bt.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <stddef.h>
  14. #include <stdlib.h>
  15. #include <stdio.h>
  16. #include <string.h>
  17. #include "sdkconfig.h"
  18. #include "esp_heap_caps.h"
  19. #include "esp_heap_caps_init.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/task.h"
  22. #include "freertos/queue.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/portmacro.h"
  26. #include "xtensa/core-macros.h"
  27. #include "esp_types.h"
  28. #include "esp_system.h"
  29. #include "esp_task.h"
  30. #include "esp_intr_alloc.h"
  31. #include "esp_attr.h"
  32. #include "esp_phy_init.h"
  33. #include "esp_bt.h"
  34. #include "esp_err.h"
  35. #include "esp_log.h"
  36. #include "esp_pm.h"
  37. #include "driver/periph_ctrl.h"
  38. #include "soc/rtc.h"
  39. #include "soc/soc_memory_layout.h"
  40. #include "esp32/clk.h"
  41. #include "esp_coexist_internal.h"
  42. #if !CONFIG_FREERTOS_UNICORE
  43. #include "esp_ipc.h"
  44. #endif
  45. #if CONFIG_BT_ENABLED
  46. /* Macro definition
  47. ************************************************************************
  48. */
  49. #define BTDM_LOG_TAG "BTDM_INIT"
  50. #define BTDM_INIT_PERIOD (5000) /* ms */
  51. /* Bluetooth system and controller config */
  52. #define BTDM_CFG_BT_DATA_RELEASE (1<<0)
  53. #define BTDM_CFG_HCI_UART (1<<1)
  54. #define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
  55. #define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
  56. #define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
  57. #define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5)
  58. /* Sleep mode */
  59. #define BTDM_MODEM_SLEEP_MODE_NONE (0)
  60. #define BTDM_MODEM_SLEEP_MODE_ORIG (1)
  61. #define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test.
  62. /* Low Power Clock Selection */
  63. #define BTDM_LPCLK_SEL_XTAL (0)
  64. #define BTDM_LPCLK_SEL_XTAL32K (1)
  65. #define BTDM_LPCLK_SEL_RTC_SLOW (2)
  66. #define BTDM_LPCLK_SEL_8M (3)
  67. /* Sleep and wakeup interval control */
  68. #define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep
  69. #define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF
  70. #define BT_DEBUG(...)
  71. #define BT_API_CALL_CHECK(info, api_call, ret) \
  72. do{\
  73. esp_err_t __err = (api_call);\
  74. if ((ret) != __err) {\
  75. BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
  76. return __err;\
  77. }\
  78. } while(0)
  79. #define OSI_FUNCS_TIME_BLOCKING 0xffffffff
  80. #define OSI_VERSION 0x00010002
  81. #define OSI_MAGIC_VALUE 0xFADEBEAD
  82. /* SPIRAM Configuration */
  83. #if CONFIG_SPIRAM_USE_MALLOC
  84. #define BTDM_MAX_QUEUE_NUM (5)
  85. #endif
  86. /* Types definition
  87. ************************************************************************
  88. */
  89. /* VHCI function interface */
  90. typedef struct vhci_host_callback {
  91. void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
  92. int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
  93. } vhci_host_callback_t;
  94. /* Dram region */
  95. typedef struct {
  96. esp_bt_mode_t mode;
  97. intptr_t start;
  98. intptr_t end;
  99. } btdm_dram_available_region_t;
  100. /* PSRAM configuration */
  101. #if CONFIG_SPIRAM_USE_MALLOC
  102. typedef struct {
  103. QueueHandle_t handle;
  104. void *storage;
  105. void *buffer;
  106. } btdm_queue_item_t;
  107. #endif
  108. /* OSI function */
  109. struct osi_funcs_t {
  110. uint32_t _version;
  111. xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
  112. void (*_ints_on)(unsigned int mask);
  113. void (*_interrupt_disable)(void);
  114. void (*_interrupt_restore)(void);
  115. void (*_task_yield)(void);
  116. void (*_task_yield_from_isr)(void);
  117. void *(*_semphr_create)(uint32_t max, uint32_t init);
  118. void (*_semphr_delete)(void *semphr);
  119. int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
  120. int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
  121. int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
  122. int32_t (*_semphr_give)(void *semphr);
  123. void *(*_mutex_create)(void);
  124. void (*_mutex_delete)(void *mutex);
  125. int32_t (*_mutex_lock)(void *mutex);
  126. int32_t (*_mutex_unlock)(void *mutex);
  127. void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
  128. void (* _queue_delete)(void *queue);
  129. int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
  130. int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
  131. int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
  132. int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
  133. int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  134. void (* _task_delete)(void *task_handle);
  135. bool (* _is_in_isr)(void);
  136. int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
  137. void *(* _malloc)(uint32_t size);
  138. void *(* _malloc_internal)(uint32_t size);
  139. void (* _free)(void *p);
  140. int32_t (* _read_efuse_mac)(uint8_t mac[6]);
  141. void (* _srand)(unsigned int seed);
  142. int (* _rand)(void);
  143. uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
  144. uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
  145. bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
  146. void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
  147. void (* _btdm_sleep_enter_phase2)(void);
  148. void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
  149. void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
  150. void (* _btdm_sleep_exit_phase3)(void); /* called from task */
  151. bool (* _coex_bt_wakeup_request)(void);
  152. void (* _coex_bt_wakeup_request_end)(void);
  153. int (* _coex_bt_request)(uint32_t event, uint32_t latency, uint32_t duration);
  154. int (* _coex_bt_release)(uint32_t event);
  155. int (* _coex_register_bt_cb)(coex_func_cb_t cb);
  156. uint32_t (* _coex_bb_reset_lock)(void);
  157. void (* _coex_bb_reset_unlock)(uint32_t restore);
  158. uint32_t _magic;
  159. };
  160. typedef void (*workitem_handler_t)(void* arg);
  161. /* External functions or values
  162. ************************************************************************
  163. */
  164. /* not for user call, so don't put to include file */
  165. /* OSI */
  166. extern int btdm_osi_funcs_register(void *osi_funcs);
  167. /* Initialise and De-initialise */
  168. extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
  169. extern void btdm_controller_deinit(void);
  170. extern int btdm_controller_enable(esp_bt_mode_t mode);
  171. extern void btdm_controller_disable(void);
  172. extern uint8_t btdm_controller_get_mode(void);
  173. extern const char *btdm_controller_get_compile_version(void);
  174. extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
