| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088 |
- // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- /*
- Architecture:
- We can initialize a SPI driver, but we don't talk to the SPI driver itself, we address a device. A device essentially
- is a combination of SPI port and CS pin, plus some information about the specifics of communication to the device
- (timing, command/address length etc). The arbitration between tasks is also in conception of devices.
- A device can work in interrupt mode and polling mode, and a third but
- complicated mode which combines the two modes above:
- 1. Work in the ISR with a set of queues; one per device.
- The idea is that to send something to a SPI device, you allocate a
- transaction descriptor. It contains some information about the transfer
- like the lenghth, address, command etc, plus pointers to transmit and
- receive buffer. The address of this block gets pushed into the transmit
- queue. The SPI driver does its magic, and sends and retrieves the data
- eventually. The data gets written to the receive buffers, if needed the
- transaction descriptor is modified to indicate returned parameters and
- the entire thing goes into the return queue, where whatever software
- initiated the transaction can retrieve it.
- The entire thing is run from the SPI interrupt handler. If SPI is done
- transmitting/receiving but nothing is in the queue, it will not clear the
- SPI interrupt but just disable it by esp_intr_disable. This way, when a
- new thing is sent, pushing the packet into the send queue and re-enabling
- the interrupt (by esp_intr_enable) will trigger the interrupt again, which
- can then take care of the sending.
- 2. Work in the polling mode in the task.
- In this mode we get rid of the ISR, FreeRTOS queue and task switching, the
- task is no longer blocked during a transaction. This increase the cpu
- load, but decrease the interval of SPI transactions. Each time only one
- device (in one task) can send polling transactions, transactions to
- other devices are blocked until the polling transaction of current device
- is done.
- In the polling mode, the queue is not used, all the operations are done
- in the task. The task calls ``spi_device_polling_start`` to setup and start
- a new transaction, then call ``spi_device_polling_end`` to handle the
- return value of the transaction.
- To handle the arbitration among devices, the device "temporarily" acquire
- a bus by the ``device_acquire_bus_internal`` function, which writes
- acquire_cs by CAS operation. Other devices which wants to send polling
- transactions but don't own the bus will block and wait until given the
- semaphore which indicates the ownership of bus.
- In case of the ISR is still sending transactions to other devices, the ISR
- should maintain an ``isr_free`` flag indicating that it's not doing
- transactions. When the bus is acquired, the ISR can only send new
- transactions to the acquiring device. The ISR will automatically disable
- itself and send semaphore to the device if the ISR is free. If the device
- sees the isr_free flag, it can directly start its polling transaction.
- Otherwise it should block and wait for the semaphore from the ISR.
- After the polling transaction, the driver will release the bus. During the
- release of the bus, the driver search all other devices to see whether
- there is any device waiting to acquire the bus, if so, acquire for it and
- send it a semaphore if the device queue is empty, or invoke the ISR for
- it. If all other devices don't need to acquire the bus, but there are
- still transactions in the queues, the ISR will also be invoked.
- To get better polling efficiency, user can call ``spi_device_acquire_bus``
- function, which also calls the ``device_acquire_bus_internal`` function,
- before a series of polling transactions to a device. The bus acquiring and
- task switching before and after the polling transaction will be escaped.
- 3. Mixed mode
- The driver is written under the assumption that polling and interrupt
- transactions are not happening simultaneously. When sending polling
- transactions, it will check whether the ISR is active, which includes the
- case the ISR is sending the interrupt transactions of the acquiring
- device. If the ISR is still working, the routine sending a polling
- transaction will get blocked and wait until the semaphore from the ISR
- which indicates the ISR is free now.
- A fatal case is, a polling transaction is in flight, but the ISR received
- an interrupt transaction. The behavior of the driver is unpredictable,
- which should be strictly forbidden.
- We have two bits to control the interrupt:
- 1. The slave->trans_done bit, which is automatically asserted when a transaction is done.
- This bit is cleared during an interrupt transaction, so that the interrupt
- will be triggered when the transaction is done, or the SW can check the
- bit to see if the transaction is done for polling transactions.
- When no transaction is in-flight, the bit is kept active, so that the SW
- can easily invoke the ISR by enable the interrupt.
- 2. The system interrupt enable/disable, controlled by esp_intr_enable and esp_intr_disable.
- The interrupt is disabled (by the ISR itself) when no interrupt transaction
- is queued. When the bus is not occupied, any task, which queues a
- transaction into the queue, will enable the interrupt to invoke the ISR.
- When the bus is occupied by a device, other device will put off the
- invoking of ISR to the moment when the bus is released. The device
- acquiring the bus can still send interrupt transactions by enable the
- interrupt.
- */
- #include <string.h>
- #include "driver/spi_common_internal.h"
- #include "driver/spi_master.h"
- #include "soc/spi_periph.h"
- #include "esp32/rom/ets_sys.h"
- #include "esp_types.h"
- #include "esp_attr.h"
- #include "esp_intr_alloc.h"
- #include "esp_log.h"
- #include "esp_err.h"
- #include "esp_pm.h"
- #include "freertos/FreeRTOS.h"
- #include "freertos/semphr.h"
- #include "freertos/xtensa_api.h"
- #include "freertos/task.h"
- #include "soc/soc_memory_layout.h"
- #include "esp32/rom/lldesc.h"
- #include "driver/gpio.h"
- #include "esp_heap_caps.h"
- #include "stdatomic.h"
- #include "sdkconfig.h"
- #include "hal/spi_hal.h"
- typedef struct spi_device_t spi_device_t;
- #define NO_CS 3 //Number of CS pins per SPI host
- #ifdef CONFIG_SPI_MASTER_ISR_IN_IRAM
- #define SPI_MASTER_ISR_ATTR IRAM_ATTR
- #else
- #define SPI_MASTER_ISR_ATTR
- #endif
- #ifdef CONFIG_SPI_MASTER_IN_IRAM
- #define SPI_MASTER_ATTR IRAM_ATTR
- #else
- #define SPI_MASTER_ATTR
- #endif
- /// struct to hold private transaction data (like tx and rx buffer for DMA).
