spi_common.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424
  1. // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <string.h>
  15. #include "driver/spi_master.h"
  16. #include "soc/spi_periph.h"
  17. #include "esp32/rom/ets_sys.h"
  18. #include "esp_types.h"
  19. #include "esp_attr.h"
  20. #include "esp_log.h"
  21. #include "esp_err.h"
  22. #include "soc/soc.h"
  23. #include "soc/dport_reg.h"
  24. #include "soc/lldesc.h"
  25. #include "driver/gpio.h"
  26. #include "driver/periph_ctrl.h"
  27. #include "esp_heap_caps.h"
  28. #include "driver/spi_common_internal.h"
  29. #include "stdatomic.h"
  30. #include "hal/spi_hal.h"
  31. static const char *SPI_TAG = "spi";
  32. #define SPI_CHECK(a, str, ret_val) do { \
  33. if (!(a)) { \
  34. ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  35. return (ret_val); \
  36. } \
  37. } while(0)
  38. #define SPI_CHECK_PIN(pin_num, pin_name, check_output) if (check_output) { \
  39. SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
  40. } else { \
  41. SPI_CHECK(GPIO_IS_VALID_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
  42. }
  43. typedef struct spi_device_t spi_device_t;
  44. #define FUNC_GPIO PIN_FUNC_GPIO
  45. #define DMA_CHANNEL_ENABLED(dma_chan) (BIT(dma_chan-1))
  46. //Periph 1 is 'claimed' by SPI flash code.
  47. static atomic_bool spi_periph_claimed[SOC_SPI_PERIPH_NUM] = { ATOMIC_VAR_INIT(true), ATOMIC_VAR_INIT(false), ATOMIC_VAR_INIT(false),
  48. };
  49. static const char* spi_claiming_func[3] = {NULL, NULL, NULL};
  50. static uint8_t spi_dma_chan_enabled = 0;
  51. static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;
  52. //Returns true if this peripheral is successfully claimed, false if otherwise.
  53. bool spicommon_periph_claim(spi_host_device_t host, const char* source)
  54. {
  55. bool false_var = false;
  56. bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &false_var, true);
  57. if (ret) {
  58. spi_claiming_func[host] = source;
  59. periph_module_enable(spi_periph_signal[host].module);
  60. } else {
  61. ESP_EARLY_LOGE(SPI_TAG, "SPI%d already claimed by %s.", host+1, spi_claiming_func[host]);
  62. }
  63. return ret;
  64. }
  65. bool spicommon_periph_in_use(spi_host_device_t host)
  66. {
  67. return atomic_load(&spi_periph_claimed[host]);
  68. }
  69. //Returns true if this peripheral is successfully freed, false if otherwise.
  70. bool spicommon_periph_free(spi_host_device_t host)
  71. {
  72. bool true_var = true;
  73. bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &true_var, false);
  74. if (ret) periph_module_disable(spi_periph_signal[host].module);
  75. return ret;
  76. }
  77. int spicommon_irqsource_for_host(spi_host_device_t host)
  78. {
  79. return spi_periph_signal[host].irq;
  80. }
  81. int spicommon_irqdma_source_for_host(spi_host_device_t host)
  82. {
  83. return spi_periph_signal[host].irq_dma;
  84. }
  85. static inline uint32_t get_dma_periph(int dma_chan)
  86. {
  87. return PERIPH_SPI_DMA_MODULE;
  88. }
  89. bool spicommon_dma_chan_claim (int dma_chan)
  90. {
  91. bool ret = false;
  92. assert(dma_chan >= 1 && dma_chan <= SOC_SPI_DMA_CHAN_NUM);
  93. portENTER_CRITICAL(&spi_dma_spinlock);
  94. if ( !(spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan)) ) {
  95. // get the channel only when it's not claimed yet.