  175. extern int btdm_dispatch_work_to_controller(workitem_handler_t callback, void *arg, bool blocking);
  176. /* Sleep */
  177. extern void btdm_controller_enable_sleep(bool enable);
  178. extern void btdm_controller_set_sleep_mode(uint8_t mode);
  179. extern uint8_t btdm_controller_get_sleep_mode(void);
  180. extern bool btdm_power_state_active(void);
  181. extern void btdm_wakeup_request(void);
  182. extern void btdm_in_wakeup_requesting_set(bool in_wakeup_requesting);
  183. /* Low Power Clock */
  184. extern bool btdm_lpclk_select_src(uint32_t sel);
  185. extern bool btdm_lpclk_set_div(uint32_t div);
  186. /* VHCI */
  187. extern bool API_vhci_host_check_send_available(void);
  188. extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
  189. extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
  190. /* TX power */
  191. extern int ble_txpwr_set(int power_type, int power_level);
  192. extern int ble_txpwr_get(int power_type);
  193. extern int bredr_txpwr_set(int min_power_level, int max_power_level);
  194. extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
  195. extern void bredr_sco_datapath_set(uint8_t data_path);
  196. extern void btdm_controller_scan_duplicate_list_clear(void);
  197. /* Coexistence */
  198. extern int coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration);
  199. extern int coex_bt_release_wrapper(uint32_t event);
  200. extern int coex_register_bt_cb_wrapper(coex_func_cb_t cb);
  201. extern uint32_t coex_bb_reset_lock_wrapper(void);
  202. extern void coex_bb_reset_unlock_wrapper(uint32_t restore);
  203. extern char _bss_start_btdm;
  204. extern char _bss_end_btdm;
  205. extern char _data_start_btdm;
  206. extern char _data_end_btdm;
  207. extern uint32_t _data_start_btdm_rom;
  208. extern uint32_t _data_end_btdm_rom;
  209. extern uint32_t _bt_bss_start;
  210. extern uint32_t _bt_bss_end;
  211. extern uint32_t _nimble_bss_start;
  212. extern uint32_t _nimble_bss_end;
  213. extern uint32_t _btdm_bss_start;
  214. extern uint32_t _btdm_bss_end;
  215. extern uint32_t _bt_data_start;
  216. extern uint32_t _bt_data_end;
  217. extern uint32_t _nimble_data_start;
  218. extern uint32_t _nimble_data_end;
  219. extern uint32_t _btdm_data_start;
  220. extern uint32_t _btdm_data_end;
  221. /* Local Function Declare
  222. *********************************************************************
  223. */
  224. #if CONFIG_SPIRAM_USE_MALLOC
  225. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue);
  226. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue);
  227. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  228. static void IRAM_ATTR interrupt_disable(void);
  229. static void IRAM_ATTR interrupt_restore(void);
  230. static void IRAM_ATTR task_yield_from_isr(void);
  231. static void *semphr_create_wrapper(uint32_t max, uint32_t init);
  232. static void semphr_delete_wrapper(void *semphr);
  233. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw);
  234. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw);
  235. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
  236. static int32_t semphr_give_wrapper(void *semphr);
  237. static void *mutex_create_wrapper(void);
  238. static void mutex_delete_wrapper(void *mutex);
  239. static int32_t mutex_lock_wrapper(void *mutex);
  240. static int32_t mutex_unlock_wrapper(void *mutex);
  241. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
  242. static void queue_delete_wrapper(void *queue);
  243. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
  244. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
  245. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
  246. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
  247. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  248. static void task_delete_wrapper(void *task_handle);
  249. static bool IRAM_ATTR is_in_isr_wrapper(void);
  250. static void IRAM_ATTR cause_sw_intr(void *arg);
  251. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
  252. static void *malloc_internal_wrapper(size_t size);
  253. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6]);
  254. static void IRAM_ATTR srand_wrapper(unsigned int seed);
  255. static int IRAM_ATTR rand_wrapper(void);
  256. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles);
  257. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us);
  258. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt);
  259. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
  260. static void btdm_sleep_enter_phase2_wrapper(void);
  261. static void btdm_sleep_exit_phase3_wrapper(void);
  262. static bool coex_bt_wakeup_request(void);
  263. static void coex_bt_wakeup_request_end(void);
  264. /* Local variable definition
  265. ***************************************************************************
  266. */
  267. /* OSI funcs */
  268. static const struct osi_funcs_t osi_funcs_ro = {
  269. ._version = OSI_VERSION,
  270. ._set_isr = xt_set_interrupt_handler,
  271. ._ints_on = xt_ints_on,
  272. ._interrupt_disable = interrupt_disable,
  273. ._interrupt_restore = interrupt_restore,
  274. ._task_yield = vPortYield,
  275. ._task_yield_from_isr = task_yield_from_isr,
  276. ._semphr_create = semphr_create_wrapper,
  277. ._semphr_delete = semphr_delete_wrapper,
  278. ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
  279. ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
  280. ._semphr_take = semphr_take_wrapper,
  281. ._semphr_give = semphr_give_wrapper,
  282. ._mutex_create = mutex_create_wrapper,
  283. ._mutex_delete = mutex_delete_wrapper,
  284. ._mutex_lock = mutex_lock_wrapper,
  285. ._mutex_unlock = mutex_unlock_wrapper,
  286. ._queue_create = queue_create_wrapper,
  287. ._queue_delete = queue_delete_wrapper,
  288. ._queue_send = queue_send_wrapper,
  289. ._queue_send_from_isr = queue_send_from_isr_wrapper,
  290. ._queue_recv = queue_recv_wrapper,
  291. ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
  292. ._task_create = task_create_wrapper,
  293. ._task_delete = task_delete_wrapper,
  294. ._is_in_isr = is_in_isr_wrapper,
  295. ._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
  296. ._malloc = malloc,
  297. ._malloc_internal = malloc_internal_wrapper,
  298. ._free = free,
  299. ._read_efuse_mac = read_mac_wrapper,
  300. ._srand = srand_wrapper,
  301. ._rand = rand_wrapper,
  302. ._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
  303. ._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
  304. ._btdm_sleep_check_duration = btdm_sleep_check_duration,
  305. ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
  306. ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