- typedef struct {
- spi_transaction_t *trans;
- const uint32_t *buffer_to_send; //equals to tx_data, if SPI_TRANS_USE_RXDATA is applied; otherwise if original buffer wasn't in DMA-capable memory, this gets the address of a temporary buffer that is;
- //otherwise sets to the original buffer or NULL if no buffer is assigned.
- uint32_t *buffer_to_rcv; // similar to buffer_to_send
- } spi_trans_priv_t;
- typedef struct {
- int id;
- _Atomic(spi_device_t*) device[NO_CS];
- intr_handle_t intr;
- spi_hal_context_t hal;
- spi_trans_priv_t cur_trans_buf;
- int cur_cs; //current device doing transaction
- int prev_cs; //last device doing transaction, used to avoid re-configure registers if the device not changed
- atomic_int acquire_cs; //the device acquiring the bus, NO_CS if no one is doing so.
- bool polling; //in process of a polling, avoid of queue new transactions into ISR
- bool isr_free; //the isr is not sending transactions
- bool bus_locked;//the bus is controlled by a device
- uint32_t flags;
- int dma_chan;
- int max_transfer_sz;
- spi_bus_config_t bus_cfg;
- #ifdef CONFIG_PM_ENABLE
- esp_pm_lock_handle_t pm_lock;
- #endif
- } spi_host_t;
- struct spi_device_t {
- int id;
- QueueHandle_t trans_queue;
- QueueHandle_t ret_queue;
- spi_device_interface_config_t cfg;
- spi_hal_timing_conf_t timing_conf;
- spi_host_t *host;
- SemaphoreHandle_t semphr_polling; //semaphore to notify the device it claimed the bus
- bool waiting; //the device is waiting for the exclusive control of the bus
- };
- static spi_host_t *spihost[SOC_SPI_PERIPH_NUM];
- static const char *SPI_TAG = "spi_master";
- #define SPI_CHECK(a, str, ret_val, ...) \
- if (!(a)) { \
- ESP_LOGE(SPI_TAG,"%s(%d): "str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
- return (ret_val); \
- }
- static void spi_intr(void *arg);
- esp_err_t spi_bus_initialize(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan)
- {
- bool spi_chan_claimed, dma_chan_claimed;
- esp_err_t ret = ESP_OK;
- esp_err_t err;
- /* ToDo: remove this when we have flash operations cooperating with this */
- SPI_CHECK(host!=SPI_HOST, "SPI1 is not supported", ESP_ERR_NOT_SUPPORTED);
- SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
- SPI_CHECK( dma_chan >= 0 && dma_chan <= 2, "invalid dma channel", ESP_ERR_INVALID_ARG );
- SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH|ESP_INTR_FLAG_EDGE|ESP_INTR_FLAG_INTRDISABLED))==0, "intr flag not allowed", ESP_ERR_INVALID_ARG);
- #ifndef CONFIG_SPI_MASTER_ISR_IN_IRAM
- SPI_CHECK((bus_config->intr_flags & ESP_INTR_FLAG_IRAM)==0, "ESP_INTR_FLAG_IRAM should be disabled when CONFIG_SPI_MASTER_ISR_IN_IRAM is not set.", ESP_ERR_INVALID_ARG);
- #endif
- spi_chan_claimed=spicommon_periph_claim(host, "spi master");
- SPI_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE);
- if ( dma_chan != 0 ) {
- dma_chan_claimed=spicommon_dma_chan_claim(dma_chan);
- if ( !dma_chan_claimed ) {
- spicommon_periph_free( host );
- SPI_CHECK(false, "dma channel already in use", ESP_ERR_INVALID_STATE);
- }
- }
- // spihost contains atomic variables, which should not be put in PSRAM
- spihost[host] = heap_caps_malloc(sizeof(spi_host_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
- if (spihost[host]==NULL) {
- ret = ESP_ERR_NO_MEM;
- goto cleanup;
- }
- memset(spihost[host], 0, sizeof(spi_host_t));
- memcpy( &spihost[host]->bus_cfg, bus_config, sizeof(spi_bus_config_t));
- #ifdef CONFIG_PM_ENABLE
- err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_master",
- &spihost[host]->pm_lock);
- if (err != ESP_OK) {
- ret = err;
- goto cleanup;
- }
- #endif //CONFIG_PM_ENABLE
- err = spicommon_bus_initialize_io(host, bus_config, dma_chan, SPICOMMON_BUSFLAG_MASTER|bus_config->flags, &spihost[host]->flags);
- if (err != ESP_OK) {
- ret = err;
- goto cleanup;
- }
- int dma_desc_ct=0;
- spihost[host]->dma_chan=dma_chan;
- if (dma_chan == 0) {
- spihost[host]->max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE;
- } else {
- //See how many dma descriptors we need and allocate them
- dma_desc_ct=lldesc_get_required_num(bus_config->max_transfer_sz);
- if (dma_desc_ct==0) dma_desc_ct = 1; //default to 4k when max is not given
- spihost[host]->max_transfer_sz = dma_desc_ct*LLDESC_MAX_NUM_PER_DESC;
- }
- int flags = bus_config->intr_flags | ESP_INTR_FLAG_INTRDISABLED;
- err = esp_intr_alloc(spicommon_irqsource_for_host(host), flags, spi_intr, (void*)spihost[host], &spihost[host]->intr);
- if (err != ESP_OK) {
- ret = err;
- goto cleanup;
- }
- spihost[host]->id = host;
- spihost[host]->cur_cs = NO_CS;
- spihost[host]->prev_cs = NO_CS;
- atomic_store(&spihost[host]->acquire_cs, NO_CS);
- spihost[host]->polling = false;
- spihost[host]->isr_free = true;
- spihost[host]->bus_locked = false;
- spi_hal_init(&spihost[host]->hal, host);
- spihost[host]->hal.dma_enabled = (dma_chan!=0);
- if (dma_desc_ct) {
- spihost[host]->hal.dmadesc_tx=heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
- spihost[host]->hal.dmadesc_rx=heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