  96. spi_dma_chan_enabled |= DMA_CHANNEL_ENABLED(dma_chan);
  97. ret = true;
  98. }
  99. periph_module_enable(get_dma_periph(dma_chan));
  100. portEXIT_CRITICAL(&spi_dma_spinlock);
  101. return ret;
  102. }
  103. bool spicommon_dma_chan_in_use(int dma_chan)
  104. {
  105. assert(dma_chan==1 || dma_chan == 2);
  106. return spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan);
  107. }
  108. bool spicommon_dma_chan_free(int dma_chan)
  109. {
  110. assert( dma_chan == 1 || dma_chan == 2 );
  111. assert( spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan) );
  112. portENTER_CRITICAL(&spi_dma_spinlock);
  113. spi_dma_chan_enabled &= ~DMA_CHANNEL_ENABLED(dma_chan);
  114. if ( spi_dma_chan_enabled == 0 ) {
  115. //disable the DMA only when all the channels are freed.
  116. periph_module_disable(get_dma_periph(dma_chan));
  117. }
  118. portEXIT_CRITICAL(&spi_dma_spinlock);
  119. return true;
  120. }
  121. static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config)
  122. {
  123. if (bus_config->sclk_io_num>=0 &&
  124. bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) return false;
  125. if (bus_config->quadwp_io_num>=0 &&
  126. bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) return false;
  127. if (bus_config->quadhd_io_num>=0 &&
  128. bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) return false;
  129. if (bus_config->mosi_io_num >= 0 &&
  130. bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) return false;
  131. if (bus_config->miso_io_num>=0 &&
  132. bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) return false;
  133. return true;
  134. }
  135. /*
  136. Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a
  137. bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value,
  138. it should be able to be initialized.
  139. */
  140. esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, uint32_t flags, uint32_t* flags_o)
  141. {
  142. uint32_t temp_flag=0;
  143. bool miso_need_output;
  144. bool mosi_need_output;
  145. bool sclk_need_output;
  146. if ((flags&SPICOMMON_BUSFLAG_MASTER) != 0) {
  147. //initial for master
  148. miso_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
  149. mosi_need_output = true;
  150. sclk_need_output = true;
  151. } else {
  152. //initial for slave
  153. miso_need_output = true;
  154. mosi_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
  155. sclk_need_output = false;
  156. }
  157. const bool wp_need_output = true;
  158. const bool hd_need_output = true;
  159. //check pin capabilities
  160. if (bus_config->sclk_io_num>=0) {
  161. temp_flag |= SPICOMMON_BUSFLAG_SCLK;
  162. SPI_CHECK_PIN(bus_config->sclk_io_num, "sclk", sclk_need_output);
  163. }
  164. if (bus_config->quadwp_io_num>=0) {
  165. SPI_CHECK_PIN(bus_config->quadwp_io_num, "wp", wp_need_output);
  166. }
  167. if (bus_config->quadhd_io_num>=0) {
  168. SPI_CHECK_PIN(bus_config->quadhd_io_num, "hd", hd_need_output);
  169. }
  170. //set flags for QUAD mode according to the existence of wp and hd
  171. if (bus_config->quadhd_io_num >= 0 && bus_config->quadwp_io_num >= 0) temp_flag |= SPICOMMON_BUSFLAG_WPHD;
  172. if (bus_config->mosi_io_num >= 0) {
  173. temp_flag |= SPICOMMON_BUSFLAG_MOSI;
  174. SPI_CHECK_PIN(bus_config->mosi_io_num, "mosi", mosi_need_output);
  175. }
  176. if (bus_config->miso_io_num>=0) {
  177. temp_flag |= SPICOMMON_BUSFLAG_MISO;
  178. SPI_CHECK_PIN(bus_config->miso_io_num, "miso", miso_need_output);
  179. }
  180. //set flags for DUAL mode according to output-capability of MOSI and MISO pins.