  307. ._btdm_sleep_exit_phase1 = NULL,
  308. ._btdm_sleep_exit_phase2 = NULL,
  309. ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
  310. ._coex_bt_wakeup_request = coex_bt_wakeup_request,
  311. ._coex_bt_wakeup_request_end = coex_bt_wakeup_request_end,
  312. ._coex_bt_request = coex_bt_request_wrapper,
  313. ._coex_bt_release = coex_bt_release_wrapper,
  314. ._coex_register_bt_cb = coex_register_bt_cb_wrapper,
  315. ._coex_bb_reset_lock = coex_bb_reset_lock_wrapper,
  316. ._coex_bb_reset_unlock = coex_bb_reset_unlock_wrapper,
  317. ._magic = OSI_MAGIC_VALUE,
  318. };
  319. /* the mode column will be modified by release function to indicate the available region */
  320. static btdm_dram_available_region_t btdm_dram_available_region[] = {
  321. //following is .data
  322. {ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
  323. //following is memory which HW will use
  324. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
  325. {ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
  326. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
  327. {ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
  328. //following is .bss
  329. {ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
  330. {ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
  331. };
  332. /* Reserve the full memory region used by Bluetooth Controller,
  333. * some may be released later at runtime. */
  334. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
  335. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
  336. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
  337. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
  338. static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
  339. #if CONFIG_SPIRAM_USE_MALLOC
  340. static DRAM_ATTR btdm_queue_item_t btdm_queue_table[BTDM_MAX_QUEUE_NUM];
  341. static DRAM_ATTR SemaphoreHandle_t btdm_queue_table_mux = NULL;
  342. #endif /* #if CONFIG_SPIRAM_USE_MALLOC */
  343. /* Static variable declare */
  344. // timestamp when PHY/RF was switched on
  345. static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0;
  346. static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  347. static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
  348. // measured average low power clock period in micro seconds
  349. static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
  350. static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
  351. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  352. // used low power clock
  353. static DRAM_ATTR uint8_t btdm_lpclk_sel;
  354. #endif /* #ifdef CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG */
  355. static DRAM_ATTR QueueHandle_t s_wakeup_req_sem = NULL;
  356. #ifdef CONFIG_PM_ENABLE
  357. static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
  358. static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
  359. static bool s_pm_lock_acquired = true;
  360. static DRAM_ATTR bool s_btdm_allow_light_sleep;
  361. // pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock
  362. static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
  363. static void btdm_slp_tmr_callback(void *arg);
  364. #endif /* #ifdef CONFIG_PM_ENABLE */
  365. static inline void btdm_check_and_init_bb(void)
  366. {
  367. /* init BT-BB if PHY/RF has been switched off since last BT-BB init */
  368. int64_t latest_ts = esp_phy_rf_get_on_ts();
  369. if (latest_ts != s_time_phy_rf_just_enabled ||
  370. s_time_phy_rf_just_enabled == 0) {
  371. btdm_rf_bb_init_phase2();
  372. s_time_phy_rf_just_enabled = latest_ts;
  373. }
  374. }
  375. #if CONFIG_SPIRAM_USE_MALLOC
  376. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue)
  377. {
  378. if (!btdm_queue_table_mux || !queue) {
  379. return NULL;
  380. }
  381. bool ret = false;
  382. btdm_queue_item_t *item;
  383. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  384. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  385. item = &btdm_queue_table[i];
  386. if (item->handle == NULL) {
  387. memcpy(item, queue, sizeof(btdm_queue_item_t));
  388. ret = true;
  389. break;
  390. }
  391. }
  392. xSemaphoreGive(btdm_queue_table_mux);
  393. return ret;
  394. }
  395. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue)
  396. {
  397. if (!btdm_queue_table_mux || !queue) {
  398. return false;
  399. }
  400. bool ret = false;
  401. btdm_queue_item_t *item;
  402. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  403. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  404. item = &btdm_queue_table[i];
  405. if (item->handle == queue->handle) {
  406. memcpy(queue, item, sizeof(btdm_queue_item_t));
  407. memset(item, 0, sizeof(btdm_queue_item_t));
  408. ret = true;
  409. break;
  410. }
  411. }
  412. xSemaphoreGive(btdm_queue_table_mux);
  413. return ret;
  414. }
  415. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  416. static void IRAM_ATTR interrupt_disable(void)
  417. {
  418. if (xPortInIsrContext()) {
  419. portENTER_CRITICAL_ISR(&global_int_mux);
  420. } else {
  421. portENTER_CRITICAL(&global_int_mux);
  422. }
  423. }
  424. static void IRAM_ATTR interrupt_restore(void)
  425. {
  426. if (xPortInIsrContext()) {
  427. portEXIT_CRITICAL_ISR(&global_int_mux);
  428. } else {
  429. portEXIT_CRITICAL(&global_int_mux);
  430. }
  431. }
  432. static void IRAM_ATTR task_yield_from_isr(void)
  433. {
  434. portYIELD_FROM_ISR();
  435. }
  436. static void *semphr_create_wrapper(uint32_t max, uint32_t init)
  437. {
  438. #if !CONFIG_SPIRAM_USE_MALLOC
  439. return (void *)xSemaphoreCreateCounting(max, init);
  440. #else
  441. StaticQueue_t *queue_buffer = NULL;
  442. QueueHandle_t handle = NULL;
  443. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  444. if (!queue_buffer) {
  445. goto error;
  446. }
  447. handle = xSemaphoreCreateCountingStatic(max, init, queue_buffer);
  448. if (!handle) {
  449. goto error;
  450. }
  451. btdm_queue_item_t item = {
  452. .handle = handle,
  453. .storage = NULL,
  454. .buffer = queue_buffer,
  455. };
  456. if (!btdm_queue_generic_register(&item)) {
  457. goto error;
  458. }
  459. return handle;
  460. error:
  461. if (handle) {
  462. vSemaphoreDelete(handle);
  463. }
  464. if (queue_buffer) {
  465. free(queue_buffer);
  466. }
  467. return NULL;
  468. #endif
  469. }
  470. static void semphr_delete_wrapper(void *semphr)
  471. {
  472. #if !CONFIG_SPIRAM_USE_MALLOC
  473. vSemaphoreDelete(semphr);
  474. #else
  475. btdm_queue_item_t item = {
  476. .handle = semphr,
  477. .storage = NULL,
  478. .buffer = NULL,
  479. };
  480. if (btdm_queue_generic_deregister(&item)) {
  481. vSemaphoreDelete(item.handle);
  482. free(item.buffer);
  483. }