- if (!spihost[host]->hal.dmadesc_tx || !spihost[host]->hal.dmadesc_rx) {
- ret = ESP_ERR_NO_MEM;
- goto cleanup;
- }
- }
- spihost[host]->hal.dmadesc_n = dma_desc_ct;
- return ESP_OK;
- cleanup:
- if (spihost[host]) {
- spi_hal_deinit(&spihost[host]->hal);
- #ifdef CONFIG_PM_ENABLE
- if (spihost[host]->pm_lock) {
- esp_pm_lock_delete(spihost[host]->pm_lock);
- }
- #endif
- free(spihost[host]->hal.dmadesc_rx);
- free(spihost[host]->hal.dmadesc_tx);
- }
- free(spihost[host]);
- spihost[host] = NULL;
- spicommon_periph_free(host);
- if (dma_chan != 0) spicommon_dma_chan_free(dma_chan);
- return ret;
- }
- esp_err_t spi_bus_free(spi_host_device_t host)
- {
- int x;
- SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
- SPI_CHECK(spihost[host]!=NULL, "host not in use", ESP_ERR_INVALID_STATE);
- for (x=0; x<NO_CS; x++) {
- SPI_CHECK(atomic_load(&spihost[host]->device[x])==NULL, "not all CSses freed", ESP_ERR_INVALID_STATE);
- }
- spicommon_bus_free_io_cfg(&spihost[host]->bus_cfg);
- if ( spihost[host]->dma_chan > 0 ) {
- spicommon_dma_chan_free ( spihost[host]->dma_chan );
- }
- #ifdef CONFIG_PM_ENABLE
- esp_pm_lock_delete(spihost[host]->pm_lock);
- #endif
- spi_hal_deinit(&spihost[host]->hal);
- free(spihost[host]->hal.dmadesc_rx);
- free(spihost[host]->hal.dmadesc_tx);
- esp_intr_free(spihost[host]->intr);
- spicommon_periph_free(host);
- free(spihost[host]);
- spihost[host]=NULL;
- return ESP_OK;
- }
- void spi_get_timing(bool gpio_is_used, int input_delay_ns, int eff_clk, int* dummy_o, int* cycles_remain_o)
- {
- int timing_dummy;
- int timing_miso_delay;
- spi_hal_cal_timing(eff_clk, gpio_is_used, input_delay_ns, &timing_dummy, &timing_miso_delay);
- if (dummy_o) *dummy_o = timing_dummy;
- if (cycles_remain_o) *cycles_remain_o = timing_miso_delay;
- }
- int spi_get_freq_limit(bool gpio_is_used, int input_delay_ns)
- {
- return spi_hal_get_freq_limit(gpio_is_used, input_delay_ns);
- }
- /*
- Add a device. This allocates a CS line for the device, allocates memory for the device structure and hooks
- up the CS pin to whatever is specified.
- */
- esp_err_t spi_bus_add_device(spi_host_device_t host, const spi_device_interface_config_t *dev_config, spi_device_handle_t *handle)
- {
- int freecs;
- int duty_cycle;
- SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
- SPI_CHECK(spihost[host]!=NULL, "host not initialized", ESP_ERR_INVALID_STATE);
- SPI_CHECK(dev_config->spics_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(dev_config->spics_io_num), "spics pin invalid", ESP_ERR_INVALID_ARG);
- SPI_CHECK(dev_config->clock_speed_hz > 0, "invalid sclk speed", ESP_ERR_INVALID_ARG);
- for (freecs=0; freecs<NO_CS; freecs++) {
- //See if this slot is free; reserve if it is by putting a dummy pointer in the slot. We use an atomic compare&swap to make this thread-safe.
- void* null=NULL;
- if (atomic_compare_exchange_strong(&spihost[host]->device[freecs], &null, (spi_device_t *)1)) break;
- }
- SPI_CHECK(freecs!=NO_CS, "no free cs pins for host", ESP_ERR_NOT_FOUND);
- //The hardware looks like it would support this, but actually setting cs_ena_pretrans when transferring in full
- //duplex mode does absolutely nothing on the ESP32.
- SPI_CHECK( dev_config->cs_ena_pretrans <= 1 || (dev_config->address_bits == 0 && dev_config->command_bits == 0) ||
- (dev_config->flags & SPI_DEVICE_HALFDUPLEX), "In full-duplex mode, only support cs pretrans delay = 1 and without address_bits and command_bits", ESP_ERR_INVALID_ARG);
- duty_cycle = (dev_config->duty_cycle_pos==0) ? 128 : dev_config->duty_cycle_pos;
- int freq;
- spi_hal_context_t *hal = &spihost[host]->hal;
- hal->half_duplex = dev_config->flags & SPI_DEVICE_HALFDUPLEX ? 1 : 0;
- hal->no_compensate = dev_config->flags & SPI_DEVICE_NO_DUMMY ? 1 : 0;
- spi_hal_timing_conf_t temp_timing_conf;
- esp_err_t ret = spi_hal_get_clock_conf(hal, dev_config->clock_speed_hz, duty_cycle,
- !(spihost[host]->flags & SPICOMMON_BUSFLAG_IOMUX_PINS),
- dev_config->input_delay_ns, &freq,
- &temp_timing_conf);
- SPI_CHECK(ret==ESP_OK, "assigned clock speed not supported", ret);
- //Allocate memory for device
- spi_device_t *dev=malloc(sizeof(spi_device_t));
- if (dev==NULL) goto nomem;
- memset(dev, 0, sizeof(spi_device_t));
- atomic_store(&spihost[host]->device[freecs], dev);
- dev->id = freecs;
- dev->waiting = false;
- dev->timing_conf = temp_timing_conf;
- //Allocate queues, set defaults
- dev->trans_queue = xQueueCreate(dev_config->queue_size, sizeof(spi_trans_priv_t));
- dev->ret_queue = xQueueCreate(dev_config->queue_size, sizeof(spi_trans_priv_t));
- dev->semphr_polling = xSemaphoreCreateBinary();
- if (!dev->trans_queue || !dev->ret_queue || !dev->semphr_polling) {
- goto nomem;
- }
- dev->host=spihost[host];
- //We want to save a copy of the dev config in the dev struct.
- memcpy(&dev->cfg, dev_config, sizeof(spi_device_interface_config_t));
- dev->cfg.duty_cycle_pos = duty_cycle;
- // TODO: if we have to change the apb clock among transactions, re-calculate this each time the apb clock lock is acquired.