  181. if ( (bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) &&
  182. (bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num)) ) {
  183. temp_flag |= SPICOMMON_BUSFLAG_DUAL;
  184. }
  185. //check if the selected pins correspond to the iomux pins of the peripheral
  186. bool use_iomux = bus_uses_iomux_pins(host, bus_config);
  187. if (use_iomux) temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS;
  188. uint32_t missing_flag = flags & ~temp_flag;
  189. missing_flag &= ~SPICOMMON_BUSFLAG_MASTER;//don't check this flag
  190. if (missing_flag != 0) {
  191. //check pins existence
  192. if (missing_flag & SPICOMMON_BUSFLAG_SCLK) ESP_LOGE(SPI_TAG, "sclk pin required.");
  193. if (missing_flag & SPICOMMON_BUSFLAG_MOSI) ESP_LOGE(SPI_TAG, "mosi pin required.");
  194. if (missing_flag & SPICOMMON_BUSFLAG_MISO) ESP_LOGE(SPI_TAG, "miso pin required.");
  195. if (missing_flag & SPICOMMON_BUSFLAG_DUAL) ESP_LOGE(SPI_TAG, "not both mosi and miso output capable");
  196. if (missing_flag & SPICOMMON_BUSFLAG_WPHD) ESP_LOGE(SPI_TAG, "both wp and hd required.");
  197. if (missing_flag & SPICOMMON_BUSFLAG_IOMUX_PINS) ESP_LOGE(SPI_TAG, "not using iomux pins");
  198. SPI_CHECK(missing_flag == 0, "not all required capabilities satisfied.", ESP_ERR_INVALID_ARG);
  199. }
  200. if (use_iomux) {
  201. //All SPI iomux pin selections resolve to 1, so we put that here instead of trying to figure
  202. //out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway.
  203. ESP_LOGD(SPI_TAG, "SPI%d use iomux pins.", host+1);
  204. if (bus_config->mosi_io_num >= 0) {
  205. gpio_iomux_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in);
  206. gpio_iomux_out(bus_config->mosi_io_num, spi_periph_signal[host].func, false);
  207. }
  208. if (bus_config->miso_io_num >= 0) {
  209. gpio_iomux_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in);
  210. gpio_iomux_out(bus_config->miso_io_num, spi_periph_signal[host].func, false);
  211. }
  212. if (bus_config->quadwp_io_num >= 0) {
  213. gpio_iomux_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in);
  214. gpio_iomux_out(bus_config->quadwp_io_num, spi_periph_signal[host].func, false);
  215. }
  216. if (bus_config->quadhd_io_num >= 0) {
  217. gpio_iomux_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in);
  218. gpio_iomux_out(bus_config->quadhd_io_num, spi_periph_signal[host].func, false);
  219. }
  220. if (bus_config->sclk_io_num >= 0) {
  221. gpio_iomux_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in);
  222. gpio_iomux_out(bus_config->sclk_io_num, spi_periph_signal[host].func, false);
  223. }
  224. temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS;
  225. } else {
  226. //Use GPIO matrix
  227. ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host+1);
  228. if (bus_config->mosi_io_num >= 0) {
  229. if (mosi_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
  230. gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT);
  231. gpio_matrix_out(bus_config->mosi_io_num, spi_periph_signal[host].spid_out, false, false);
  232. } else {
  233. gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT);
  234. }
  235. gpio_matrix_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in, false);
  236. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], FUNC_GPIO);
  237. }
  238. if (bus_config->miso_io_num >= 0) {
  239. if (miso_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
  240. gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT);
  241. gpio_matrix_out(bus_config->miso_io_num, spi_periph_signal[host].spiq_out, false, false);
  242. } else {
  243. gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT);
  244. }
  245. gpio_matrix_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in, false);
  246. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], FUNC_GPIO);
  247. }
  248. if (bus_config->quadwp_io_num >= 0) {
  249. gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT);
  250. gpio_matrix_out(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_out, false, false);
  251. gpio_matrix_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in, false);
  252. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], FUNC_GPIO);
  253. }
  254. if (bus_config->quadhd_io_num >= 0) {
  255. gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT);
  256. gpio_matrix_out(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_out, false, false);
  257. gpio_matrix_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in, false);
  258. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], FUNC_GPIO);
  259. }
  260. if (bus_config->sclk_io_num >= 0) {
  261. if (sclk_need_output) {
  262. gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT);
  263. gpio_matrix_out(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_out, false, false);
  264. } else {
  265. gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT);
  266. }
  267. gpio_matrix_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in, false);
  268. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], FUNC_GPIO);
  269. }
  270. }
  271. //Select DMA channel.