  484. return;
  485. #endif
  486. }
  487. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
  488. {
  489. return (int32_t)xSemaphoreTakeFromISR(semphr, hptw);
  490. }
  491. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
  492. {
  493. return (int32_t)xSemaphoreGiveFromISR(semphr, hptw);
  494. }
  495. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
  496. {
  497. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  498. return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY);
  499. } else {
  500. return (int32_t)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS);
  501. }
  502. }
  503. static int32_t semphr_give_wrapper(void *semphr)
  504. {
  505. return (int32_t)xSemaphoreGive(semphr);
  506. }
  507. static void *mutex_create_wrapper(void)
  508. {
  509. #if CONFIG_SPIRAM_USE_MALLOC
  510. StaticQueue_t *queue_buffer = NULL;
  511. QueueHandle_t handle = NULL;
  512. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  513. if (!queue_buffer) {
  514. goto error;
  515. }
  516. handle = xSemaphoreCreateMutexStatic(queue_buffer);
  517. if (!handle) {
  518. goto error;
  519. }
  520. btdm_queue_item_t item = {
  521. .handle = handle,
  522. .storage = NULL,
  523. .buffer = queue_buffer,
  524. };
  525. if (!btdm_queue_generic_register(&item)) {
  526. goto error;
  527. }
  528. return handle;
  529. error:
  530. if (handle) {
  531. vSemaphoreDelete(handle);
  532. }
  533. if (queue_buffer) {
  534. free(queue_buffer);
  535. }
  536. return NULL;
  537. #else
  538. return (void *)xSemaphoreCreateMutex();
  539. #endif
  540. }
  541. static void mutex_delete_wrapper(void *mutex)
  542. {
  543. #if !CONFIG_SPIRAM_USE_MALLOC
  544. vSemaphoreDelete(mutex);
  545. #else
  546. btdm_queue_item_t item = {
  547. .handle = mutex,
  548. .storage = NULL,
  549. .buffer = NULL,
  550. };
  551. if (btdm_queue_generic_deregister(&item)) {
  552. vSemaphoreDelete(item.handle);
  553. free(item.buffer);
  554. }
  555. return;
  556. #endif
  557. }
  558. static int32_t mutex_lock_wrapper(void *mutex)
  559. {
  560. return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
  561. }
  562. static int32_t mutex_unlock_wrapper(void *mutex)
  563. {
  564. return (int32_t)xSemaphoreGive(mutex);
  565. }
  566. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
  567. {
  568. #if CONFIG_SPIRAM_USE_MALLOC
  569. StaticQueue_t *queue_buffer = NULL;
  570. uint8_t *queue_storage = NULL;
  571. QueueHandle_t handle = NULL;
  572. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  573. if (!queue_buffer) {
  574. goto error;
  575. }
  576. queue_storage = heap_caps_malloc((queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  577. if (!queue_storage ) {
  578. goto error;
  579. }
  580. handle = xQueueCreateStatic(queue_len, item_size, queue_storage, queue_buffer);
  581. if (!handle) {
  582. goto error;
  583. }
  584. btdm_queue_item_t item = {
  585. .handle = handle,
  586. .storage = queue_storage,
  587. .buffer = queue_buffer,
  588. };
  589. if (!btdm_queue_generic_register(&item)) {
  590. goto error;
  591. }
  592. return handle;
  593. error:
  594. if (handle) {
  595. vQueueDelete(handle);
  596. }
  597. if (queue_storage) {
  598. free(queue_storage);
  599. }
  600. if (queue_buffer) {
  601. free(queue_buffer);
  602. }
  603. return NULL;
  604. #else
  605. return (void *)xQueueCreate(queue_len, item_size);
  606. #endif
  607. }
  608. static void queue_delete_wrapper(void *queue)
  609. {
  610. #if !CONFIG_SPIRAM_USE_MALLOC
  611. vQueueDelete(queue);
  612. #else
  613. btdm_queue_item_t item = {
  614. .handle = queue,
  615. .storage = NULL,
  616. .buffer = NULL,
  617. };
  618. if (btdm_queue_generic_deregister(&item)) {
  619. vQueueDelete(item.handle);
  620. free(item.storage);
  621. free(item.buffer);
  622. }
  623. return;
  624. #endif
  625. }
  626. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
  627. {
  628. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  629. return (int32_t)xQueueSend(queue, item, portMAX_DELAY);
  630. } else {
  631. return (int32_t)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS);
  632. }
  633. }
  634. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
  635. {
  636. return (int32_t)xQueueSendFromISR(queue, item, hptw);
  637. }
  638. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
  639. {
  640. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  641. return (int32_t)xQueueReceive(queue, item, portMAX_DELAY);
  642. } else {
  643. return (int32_t)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS);
  644. }
  645. }
  646. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
  647. {
  648. return (int32_t)xQueueReceiveFromISR(queue, item, hptw);
  649. }
  650. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
  651. {
  652. return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
  653. }
  654. static void task_delete_wrapper(void *task_handle)
  655. {
  656. vTaskDelete(task_handle);
  657. }
  658. static bool IRAM_ATTR is_in_isr_wrapper(void)
  659. {
  660. return !xPortCanYield();
  661. }
  662. static void IRAM_ATTR cause_sw_intr(void *arg)
  663. {
  664. /* just convert void * to int, because the width is the same */
  665. uint32_t intr_no = (uint32_t)arg;
  666. XTHAL_SET_INTSET((1<<intr_no));
  667. }
  668. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
  669. {
  670. esp_err_t err = ESP_OK;
  671. #if CONFIG_FREERTOS_UNICORE
  672. cause_sw_intr((void *)intr_no);
  673. #else /* CONFIG_FREERTOS_UNICORE */
  674. if (xPortGetCoreID() == core_id) {
  675. cause_sw_intr((void *)intr_no);
  676. } else {
  677. err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
  678. }
  679. #endif /* !CONFIG_FREERTOS_UNICORE */
  680. return err;
  681. }
  682. static void *malloc_internal_wrapper(size_t size)
  683. {
  684. return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
  685. }
  686. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
  687. {
  688. return esp_read_mac(mac, ESP_MAC_BT);
  689. }
  690. static void IRAM_ATTR srand_wrapper(unsigned int seed)
  691. {
  692. /* empty function */
  693. }
  694. static int IRAM_ATTR rand_wrapper(void)
  695. {
  696. return (int)esp_random();
  697. }
  698. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
  699. {
  700. // The number of lp cycles should not lead to overflow. Thrs: 100s
  701. // clock measurement is conducted
  702. uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
  703. us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
  704. return (uint32_t)us;
  705. }
  706. /*
  707. * @brief Converts a duration in slots into a number of low power clock cycles.