- //Set CS pin, CS options
- if (dev_config->spics_io_num >= 0) {
- spicommon_cs_initialize(host, dev_config->spics_io_num, freecs, !(spihost[host]->flags&SPICOMMON_BUSFLAG_IOMUX_PINS));
- }
- *handle=dev;
- ESP_LOGD(SPI_TAG, "SPI%d: New device added to CS%d, effective clock: %dkHz", host+1, freecs, freq/1000);
- return ESP_OK;
- nomem:
- if (dev) {
- if (dev->trans_queue) vQueueDelete(dev->trans_queue);
- if (dev->ret_queue) vQueueDelete(dev->ret_queue);
- if (dev->semphr_polling) vSemaphoreDelete(dev->semphr_polling);
- }
- free(dev);
- return ESP_ERR_NO_MEM;
- }
- esp_err_t spi_bus_remove_device(spi_device_handle_t handle)
- {
- int x;
- SPI_CHECK(handle!=NULL, "invalid handle", ESP_ERR_INVALID_ARG);
- //These checks aren't exhaustive; another thread could sneak in a transaction inbetween. These are only here to
- //catch design errors and aren't meant to be triggered during normal operation.
- SPI_CHECK(uxQueueMessagesWaiting(handle->trans_queue)==0, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
- SPI_CHECK(handle->host->cur_cs == NO_CS || atomic_load(&handle->host->device[handle->host->cur_cs])!=handle, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
- SPI_CHECK(uxQueueMessagesWaiting(handle->ret_queue)==0, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
- //return
- int spics_io_num = handle->cfg.spics_io_num;
- if (spics_io_num >= 0) spicommon_cs_free_io(spics_io_num);
- //Kill queues
- vQueueDelete(handle->trans_queue);
- vQueueDelete(handle->ret_queue);
- vSemaphoreDelete(handle->semphr_polling);
- //Remove device from list of csses and free memory
- for (x=0; x<NO_CS; x++) {
- if (atomic_load(&handle->host->device[x]) == handle){
- atomic_store(&handle->host->device[x], NULL);
- if (x == handle->host->prev_cs) handle->host->prev_cs = NO_CS;
- }
- }
- free(handle);
- return ESP_OK;
- }
- int spi_cal_clock(int fapb, int hz, int duty_cycle, uint32_t *reg_o)
- {
- return spi_ll_master_cal_clock(fapb, hz, duty_cycle, reg_o);
- }
- int spi_get_actual_clock(int fapb, int hz, int duty_cycle)
- {
- return spi_hal_master_cal_clock(fapb, hz, duty_cycle);
- }
- // Setup the device-specified configuration registers. Called every time a new
- // transaction is to be sent, but only apply new configurations when the device
- // changes.
- static void SPI_MASTER_ISR_ATTR spi_setup_device(spi_host_t *host, int dev_id)
- {
- //if the configuration is already applied, skip the following.
- if (dev_id == host->prev_cs) {
- return;
- }
- ESP_EARLY_LOGD(SPI_TAG, "SPI device changed from %d to %d", host->prev_cs, dev_id);
- spi_device_t *dev = atomic_load(&host->device[dev_id]);
- spi_hal_context_t *hal = &host->hal;
- hal->mode = dev->cfg.mode;
- hal->tx_lsbfirst = dev->cfg.flags & SPI_DEVICE_TXBIT_LSBFIRST ? 1 : 0;
- hal->rx_lsbfirst = dev->cfg.flags & SPI_DEVICE_RXBIT_LSBFIRST ? 1 : 0;
- hal->sio = dev->cfg.flags & SPI_DEVICE_3WIRE ? 1 : 0;
- hal->cs_setup = dev->cfg.cs_ena_pretrans;
- hal->cs_hold =dev->cfg.cs_ena_posttrans;
- //set hold_time to 0 will not actually append delay to CS
- //set it to 1 since we do need at least one clock of hold time in most cases
- if (hal->cs_hold == 0) hal->cs_hold = 1;
- hal->cs_pin_id = dev_id;
- hal->timing_conf = &dev->timing_conf;
- hal->half_duplex = dev->cfg.flags & SPI_DEVICE_HALFDUPLEX ? 1 : 0;
- #ifdef SOC_SPI_SUPPORT_AS_CS
- hal->as_cs = dev->cfg.flags & SPI_DEVICE_CLK_AS_CS ? 1 : 0;
- #endif
- hal->positive_cs = dev->cfg.flags & SPI_DEVICE_POSITIVE_CS ? 1 : 0;
- hal->no_compensate = dev->cfg.flags & SPI_DEVICE_NO_DUMMY ? 1 : 0;
- spi_hal_setup_device(hal);
- //Record the device just configured to save time for next time
- host->prev_cs = dev_id;
- }
- /*-----------------------------------------------------------------------------
- Arbitration Functions
- -----------------------------------------------------------------------------*/
- static inline void spi_isr_invoke(spi_device_t *dev)
- {
- int acquire_cs = atomic_load(&dev->host->acquire_cs);
- if (acquire_cs == dev->id || acquire_cs == NO_CS) {
- esp_intr_enable(dev->host->intr);
- }
- //otherwise wait for bus release to invoke
- }
- /* This function try to race for the arbitration between devices.
- * Even if this returns successfully, the ISR may be still running.
- * Call device_wait_for_isr_idle to make sure the ISR is done.
- */
- static SPI_MASTER_ISR_ATTR esp_err_t device_acquire_bus_internal(spi_device_t *handle, TickType_t wait)
- {
- spi_host_t *host = handle->host;
- SPI_CHECK(wait==portMAX_DELAY, "acquire finite time not supported now.", ESP_ERR_INVALID_ARG);
- if (atomic_load(&host->acquire_cs) == handle->id) {
- // Quickly skip if the bus is already acquired.
- // Usually this is only when the bus is locked.
- assert(host->bus_locked);
- return ESP_OK;
- } else {
- // Declare we are waiting for the bus so that if we get blocked later, other device or the ISR will yield to us after their using.
