cnt_h_lim = REF_CLOCK_PRESCALER_MS * 1000;
  101. // Enable PCNT and wait for it to start counting
  102. PCNT.ctrl.val &= ~(BIT(REF_CLOCK_PCNT_UNIT * 2 + 1));
  103. PCNT.ctrl.val |= BIT(REF_CLOCK_PCNT_UNIT * 2);
  104. PCNT.ctrl.val &= ~BIT(REF_CLOCK_PCNT_UNIT * 2);
  105. ets_delay_us(10000);
  106. // Enable interrupt
  107. s_milliseconds = 0;
  108. ESP_ERROR_CHECK(esp_intr_alloc(ETS_PCNT_INTR_SOURCE, ESP_INTR_FLAG_IRAM, pcnt_isr, NULL, &s_intr_handle));
  109. PCNT.int_clr.val = BIT(REF_CLOCK_PCNT_UNIT);
  110. PCNT.int_ena.val = BIT(REF_CLOCK_PCNT_UNIT);
  111. }
  112. static void IRAM_ATTR pcnt_isr(void* arg)
  113. {
  114. portENTER_CRITICAL_ISR(&s_lock);
  115. PCNT.int_clr.val = BIT(REF_CLOCK_PCNT_UNIT);
  116. s_milliseconds += REF_CLOCK_PRESCALER_MS;
  117. portEXIT_CRITICAL_ISR(&s_lock);
  118. }
  119. void ref_clock_deinit()
  120. {
  121. assert(s_intr_handle && "deinit called without init");
  122. // Disable interrupt
  123. PCNT.int_ena.val &= ~BIT(REF_CLOCK_PCNT_UNIT);
  124. esp_intr_free(s_intr_handle);
  125. s_intr_handle = NULL;
  126. // Disable RMT
  127. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_start = 0;
  128. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.clk_en = 0;
  129. periph_module_disable(PERIPH_RMT_MODULE);
  130. // Disable PCNT
  131. PCNT.ctrl.val |= ~(BIT(REF_CLOCK_PCNT_UNIT * 2 + 1));
  132. periph_module_disable(PERIPH_PCNT_MODULE);
  133. }
  134. uint64_t ref_clock_get()
  135. {
  136. portENTER_CRITICAL(&s_lock);
  137. uint32_t microseconds = PCNT.cnt_unit[REF_CLOCK_PCNT_UNIT].cnt_val;
  138. uint32_t milliseconds = s_milliseconds;
  139. if (PCNT.int_st.val & BIT(REF_CLOCK_PCNT_UNIT)) {
  140. // refresh counter value, in case the overflow has happened after reading cnt_val
  141. microseconds = PCNT.cnt_unit[REF_CLOCK_PCNT_UNIT].cnt_val;
  142. milliseconds += REF_CLOCK_PRESCALER_MS;
  143. }
  144. portEXIT_CRITICAL(&s_lock);
  145. return 1000 * (uint64_t) milliseconds + (uint64_t) microseconds;
  146. }