  708. */
  709. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
  710. {
  711. // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
  712. // Compute the sleep duration in us to low power clock cycles, with calibration result applied
  713. // clock measurement is conducted
  714. uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
  715. return (uint32_t)cycles;
  716. }
  717. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
  718. {
  719. if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
  720. return false;
  721. }
  722. /* wake up in advance considering the delay in enabling PHY/RF */
  723. *slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
  724. return true;
  725. }
  726. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
  727. {
  728. #ifdef CONFIG_PM_ENABLE
  729. // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
  730. uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles);
  731. #define BTDM_MIN_TIMER_UNCERTAINTY_US (500)
  732. assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
  733. // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
  734. // and set the timer in advance
  735. uint32_t uncertainty = (us_to_sleep >> 11);
  736. if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
  737. uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
  738. }
  739. if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) {
  740. ESP_LOGW(BTDM_LOG_TAG, "timer start failed");
  741. }
  742. #endif
  743. }
  744. static void btdm_sleep_enter_phase2_wrapper(void)
  745. {
  746. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  747. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  748. esp_modem_sleep_enter(MODEM_CLASSIC_BT_MODULE);
  749. #ifdef CONFIG_PM_ENABLE
  750. if (s_pm_lock_acquired) {
  751. esp_pm_lock_release(s_pm_lock);
  752. s_pm_lock_acquired = false;
  753. }
  754. #endif
  755. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  756. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  757. // pause bluetooth baseband
  758. periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
  759. }
  760. }
  761. static void btdm_sleep_exit_phase3_wrapper(void)
  762. {
  763. #ifdef CONFIG_PM_ENABLE
  764. if (!s_pm_lock_acquired) {
  765. s_pm_lock_acquired = true;
  766. esp_pm_lock_acquire(s_pm_lock);
  767. }
  768. #endif
  769. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  770. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  771. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  772. btdm_check_and_init_bb();
  773. #ifdef CONFIG_PM_ENABLE
  774. esp_timer_stop(s_btdm_slp_tmr);
  775. #endif
  776. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  777. // resume bluetooth baseband
  778. periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
  779. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  780. }
  781. }
  782. #ifdef CONFIG_PM_ENABLE
  783. static void btdm_slp_tmr_customer_callback(void * arg)
  784. {
  785. (void)(arg);
  786. if (!s_pm_lock_acquired) {
  787. s_pm_lock_acquired = true;
  788. esp_pm_lock_acquire(s_pm_lock);
  789. }
  790. }
  791. static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
  792. {
  793. (void)(arg);
  794. btdm_dispatch_work_to_controller(btdm_slp_tmr_customer_callback, NULL, true);
  795. }
  796. #endif
  797. #define BTDM_ASYNC_WAKEUP_REQ_HCI 0
  798. #define BTDM_ASYNC_WAKEUP_REQ_COEX 1
  799. #define BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA 2
  800. #define BTDM_ASYNC_WAKEUP_REQMAX 3
  801. static void btdm_wakeup_request_callback(void * arg)
  802. {
  803. (void)(arg);
  804. #if CONFIG_PM_ENABLE
  805. if (!s_pm_lock_acquired) {
  806. s_pm_lock_acquired = true;
  807. esp_pm_lock_acquire(s_pm_lock);
  808. }
  809. esp_timer_stop(s_btdm_slp_tmr);
  810. #endif
  811. btdm_wakeup_request();
  812. semphr_give_wrapper(s_wakeup_req_sem);
  813. }
  814. static bool async_wakeup_request(int event)
  815. {
  816. bool do_wakeup_request = false;
  817. switch (event) {
  818. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  819. btdm_in_wakeup_requesting_set(true);
  820. // NO break
  821. case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
  822. if (!btdm_power_state_active()) {
  823. do_wakeup_request = true;
  824. btdm_dispatch_work_to_controller(btdm_wakeup_request_callback, NULL, true);
  825. semphr_take_wrapper(s_wakeup_req_sem, OSI_FUNCS_TIME_BLOCKING);
  826. }
  827. break;
  828. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  829. if (!btdm_power_state_active()) {
  830. do_wakeup_request = true;
  831. #if CONFIG_PM_ENABLE
  832. if (!s_pm_lock_acquired) {
  833. s_pm_lock_acquired = true;
  834. esp_pm_lock_acquire(s_pm_lock);
  835. }
  836. esp_timer_stop(s_btdm_slp_tmr);
  837. #endif
  838. btdm_wakeup_request();
  839. }
  840. break;
  841. default:
  842. return false;
  843. }
  844. return do_wakeup_request;
  845. }
  846. static void async_wakeup_request_end(int event)
  847. {
  848. bool request_lock = false;
  849. switch (event) {
  850. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  851. request_lock = true;
  852. break;
  853. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  854. case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
  855. request_lock = false;
  856. break;
  857. default:
  858. return;
  859. }
  860. if (request_lock) {
  861. btdm_in_wakeup_requesting_set(false);
  862. }
  863. return;
  864. }
  865. static bool coex_bt_wakeup_request(void)
  866. {
  867. return async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_COEX);
  868. }
  869. static void coex_bt_wakeup_request_end(void)
  870. {
  871. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_COEX);
  872. return;
  873. }
  874. bool esp_vhci_host_check_send_available(void)
  875. {
  876. return API_vhci_host_check_send_available();
  877. }
  878. void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
  879. {
  880. async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_HCI);
  881. API_vhci_host_send_packet(data, len);
  882. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_HCI);
  883. }
  884. esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
  885. {
  886. return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
  887. }
  888. static uint32_t btdm_config_mask_load(void)
  889. {
  890. uint32_t mask = 0x0;
  891. #if CONFIG_BTDM_CTRL_HCI_MODE_UART_H4
  892. mask |= BTDM_CFG_HCI_UART;