- handle->waiting = true;
- // Clear the semaphore before checking
- xSemaphoreTake(handle->semphr_polling, 0);
- int no_cs = NO_CS;
- atomic_compare_exchange_weak(&host->acquire_cs, &no_cs, handle->id);
- if (atomic_load(&host->acquire_cs) != handle->id) {
- //block until the bus is acquired (help by other task)
- BaseType_t ret = xSemaphoreTake(handle->semphr_polling, wait);
- //TODO: add timeout handling here.
- if (ret == pdFALSE) return ESP_ERR_TIMEOUT;
- }
- handle->waiting = false;
- }
- return ESP_OK;
- }
- /* This function check for whether the ISR is done, if not, block until semaphore given.
- */
- static inline SPI_MASTER_ISR_ATTR esp_err_t device_wait_for_isr_idle(spi_device_t *handle, TickType_t wait)
- {
- //quickly skip if the isr is already free
- if (!handle->host->isr_free) {
- // Clear the semaphore before checking
- xSemaphoreTake(handle->semphr_polling, 0);
- if (!handle->host->isr_free) {
- //block until the the isr is free and give us the semaphore
- BaseType_t ret = xSemaphoreTake(handle->semphr_polling, wait);
- //TODO: add timeout handling here.
- if (ret == pdFALSE) return ESP_ERR_TIMEOUT;
- }
- }
- return ESP_OK;
- }
- /* This function release the bus acquired by device_acquire_internal.
- And it also tries to help other device to acquire the bus.
- If the bus acquring is not needed, it goes through all device queues to see whether to invoke the ISR
- */
- static SPI_MASTER_ISR_ATTR void device_release_bus_internal(spi_host_t *host)
- {
- //release the bus
- atomic_store(&host->acquire_cs, NO_CS);
- //first try to restore the acquiring device
- for (int i = 0; i < NO_CS; i++) {
- //search for all registered devices
- spi_device_t* dev = atomic_load(&host->device[i]);
- if (dev && dev->waiting) {
- int no_cs = NO_CS;
- atomic_compare_exchange_weak(&host->acquire_cs, &no_cs, i);
- if (atomic_load(&host->acquire_cs) == i) {
- // Success to acquire for new device
- BaseType_t ret = uxQueueMessagesWaiting(dev->trans_queue);
- if (ret > 0) {
- // If there are transactions in the queue, the ISR should be invoked first
- // Resume the interrupt to send the task a signal
- spi_isr_invoke(dev);
- } else {
- // Otherwise resume the task directly.
- xSemaphoreGive(dev->semphr_polling);
- }
- }
- return;
- }
- }
- //if no devices waiting, searching in device queues to see whether to recover the ISR
- for( int i = 0; i < NO_CS; i++) {
- spi_device_t *dev = atomic_load(&host->device[i]);
- if (dev == NULL) continue;
- BaseType_t ret = uxQueueMessagesWaiting(dev->trans_queue);
- if ( ret != 0) {
- spi_isr_invoke(dev);
- return;
- }
- }
- }
- static inline SPI_MASTER_ISR_ATTR bool device_is_polling(spi_device_t *handle)
- {
- return atomic_load(&handle->host->acquire_cs) == handle->id && handle->host->polling;
- }
- /*-----------------------------------------------------------------------------
- Working Functions
- -----------------------------------------------------------------------------*/
- // The function is called to send a new transaction, in ISR or in the task.
- // Setup the transaction-specified registers and linked-list used by the DMA (or FIFO if DMA is not used)
- static void SPI_MASTER_ISR_ATTR spi_new_trans(spi_device_t *dev, spi_trans_priv_t *trans_buf, spi_hal_context_t *hal)
- {
- spi_transaction_t *trans = NULL;
- spi_host_t *host = dev->host;
- int dev_id = dev->id;
- trans = trans_buf->trans;
- host->cur_cs = dev_id;
- //Reconfigure according to device settings, the function only has effect when the dev_id is changed.
- spi_setup_device(host, dev_id);
- hal->tx_bitlen = trans->length;
- hal->rx_bitlen = trans->rxlength;
- hal->rcv_buffer = (uint8_t*)host->cur_trans_buf.buffer_to_rcv;
- hal->send_buffer = (uint8_t*)host->cur_trans_buf.buffer_to_send;
- hal->cmd = trans->cmd;
- hal->addr = trans->addr;
- //Set up QIO/DIO if needed
- hal->io_mode = (trans->flags & SPI_TRANS_MODE_DIO ?
- (trans->flags & SPI_TRANS_MODE_DIOQIO_ADDR ? SPI_LL_IO_MODE_DIO : SPI_LL_IO_MODE_DUAL) :
- (trans->flags & SPI_TRANS_MODE_QIO ?
- (trans->flags & SPI_TRANS_MODE_DIOQIO_ADDR ? SPI_LL_IO_MODE_QIO : SPI_LL_IO_MODE_QUAD) :
- SPI_LL_IO_MODE_NORMAL
- ));
- hal->tx_bitlen = trans->length;
- hal->rx_bitlen = trans->rxlength;
- if (trans->flags & SPI_TRANS_VARIABLE_CMD) {
- hal->cmd_bits = ((spi_transaction_ext_t *)trans)->command_bits;
- } else {
- hal->cmd_bits = dev->cfg.command_bits;
- }
- if (trans->flags & SPI_TRANS_VARIABLE_ADDR) {
- hal->addr_bits = ((spi_transaction_ext_t *)trans)->address_bits;
- } else {
- hal->addr_bits = dev->cfg.address_bits;
- }
- if (trans->flags & SPI_TRANS_VARIABLE_DUMMY) {
- hal->dummy_bits = ((spi_transaction_ext_t *)trans)->dummy_bits;
- } else {
- hal->dummy_bits = dev->cfg.dummy_bits;
- }
- spi_hal_setup_trans(hal);
- spi_hal_prepare_data(hal);
- //Call pre-transmission callback, if any
- if (dev->cfg.pre_cb) dev->cfg.pre_cb(trans);
- //Kick off transfer
- spi_hal_user_start(hal);
- }
- // The function is called when a transaction is done, in ISR or in the task.
- // Fetch the data from FIFO and call the ``post_cb``.