  272. DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
  273. if (flags_o) *flags_o = temp_flag;
  274. return ESP_OK;
  275. }
  276. esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg)
  277. {
  278. int pin_array[] = {
  279. bus_cfg->mosi_io_num,
  280. bus_cfg->miso_io_num,
  281. bus_cfg->sclk_io_num,
  282. bus_cfg->quadwp_io_num,
  283. bus_cfg->quadhd_io_num,
  284. };
  285. for (int i = 0; i < sizeof(pin_array)/sizeof(int); i ++) {
  286. const int io = pin_array[i];
  287. if (io >= 0 && GPIO_IS_VALID_GPIO(io)) gpio_reset_pin(io);
  288. }
  289. return ESP_OK;
  290. }
  291. void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix)
  292. {
  293. if (!force_gpio_matrix && cs_io_num == spi_periph_signal[host].spics0_iomux_pin && cs_num == 0) {
  294. //The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define.
  295. gpio_iomux_in(cs_io_num, spi_periph_signal[host].spics_in);
  296. gpio_iomux_out(cs_io_num, spi_periph_signal[host].func, false);
  297. } else {
  298. //Use GPIO matrix
  299. if (GPIO_IS_VALID_OUTPUT_GPIO(cs_io_num)) {
  300. gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT);
  301. gpio_matrix_out(cs_io_num, spi_periph_signal[host].spics_out[cs_num], false, false);
  302. } else {
  303. gpio_set_direction(cs_io_num, GPIO_MODE_INPUT);
  304. }
  305. if (cs_num == 0) gpio_matrix_in(cs_io_num, spi_periph_signal[host].spics_in, false);
  306. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], FUNC_GPIO);
  307. }
  308. }
  309. void spicommon_cs_free_io(int cs_gpio_num)
  310. {
  311. assert(cs_gpio_num>=0 && GPIO_IS_VALID_GPIO(cs_gpio_num));
  312. gpio_reset_pin(cs_gpio_num);
  313. }
  314. bool spicommon_bus_using_iomux(spi_host_device_t host)
  315. {
  316. #define CHECK_IOMUX_PIN(HOST, PIN_NAME) if (GPIO.func_in_sel_cfg[spi_periph_signal[(HOST)].PIN_NAME##_in].sig_in_sel) return false
  317. CHECK_IOMUX_PIN(host, spid);
  318. CHECK_IOMUX_PIN(host, spiq);
  319. CHECK_IOMUX_PIN(host, spiwp);
  320. CHECK_IOMUX_PIN(host, spihd);
  321. return true;
  322. }
  323. /*
  324. Code for workaround for DMA issue in ESP32 v0/v1 silicon
  325. */
  326. static volatile int dmaworkaround_channels_busy[2] = {0, 0};
  327. static dmaworkaround_cb_t dmaworkaround_cb;
  328. static void *dmaworkaround_cb_arg;
  329. static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED;
  330. static int dmaworkaround_waiting_for_chan = 0;
  331. bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg)
  332. {
  333. int otherchan = (dmachan == 1) ? 2 : 1;
  334. bool ret;
  335. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  336. if (dmaworkaround_channels_busy[otherchan-1]) {
  337. //Other channel is busy. Call back when it's done.
  338. dmaworkaround_cb = cb;
  339. dmaworkaround_cb_arg = arg;
  340. dmaworkaround_waiting_for_chan = otherchan;
  341. ret = false;
  342. } else {
  343. //Reset DMA
  344. periph_module_reset( PERIPH_SPI_DMA_MODULE );
  345. ret = true;
  346. }
  347. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  348. return ret;
  349. }
  350. bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress()
  351. {
  352. return (dmaworkaround_waiting_for_chan != 0);
  353. }
  354. void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan)
  355. {
  356. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  357. dmaworkaround_channels_busy[dmachan-1] = 0;
  358. if (dmaworkaround_waiting_for_chan == dmachan) {
  359. //Reset DMA
  360. periph_module_reset( PERIPH_SPI_DMA_MODULE );
  361. dmaworkaround_waiting_for_chan = 0;
  362. //Call callback
  363. dmaworkaround_cb(dmaworkaround_cb_arg);
  364. }
  365. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  366. }
  367. void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan)
  368. {
  369. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  370. dmaworkaround_channels_busy[dmachan-1] = 1;
  371. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  372. }