  893. #endif
  894. #if CONFIG_BTDM_CTRL_PINNED_TO_CORE == 1
  895. mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
  896. #endif
  897. #if CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED
  898. mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED;
  899. #endif /* CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED */
  900. mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
  901. mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
  902. return mask;
  903. }
  904. static void btdm_controller_mem_init(void)
  905. {
  906. /* initialise .data section */
  907. memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
  908. ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
  909. //initial em, .bss section
  910. for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  911. if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
  912. memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
  913. ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
  914. }
  915. }
  916. }
  917. static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
  918. {
  919. int ret = heap_caps_add_region(start, end);
  920. /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
  921. * is too small to fit a heap. This cannot be termed as a fatal error and hence
  922. * we replace it by ESP_OK
  923. */
  924. if (ret == ESP_ERR_INVALID_SIZE) {
  925. return ESP_OK;
  926. }
  927. return ret;
  928. }
  929. esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
  930. {
  931. bool update = true;
  932. intptr_t mem_start=(intptr_t) NULL, mem_end=(intptr_t) NULL;
  933. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  934. return ESP_ERR_INVALID_STATE;
  935. }
  936. //already released
  937. if (!(mode & btdm_dram_available_region[0].mode)) {
  938. return ESP_ERR_INVALID_STATE;
  939. }
  940. for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  941. //skip the share mode, idle mode and other mode
  942. if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
  943. || (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
  944. //clear the bit of the mode which will be released
  945. btdm_dram_available_region[i].mode &= ~mode;
  946. continue;
  947. } else {
  948. //clear the bit of the mode which will be released
  949. btdm_dram_available_region[i].mode &= ~mode;
  950. }
  951. if (update) {
  952. mem_start = btdm_dram_available_region[i].start;
  953. mem_end = btdm_dram_available_region[i].end;
  954. update = false;
  955. }
  956. if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
  957. mem_end = btdm_dram_available_region[i].end;
  958. if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
  959. && (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
  960. && mem_end == btdm_dram_available_region[i+1].start) {
  961. continue;
  962. } else {
  963. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  964. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  965. update = true;
  966. }
  967. } else {
  968. mem_end = btdm_dram_available_region[i].end;
  969. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  970. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  971. update = true;
  972. }
  973. }
  974. if (mode == ESP_BT_MODE_BTDM) {
  975. mem_start = (intptr_t)&_btdm_bss_start;
  976. mem_end = (intptr_t)&_btdm_bss_end;
  977. if (mem_start != mem_end) {
  978. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  979. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  980. }
  981. mem_start = (intptr_t)&_btdm_data_start;
  982. mem_end = (intptr_t)&_btdm_data_end;
  983. if (mem_start != mem_end) {
  984. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  985. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  986. }
  987. }
  988. return ESP_OK;
  989. }
  990. esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
  991. {
  992. int ret;
  993. intptr_t mem_start, mem_end;
  994. ret = esp_bt_controller_mem_release(mode);
  995. if (ret != ESP_OK) {
  996. return ret;
  997. }
  998. if (mode == ESP_BT_MODE_BTDM) {
  999. mem_start = (intptr_t)&_bt_bss_start;
  1000. mem_end = (intptr_t)&_bt_bss_end;
  1001. if (mem_start != mem_end) {
  1002. ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1003. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1004. }
  1005. mem_start = (intptr_t)&_bt_data_start;
  1006. mem_end = (intptr_t)&_bt_data_end;
  1007. if (mem_start != mem_end) {
  1008. ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1009. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1010. }
  1011. mem_start = (intptr_t)&_nimble_bss_start;
  1012. mem_end = (intptr_t)&_nimble_bss_end;
  1013. if (mem_start != mem_end) {
  1014. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1015. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1016. }
  1017. mem_start = (intptr_t)&_nimble_data_start;
  1018. mem_end = (intptr_t)&_nimble_data_end;
  1019. if (mem_start != mem_end) {
  1020. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1021. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1022. }
  1023. }
  1024. return ESP_OK;
  1025. }
  1026. esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
  1027. {
  1028. esp_err_t err;
  1029. uint32_t btdm_cfg_mask = 0;
  1030. //if all the bt available memory was already released, cannot initialize bluetooth controller
  1031. if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
  1032. return ESP_ERR_INVALID_STATE;
  1033. }
  1034. osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
  1035. if (osi_funcs_p == NULL) {
  1036. return ESP_ERR_NO_MEM;
  1037. }
  1038. memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
  1039. if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
  1040. return ESP_ERR_INVALID_ARG;
  1041. }
  1042. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  1043. return ESP_ERR_INVALID_STATE;
  1044. }
  1045. if (cfg == NULL) {
  1046. return ESP_ERR_INVALID_ARG;
  1047. }
  1048. if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
  1049. || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
  1050. return ESP_ERR_INVALID_ARG;
  1051. }
  1052. //overwrite some parameters
  1053. cfg->bt_max_sync_conn = CONFIG_BTDM_CTRL_BR_EDR_MAX_SYNC_CONN_EFF;
  1054. cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
  1055. if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
  1056. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