- static void SPI_MASTER_ISR_ATTR spi_post_trans(spi_host_t *host)
- {
- spi_transaction_t *cur_trans = host->cur_trans_buf.trans;
- spi_hal_fetch_result(&host->hal);
- //Call post-transaction callback, if any
- spi_device_t* dev = atomic_load(&host->device[host->cur_cs]);
- if (dev->cfg.post_cb) dev->cfg.post_cb(cur_trans);
- host->cur_cs = NO_CS;
- }
- // This is run in interrupt context.
- static void SPI_MASTER_ISR_ATTR spi_intr(void *arg)
- {
- int i;
- BaseType_t r;
- BaseType_t do_yield = pdFALSE;
- spi_host_t *host = (spi_host_t *)arg;
- assert(spi_hal_usr_is_done(&host->hal));
- /*------------ deal with the in-flight transaction -----------------*/
- if (host->cur_cs != NO_CS) {
- //Okay, transaction is done.
- const int cs = host->cur_cs;
- //Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset.
- if (host->dma_chan) {
- spicommon_dmaworkaround_idle(host->dma_chan);
- }
- //cur_cs is changed to NO_CS here
- spi_post_trans(host);
- //Return transaction descriptor.
- xQueueSendFromISR(atomic_load(&host->device[cs])->ret_queue, &host->cur_trans_buf, &do_yield);
- #ifdef CONFIG_PM_ENABLE
- //Release APB frequency lock
- esp_pm_lock_release(host->pm_lock);
- #endif
- }
- /*------------ new transaction starts here ------------------*/
- assert(host->cur_cs == NO_CS);
- // Clear isr_free before the checking of acquire_cs so that the task will always block if we find the bus is not acquired.
- // Small possiblility that the task is blocked but we find the bus is acquired.
- host->isr_free = false;
- /* When the bus is not occupied, the task uses esp_intr_enable to inform the ISR there's new transaction.
- * If the queue is empty, we disable the system interrupt.
- * We disable this first, to avoid the conflict when the task enable and the ISR disable at the same time
- * If the transaction is sent (queue not empty), we will re-ebale it (see below).
- */
- esp_intr_disable( host->intr );
- int acquire_cs = atomic_load(&host->acquire_cs);
- if (acquire_cs != NO_CS) {
- // Only look in the queue of the occupying device.
- i = acquire_cs;
- spi_device_t* dev = atomic_load(&host->device[i]);
- assert(dev);
- r = xQueueReceiveFromISR(dev->trans_queue, &host->cur_trans_buf, &do_yield);
- // If the Queue is empty, skip the sending by setting i=NO_CS
- // Otherwise i is kept as is and the transaction will be sent.
- if (!r) {
- // Set the free to true before resume the task
- host->isr_free = true;
- xSemaphoreGiveFromISR(dev->semphr_polling, &do_yield);
- i = NO_CS;
- }
- } else {
- //Go through all device queues to find a transaction to send
- //ToDo: This is a stupidly simple low-cs-first priority scheme. Make this configurable somehow. - JD
- for (i = 0; i < NO_CS; i++) {
- spi_device_t* dev = atomic_load(&host->device[i]);
- if (dev) {
- r = xQueueReceiveFromISR(dev->trans_queue, &host->cur_trans_buf, &do_yield);
- //Stop looking if we have a transaction to send.
- if (r) break;
- }
- }
- if (i==NO_CS) {
- host->isr_free = true;
- }
- }
- // Actually send the transaction
- if (i != NO_CS) {
- spi_trans_priv_t *const cur_trans_buf = &host->cur_trans_buf;
- if (host->dma_chan != 0 && (cur_trans_buf->buffer_to_rcv || cur_trans_buf->buffer_to_send)) {
- //mark channel as active, so that the DMA will not be reset by the slave
- spicommon_dmaworkaround_transfer_active(host->dma_chan);
- }
- spi_new_trans(atomic_load(&host->device[i]), cur_trans_buf, (&host->hal));
- //re-enable interrupt disabled above
- esp_intr_enable(host->intr);
- }
- if (do_yield) portYIELD_FROM_ISR();
- }
- static SPI_MASTER_ISR_ATTR esp_err_t check_trans_valid(spi_device_handle_t handle, spi_transaction_t *trans_desc)
- {
- SPI_CHECK(handle!=NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
- spi_host_t *host = handle->host;
- //check transmission length
- SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_RXDATA)==0 ||trans_desc->rxlength <= 32, "rxdata transfer > 32 bits without configured DMA", ESP_ERR_INVALID_ARG);
- SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_TXDATA)==0 ||trans_desc->length <= 32, "txdata transfer > 32 bits without configured DMA", ESP_ERR_INVALID_ARG);
- SPI_CHECK(trans_desc->length <= handle->host->max_transfer_sz*8, "txdata transfer > host maximum", ESP_ERR_INVALID_ARG);
- SPI_CHECK(trans_desc->rxlength <= handle->host->max_transfer_sz*8, "rxdata transfer > host maximum", ESP_ERR_INVALID_ARG);
- SPI_CHECK((handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || trans_desc->rxlength <= trans_desc->length, "rx length > tx length in full duplex mode", ESP_ERR_INVALID_ARG);
- //check working mode
- SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (handle->cfg.flags & SPI_DEVICE_3WIRE)), "incompatible iface params", ESP_ERR_INVALID_ARG);
- SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (!(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX))), "incompatible iface params", ESP_ERR_INVALID_ARG);
- SPI_CHECK( !(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || host->dma_chan == 0 || !(trans_desc->flags & SPI_TRANS_USE_RXDATA || trans_desc->rx_buffer != NULL)
- || !(trans_desc->flags & SPI_TRANS_USE_TXDATA || trans_desc->tx_buffer!=NULL), "SPI half duplex mode does not support using DMA with both MOSI and MISO phases.", ESP_ERR_INVALID_ARG );
- //MOSI phase is skipped only when both tx_buffer and SPI_TRANS_USE_TXDATA are not set.
- SPI_CHECK(trans_desc->length != 0 || (trans_desc->tx_buffer == NULL && !(trans_desc->flags & SPI_TRANS_USE_TXDATA)),
- "trans tx_buffer should be NULL and SPI_TRANS_USE_TXDATA should be cleared to skip MOSI phase.", ESP_ERR_INVALID_ARG);
- //MISO phase is skipped only when both rx_buffer and SPI_TRANS_USE_RXDATA are not set.
- //If set rxlength=0 in full_duplex mode, it will be automatically set to length
- SPI_CHECK(!(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || trans_desc->rxlength != 0 ||
- (trans_desc->rx_buffer == NULL && ((trans_desc->flags & SPI_TRANS_USE_RXDATA)==0)),
- "trans rx_buffer should be NULL and SPI_TRANS_USE_RXDATA should be cleared to skip MISO phase.", ESP_ERR_INVALID_ARG);
- //In Full duplex mode, default rxlength to be the same as length, if not filled in.
- // set rxlength to length is ok, even when rx buffer=NULL
- if (trans_desc->rxlength==0 && !(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX)) {
- trans_desc->rxlength=trans_desc->length;
- }
- return ESP_OK;
- }
- static SPI_MASTER_ISR_ATTR void uninstall_priv_desc(spi_trans_priv_t* trans_buf)
- {
- spi_transaction_t *trans_desc = trans_buf->trans;
- if ((void *)trans_buf->buffer_to_send != &trans_desc->tx_data[0] &&
- trans_buf->buffer_to_send != trans_desc->tx_buffer) {
- free((void *)trans_buf->buffer_to_send); //force free, ignore const
- }
- //copy data from temporary DMA-capable buffer back to IRAM buffer and free the temporary one.
- if ((void *)trans_buf->buffer_to_rcv != &trans_desc->rx_data[0] &&
- trans_buf->buffer_to_rcv != trans_desc->rx_buffer) {
- if (trans_desc->flags & SPI_TRANS_USE_RXDATA) {
- memcpy((uint8_t *) & trans_desc->rx_data[0], trans_buf->buffer_to_rcv, (trans_desc->rxlength + 7) / 8);
- } else {
- memcpy(trans_desc->rx_buffer, trans_buf->buffer_to_rcv, (trans_desc->rxlength + 7) / 8);
- }
- free(trans_buf->buffer_to_rcv);
- }
- }
- static SPI_MASTER_ISR_ATTR esp_err_t setup_priv_desc(spi_transaction_t *trans_desc, spi_trans_priv_t* new_desc, bool isdma)
- {
- *new_desc = (spi_trans_priv_t) { .trans = trans_desc, };
- // rx memory assign
- uint32_t* rcv_ptr;
- if ( trans_desc->flags & SPI_TRANS_USE_RXDATA ) {
- rcv_ptr = (uint32_t *)&trans_desc->rx_data[0];
- } else {
- //if not use RXDATA neither rx_buffer, buffer_to_rcv assigned to NULL
- rcv_ptr = trans_desc->rx_buffer;
- }
- if (rcv_ptr && isdma && (!esp_ptr_dma_capable(rcv_ptr) || ((int)rcv_ptr % 4 != 0))) {
- //if rxbuf in the desc not DMA-capable, malloc a new one. The rx buffer need to be length of multiples of 32 bits to avoid heap corruption.
- ESP_LOGI( SPI_TAG, "Allocate RX buffer for DMA" );
- rcv_ptr = heap_caps_malloc((trans_desc->rxlength + 31) / 8, MALLOC_CAP_DMA);
- if (rcv_ptr == NULL) goto clean_up;
- }
- new_desc->buffer_to_rcv = rcv_ptr;
- // tx memory assign
- const uint32_t *send_ptr;
- if ( trans_desc->flags & SPI_TRANS_USE_TXDATA ) {
- send_ptr = (uint32_t *)&trans_desc->tx_data[0];
- } else {
- //if not use TXDATA neither tx_buffer, tx data assigned to NULL
- send_ptr = trans_desc->tx_buffer ;
- }
- if (send_ptr && isdma && !esp_ptr_dma_capable( send_ptr )) {
- //if txbuf in the desc not DMA-capable, malloc a new one
- ESP_LOGD( SPI_TAG, "Allocate TX buffer for DMA" );
- uint32_t *temp = heap_caps_malloc((trans_desc->length + 7) / 8, MALLOC_CAP_DMA);
- if (temp == NULL) goto clean_up;
- memcpy( temp, send_ptr, (trans_desc->length + 7) / 8 );
- send_ptr = temp;
- }
- new_desc->buffer_to_send = send_ptr;
- return ESP_OK;
- clean_up:
- uninstall_priv_desc(new_desc);
- return ESP_ERR_NO_MEM;
- }
- esp_err_t SPI_MASTER_ATTR spi_device_queue_trans(spi_device_handle_t handle, spi_transaction_t *trans_desc, TickType_t ticks_to_wait)
- {
- esp_err_t ret = check_trans_valid(handle, trans_desc);
- if (ret != ESP_OK) return ret;
- spi_host_t *host = handle->host;
- SPI_CHECK( !device_is_polling(handle), "Cannot queue new transaction while previous polling transaction is not terminated.", ESP_ERR_INVALID_STATE );
- spi_trans_priv_t trans_buf;
- ret = setup_priv_desc(trans_desc, &trans_buf, (host->dma_chan!=0));
- if (ret != ESP_OK) return ret;
- #ifdef CONFIG_PM_ENABLE
- esp_pm_lock_acquire(host->pm_lock);
- #endif
- //Send to queue and invoke the ISR.
- BaseType_t r = xQueueSend(handle->trans_queue, (void *)&trans_buf, ticks_to_wait);
- if (!r) {
- ret = ESP_ERR_TIMEOUT;
- #ifdef CONFIG_PM_ENABLE
- //Release APB frequency lock
- esp_pm_lock_release(host->pm_lock);
- #endif
- goto clean_up;
- }
- spi_isr_invoke(handle);
- return ESP_OK;
- clean_up:
- uninstall_priv_desc(&trans_buf);
- return ret;
- }
- esp_err_t SPI_MASTER_ATTR spi_device_get_trans_result(spi_device_handle_t handle, spi_transaction_t **trans_desc, TickType_t ticks_to_wait)
- {
- BaseType_t r;
- spi_trans_priv_t trans_buf;
- SPI_CHECK(handle!=NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
- //use the interrupt, block until return
- r=xQueueReceive(handle->ret_queue, (void*)&trans_buf, ticks_to_wait);
- if (!r) {
- // The memory occupied by rx and tx DMA buffer destroyed only when receiving from the queue (transaction finished).