  1057. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
  1058. return ESP_ERR_INVALID_ARG;
  1059. }
  1060. ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
  1061. #if CONFIG_SPIRAM_USE_MALLOC
  1062. btdm_queue_table_mux = xSemaphoreCreateMutex();
  1063. if (btdm_queue_table_mux == NULL) {
  1064. return ESP_ERR_NO_MEM;
  1065. }
  1066. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1067. #endif
  1068. s_wakeup_req_sem = semphr_create_wrapper(1, 0);
  1069. if (s_wakeup_req_sem == NULL) {
  1070. err = ESP_ERR_NO_MEM;
  1071. goto error;
  1072. }
  1073. btdm_controller_mem_init();
  1074. periph_module_enable(PERIPH_BT_MODULE);
  1075. #ifdef CONFIG_PM_ENABLE
  1076. s_btdm_allow_light_sleep = false;
  1077. #endif
  1078. // set default sleep clock cycle and its fractional bits
  1079. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1080. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1081. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  1082. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1083. #if CONFIG_BTDM_LPCLK_SEL_EXT_32K_XTAL
  1084. // check whether or not EXT_CRYS is working
  1085. if (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_32K_XTAL) {
  1086. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // set default value
  1087. #ifdef CONFIG_PM_ENABLE
  1088. s_btdm_allow_light_sleep = true;
  1089. #endif
  1090. } else {
  1091. ESP_LOGW(BTDM_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock\n"
  1092. "light sleep mode will not be able to apply when bluetooth is enabled");
  1093. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1094. }
  1095. #else
  1096. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1097. #endif
  1098. bool select_src_ret, set_div_ret;
  1099. if (btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
  1100. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
  1101. set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 2 - 1);
  1102. assert(select_src_ret && set_div_ret);
  1103. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1104. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1105. } else { // btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL32K
  1106. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
  1107. set_div_ret = btdm_lpclk_set_div(0);
  1108. assert(select_src_ret && set_div_ret);
  1109. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1110. btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
  1111. (1000000 >> (15 - RTC_CLK_CAL_FRACT));
  1112. assert(btdm_lpcycle_us != 0);
  1113. }
  1114. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
  1115. #elif CONFIG_BTDM_MODEM_SLEEP_MODE_EVED
  1116. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
  1117. #else
  1118. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1119. #endif
  1120. #ifdef CONFIG_PM_ENABLE
  1121. if (!s_btdm_allow_light_sleep) {
  1122. if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
  1123. goto error;
  1124. }
  1125. }
  1126. if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
  1127. goto error;
  1128. }
  1129. esp_timer_create_args_t create_args = {
  1130. .callback = btdm_slp_tmr_callback,
  1131. .arg = NULL,
  1132. .name = "btSlp"
  1133. };
  1134. if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
  1135. goto error;
  1136. }
  1137. s_pm_lock_acquired = true;
  1138. #endif
  1139. btdm_cfg_mask = btdm_config_mask_load();
  1140. if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) {
  1141. err = ESP_ERR_NO_MEM;
  1142. goto error;
  1143. }
  1144. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1145. return ESP_OK;
  1146. error:
  1147. #ifdef CONFIG_PM_ENABLE
  1148. if (!s_btdm_allow_light_sleep) {
  1149. if (s_light_sleep_pm_lock != NULL) {
  1150. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1151. s_light_sleep_pm_lock = NULL;
  1152. }
  1153. }
  1154. if (s_pm_lock != NULL) {
  1155. esp_pm_lock_delete(s_pm_lock);
  1156. s_pm_lock = NULL;
  1157. }
  1158. if (s_btdm_slp_tmr != NULL) {
  1159. esp_timer_delete(s_btdm_slp_tmr);
  1160. s_btdm_slp_tmr = NULL;
  1161. }
  1162. #endif
  1163. if (s_wakeup_req_sem) {
  1164. semphr_delete_wrapper(s_wakeup_req_sem);
  1165. s_wakeup_req_sem = NULL;
  1166. }
  1167. return err;
  1168. }
  1169. esp_err_t esp_bt_controller_deinit(void)
  1170. {
  1171. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1172. return ESP_ERR_INVALID_STATE;
  1173. }
  1174. btdm_controller_deinit();
  1175. periph_module_disable(PERIPH_BT_MODULE);
  1176. #ifdef CONFIG_PM_ENABLE
  1177. if (!s_btdm_allow_light_sleep) {
  1178. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1179. s_light_sleep_pm_lock = NULL;
  1180. }
  1181. esp_timer_stop(s_btdm_slp_tmr);
  1182. esp_timer_delete(s_btdm_slp_tmr);
  1183. s_btdm_slp_tmr = NULL;
  1184. s_pm_lock_acquired = false;
  1185. #endif
  1186. semphr_delete_wrapper(s_wakeup_req_sem);
  1187. s_wakeup_req_sem = NULL;
  1188. #if CONFIG_SPIRAM_USE_MALLOC
  1189. vSemaphoreDelete(btdm_queue_table_mux);
  1190. btdm_queue_table_mux = NULL;
  1191. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1192. #endif
  1193. free(osi_funcs_p);
  1194. osi_funcs_p = NULL;
  1195. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  1196. btdm_lpcycle_us = 0;
  1197. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1198. return ESP_OK;
  1199. }
  1200. static void bt_shutdown(void)
  1201. {
  1202. esp_err_t ret = ESP_OK;
  1203. ESP_LOGD(BTDM_LOG_TAG, "stop Bluetooth");
  1204. ret = esp_bt_controller_disable();
  1205. if (ESP_OK != ret) {
  1206. ESP_LOGW(BTDM_LOG_TAG, "controller disable ret=%d", ret);
  1207. }
  1208. return;
  1209. }
  1210. esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
  1211. {
  1212. int ret;
  1213. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1214. return ESP_ERR_INVALID_STATE;
  1215. }
  1216. //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
  1217. if (mode != btdm_controller_get_mode()) {
  1218. return ESP_ERR_INVALID_ARG;
  1219. }
  1220. #ifdef CONFIG_PM_ENABLE
  1221. if (!s_btdm_allow_light_sleep) {
  1222. esp_pm_lock_acquire(s_light_sleep_pm_lock);
  1223. }
  1224. esp_pm_lock_acquire(s_pm_lock);
  1225. #endif
  1226. esp_phy_load_cal_and_init(PHY_BT_MODULE);
  1227. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE) {
  1228. //Just register to sleep module, make the modem sleep modules check BT sleep status when sleep enter.