- // If timeout, wait and retry.
- // Every in-flight transaction request occupies internal memory as DMA buffer if needed.
- return ESP_ERR_TIMEOUT;
- }
- //release temporary buffers
- uninstall_priv_desc(&trans_buf);
- (*trans_desc) = trans_buf.trans;
- return ESP_OK;
- }
- //Porcelain to do one blocking transmission.
- esp_err_t SPI_MASTER_ATTR spi_device_transmit(spi_device_handle_t handle, spi_transaction_t *trans_desc)
- {
- esp_err_t ret;
- spi_transaction_t *ret_trans;
- //ToDo: check if any spi transfers in flight
- ret = spi_device_queue_trans(handle, trans_desc, portMAX_DELAY);
- if (ret != ESP_OK) return ret;
- ret = spi_device_get_trans_result(handle, &ret_trans, portMAX_DELAY);
- if (ret != ESP_OK) return ret;
- assert(ret_trans == trans_desc);
- return ESP_OK;
- }
- esp_err_t SPI_MASTER_ATTR spi_device_acquire_bus(spi_device_t *device, TickType_t wait)
- {
- spi_host_t *const host = device->host;
- SPI_CHECK(wait==portMAX_DELAY, "acquire finite time not supported now.", ESP_ERR_INVALID_ARG);
- SPI_CHECK( !device_is_polling(device), "Cannot acquire bus when a polling transaction is in progress.", ESP_ERR_INVALID_STATE );
- esp_err_t ret = device_acquire_bus_internal(device, portMAX_DELAY);
- if (ret != ESP_OK) return ret;
- ret = device_wait_for_isr_idle(device, portMAX_DELAY);
- if (ret != ESP_OK) return ret;
- device->host->bus_locked = true;
- ESP_LOGD(SPI_TAG, "device%d acquired the bus", device->id);
- #ifdef CONFIG_PM_ENABLE
- // though we don't suggest to block the task before ``release_bus``, still allow doing so.
- // this keeps the spi clock at 80MHz even if all tasks are blocked
- esp_pm_lock_acquire(device->host->pm_lock);
- #endif
- //configure the device so that we don't need to do it again in the following transactions
- spi_setup_device(host, device->id);
- //the DMA is also occupied by the device, all the slave devices that using DMA should wait until bus released.
- if (host->dma_chan != 0) {
- spicommon_dmaworkaround_transfer_active(host->dma_chan);
- }
- return ESP_OK;
- }
- // This function restore configurations required in the non-polling mode
- void SPI_MASTER_ATTR spi_device_release_bus(spi_device_t *dev)
- {
- spi_host_t *host = dev->host;
- if (device_is_polling(dev)){
- ESP_LOGE(SPI_TAG, "Cannot release bus when a polling transaction is in progress.");
- assert(0);
- }
- if (host->dma_chan != 0) {
- spicommon_dmaworkaround_idle(host->dma_chan);
- }
- //Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset.
- //allow clock to be lower than 80MHz when all tasks blocked
- #ifdef CONFIG_PM_ENABLE
- //Release APB frequency lock
- esp_pm_lock_release(host->pm_lock);
- #endif
- ESP_LOGD(SPI_TAG, "device%d release bus", dev->id);
- dev->host->bus_locked = false;
- device_release_bus_internal(dev->host);
- }
- esp_err_t SPI_MASTER_ISR_ATTR spi_device_polling_start(spi_device_handle_t handle, spi_transaction_t *trans_desc, TickType_t ticks_to_wait)
- {
- esp_err_t ret;
- SPI_CHECK(ticks_to_wait == portMAX_DELAY, "currently timeout is not available for polling transactions", ESP_ERR_INVALID_ARG);
- spi_host_t *host = handle->host;
- ret = check_trans_valid(handle, trans_desc);
- if (ret!=ESP_OK) return ret;
- SPI_CHECK( !device_is_polling(handle), "Cannot send polling transaction while the previous polling transaction is not terminated.", ESP_ERR_INVALID_STATE );
- ret = setup_priv_desc(trans_desc, &host->cur_trans_buf, (handle->host->dma_chan!=0));
- if (ret!=ESP_OK) return ret;
- device_acquire_bus_internal(handle, portMAX_DELAY);
- device_wait_for_isr_idle(handle, portMAX_DELAY);
- assert(atomic_load(&host->acquire_cs) == handle->id);
- assert(host->isr_free);
- //Polling, no interrupt is used.
- host->polling = true;
- ESP_LOGV(SPI_TAG, "polling trans");
- spi_new_trans(handle, &host->cur_trans_buf, (&host->hal));
- return ESP_OK;
- }
- esp_err_t SPI_MASTER_ISR_ATTR spi_device_polling_end(spi_device_handle_t handle, TickType_t ticks_to_wait)
- {
- SPI_CHECK(handle != NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
- spi_host_t *host = handle->host;
- //if (host->acquire_cs == handle->id && host->polling) {
- assert(host->cur_cs == atomic_load(&host->acquire_cs));
- TickType_t start = xTaskGetTickCount();
- while (!spi_hal_usr_is_done(&host->hal)) {
- TickType_t end = xTaskGetTickCount();
- if (end - start > ticks_to_wait) {
- return ESP_ERR_TIMEOUT;
- }
- }
- ESP_LOGV(SPI_TAG, "polling trans done");
- //deal with the in-flight transaction
- spi_post_trans(host);
- //release temporary buffers
- uninstall_priv_desc(&host->cur_trans_buf);
- host->polling = false;
- if (!host->bus_locked) {
- device_release_bus_internal(host);
- }
- return ESP_OK;
- }
- esp_err_t SPI_MASTER_ISR_ATTR spi_device_polling_transmit(spi_device_handle_t handle, spi_transaction_t* trans_desc)
- {
- esp_err_t ret;
- ret = spi_device_polling_start(handle, trans_desc, portMAX_DELAY);
- if (ret != ESP_OK) return ret;
- ret = spi_device_polling_end(handle, portMAX_DELAY);
- if (ret != ESP_OK) return ret;
- return ESP_OK;
- }
|