  1229. //Thus, it will prevent WIFI from disabling RF when BT is not in sleep but is using RF.
  1230. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1231. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1232. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  1233. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  1234. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1235. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1236. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1237. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1238. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1239. }
  1240. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1241. btdm_controller_enable_sleep(true);
  1242. }
  1243. // inititalize bluetooth baseband
  1244. btdm_check_and_init_bb();
  1245. ret = btdm_controller_enable(mode);
  1246. if (ret) {
  1247. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1248. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1249. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1250. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1251. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1252. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1253. }
  1254. esp_phy_rf_deinit(PHY_BT_MODULE);
  1255. #ifdef CONFIG_PM_ENABLE
  1256. if (!s_btdm_allow_light_sleep) {
  1257. esp_pm_lock_release(s_light_sleep_pm_lock);
  1258. }
  1259. esp_pm_lock_release(s_pm_lock);
  1260. #endif
  1261. return ESP_ERR_INVALID_STATE;
  1262. }
  1263. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
  1264. ret = esp_register_shutdown_handler(bt_shutdown);
  1265. if (ret != ESP_OK) {
  1266. ESP_LOGW(BTDM_LOG_TAG, "Register shutdown handler failed, ret = 0x%x", ret);
  1267. }
  1268. return ESP_OK;
  1269. }
  1270. esp_err_t esp_bt_controller_disable(void)
  1271. {
  1272. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1273. return ESP_ERR_INVALID_STATE;
  1274. }
  1275. // disable modem sleep and wake up from sleep mode
  1276. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1277. btdm_controller_enable_sleep(false);
  1278. async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA);
  1279. while (!btdm_power_state_active()) {
  1280. ets_delay_us(1000);
  1281. }
  1282. }
  1283. btdm_controller_disable();
  1284. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1285. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1286. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1287. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1288. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1289. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1290. }
  1291. esp_phy_rf_deinit(PHY_BT_MODULE);
  1292. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1293. esp_unregister_shutdown_handler(bt_shutdown);
  1294. #ifdef CONFIG_PM_ENABLE
  1295. if (!s_btdm_allow_light_sleep) {
  1296. esp_pm_lock_release(s_light_sleep_pm_lock);
  1297. }
  1298. esp_pm_lock_release(s_pm_lock);
  1299. #endif
  1300. return ESP_OK;
  1301. }
  1302. esp_bt_controller_status_t esp_bt_controller_get_status(void)
  1303. {
  1304. return btdm_controller_status;
  1305. }
  1306. /* extra functions */
  1307. esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
  1308. {
  1309. if (ble_txpwr_set(power_type, power_level) != 0) {
  1310. return ESP_ERR_INVALID_ARG;
  1311. }
  1312. return ESP_OK;
  1313. }
  1314. esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
  1315. {
  1316. return (esp_power_level_t)ble_txpwr_get(power_type);
  1317. }
  1318. esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
  1319. {
  1320. esp_err_t err;
  1321. int ret;
  1322. ret = bredr_txpwr_set(min_power_level, max_power_level);
  1323. if (ret == 0) {
  1324. err = ESP_OK;
  1325. } else if (ret == -1) {
  1326. err = ESP_ERR_INVALID_ARG;
  1327. } else {
  1328. err = ESP_ERR_INVALID_STATE;
  1329. }
  1330. return err;
  1331. }
  1332. esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
  1333. {
  1334. if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
  1335. return ESP_ERR_INVALID_ARG;
  1336. }
  1337. return ESP_OK;
  1338. }
  1339. esp_err_t esp_bt_sleep_enable (void)
  1340. {
  1341. esp_err_t status;
  1342. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1343. return ESP_ERR_INVALID_STATE;
  1344. }
  1345. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1346. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1347. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1348. btdm_controller_enable_sleep (true);
  1349. status = ESP_OK;
  1350. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1351. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1352. btdm_controller_enable_sleep (true);
  1353. status = ESP_OK;
  1354. } else {
  1355. status = ESP_ERR_NOT_SUPPORTED;
  1356. }
  1357. return status;
  1358. }
  1359. esp_err_t esp_bt_sleep_disable (void)
  1360. {
  1361. esp_err_t status;
  1362. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1363. return ESP_ERR_INVALID_STATE;
  1364. }
  1365. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1366. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1367. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1368. btdm_controller_enable_sleep (false);
  1369. status = ESP_OK;
  1370. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1371. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1372. btdm_controller_enable_sleep (false);
  1373. status = ESP_OK;
  1374. } else {
  1375. status = ESP_ERR_NOT_SUPPORTED;
  1376. }
  1377. return status;
  1378. }
  1379. esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
  1380. {
  1381. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1382. return ESP_ERR_INVALID_STATE;
  1383. }
  1384. bredr_sco_datapath_set(data_path);
  1385. return ESP_OK;
  1386. }
  1387. esp_err_t esp_ble_scan_dupilcate_list_flush(void)
  1388. {
  1389. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1390. return ESP_ERR_INVALID_STATE;
  1391. }
  1392. btdm_controller_scan_duplicate_list_clear();
  1393. return ESP_OK;
  1394. }
  1395. #endif /* CONFIG_BT_ENABLED */