test_spi_master.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223
  1. /*
  2. Tests for the spi_master device driver
  3. */
  4. #include <esp_types.h>
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <malloc.h>
  8. #include <string.h>
  9. #include "esp32/rom/ets_sys.h"
  10. #include "freertos/FreeRTOS.h"
  11. #include "freertos/task.h"
  12. #include "freertos/semphr.h"
  13. #include "freertos/queue.h"
  14. #include "freertos/xtensa_api.h"
  15. #include "unity.h"
  16. #include "driver/spi_master.h"
  17. #include "driver/spi_slave.h"
  18. #include "esp_heap_caps.h"
  19. #include "esp_log.h"
  20. #include "soc/spi_periph.h"
  21. #include "test_utils.h"
  22. #include "test/test_common_spi.h"
  23. #include "soc/gpio_periph.h"
  24. #include "sdkconfig.h"
  25. #include "../cache_utils.h"
  26. #include "soc/soc_memory_layout.h"
  27. #include "driver/spi_common_internal.h"
  28. const static char TAG[] = "test_spi";
  29. static void check_spi_pre_n_for(int clk, int pre, int n)
  30. {
  31. esp_err_t ret;
  32. spi_device_handle_t handle;
  33. spi_device_interface_config_t devcfg={
  34. .command_bits=0,
  35. .address_bits=0,
  36. .dummy_bits=0,
  37. .clock_speed_hz=clk,
  38. .duty_cycle_pos=128,
  39. .mode=0,
  40. .spics_io_num=21,
  41. .queue_size=3
  42. };
  43. char sendbuf[16]="";
  44. spi_transaction_t t;
  45. memset(&t, 0, sizeof(t));
  46. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle);
  47. TEST_ASSERT(ret==ESP_OK);
  48. t.length=16*8;
  49. t.tx_buffer=sendbuf;
  50. ret=spi_device_transmit(handle, &t);
  51. printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, SPI2.clock.clkdiv_pre+1, SPI2.clock.clkcnt_n+1);
  52. TEST_ASSERT(SPI2.clock.clkcnt_n+1==n);
  53. TEST_ASSERT(SPI2.clock.clkdiv_pre+1==pre);
  54. ret=spi_bus_remove_device(handle);
  55. TEST_ASSERT(ret==ESP_OK);
  56. }
  57. TEST_CASE("SPI Master clockdiv calculation routines", "[spi]")
  58. {
  59. spi_bus_config_t buscfg={
  60. .mosi_io_num=4,
  61. .miso_io_num=26,
  62. .sclk_io_num=25,
  63. .quadwp_io_num=-1,
  64. .quadhd_io_num=-1
  65. };
  66. esp_err_t ret;
  67. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1);
  68. TEST_ASSERT(ret==ESP_OK);
  69. check_spi_pre_n_for(26000000, 1, 3);
  70. check_spi_pre_n_for(20000000, 1, 4);
  71. check_spi_pre_n_for(8000000, 1, 10);
  72. check_spi_pre_n_for(800000, 2, 50);
  73. check_spi_pre_n_for(100000, 16, 50);
  74. check_spi_pre_n_for(333333, 4, 60);
  75. check_spi_pre_n_for(900000, 2, 44);
  76. check_spi_pre_n_for(1, 8192, 64); //Actually should generate the minimum clock speed, 152Hz
  77. check_spi_pre_n_for(26000000, 1, 3);
  78. ret=spi_bus_free(TEST_SPI_HOST);
  79. TEST_ASSERT(ret==ESP_OK);
  80. }
  81. static spi_device_handle_t setup_spi_bus(int clkspeed, bool dma) {
  82. spi_bus_config_t buscfg={
  83. .mosi_io_num=26,
  84. .miso_io_num=26,
  85. .sclk_io_num=25,
  86. .quadwp_io_num=-1,
  87. .quadhd_io_num=-1,
  88. .max_transfer_sz=4096*3
  89. };
  90. spi_device_interface_config_t devcfg={
  91. .command_bits=0,
  92. .address_bits=0,
  93. .dummy_bits=0,
  94. .clock_speed_hz=clkspeed,
  95. .duty_cycle_pos=128,
  96. .mode=0,
  97. .spics_io_num=21,
  98. .queue_size=3,
  99. };
  100. esp_err_t ret;
  101. spi_device_handle_t handle;
  102. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, dma?1:0);
  103. TEST_ASSERT(ret==ESP_OK);
  104. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle);
  105. TEST_ASSERT(ret==ESP_OK);
  106. //connect MOSI to two devices breaks the output, fix it.
  107. spitest_gpio_output_sel(26, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  108. printf("Bus/dev inited.\n");
  109. return handle;
  110. }
  111. static int spi_test(spi_device_handle_t handle, int num_bytes) {
  112. esp_err_t ret;
  113. int x;
  114. bool success = true;
  115. srand(num_bytes);
  116. char *sendbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA);
  117. char *recvbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA);
  118. for (x=0; x<num_bytes; x++) {
  119. sendbuf[x]=rand()&0xff;
  120. recvbuf[x]=0x55;
  121. }
  122. spi_transaction_t t;
  123. memset(&t, 0, sizeof(t));
  124. t.length=num_bytes*8;
  125. t.tx_buffer=sendbuf;
  126. t.rx_buffer=recvbuf;
  127. t.addr=0xA00000000000000FL;
  128. t.cmd=0x55;
  129. printf("Transmitting %d bytes...\n", num_bytes);
  130. ret=spi_device_transmit(handle, &t);
  131. TEST_ASSERT(ret==ESP_OK);
  132. srand(num_bytes);
  133. for (x=0; x<num_bytes; x++) {
  134. if (sendbuf[x]!=(rand()&0xff)) {
  135. printf("Huh? Sendbuf corrupted at byte %d\n", x);
  136. TEST_ASSERT(0);
  137. }
  138. if (sendbuf[x]!=recvbuf[x]) break;
  139. }
  140. if (x!=num_bytes) {
  141. int from=x-16;
  142. if (from<0) from=0;
  143. success = false;
  144. printf("Error at %d! Sent vs recved: (starting from %d)\n" , x, from);
  145. for (int i=0; i<32; i++) {
  146. if (i+from<num_bytes) printf("%02X ", sendbuf[from+i]);
  147. }
  148. printf("\n");
  149. for (int i=0; i<32; i++) {
  150. if (i+from<num_bytes) printf("%02X ", recvbuf[from+i]);
  151. }
  152. printf("\n");
  153. }
  154. if (success) printf("Success!\n");
  155. free(sendbuf);
  156. free(recvbuf);
  157. return success;
  158. }
  159. TEST_CASE("SPI Master test", "[spi]")
  160. {
  161. bool success = true;
  162. printf("Testing bus at 80KHz\n");
  163. spi_device_handle_t handle=setup_spi_bus(80000, true);
  164. success &= spi_test(handle, 16); //small
  165. success &= spi_test(handle, 21); //small, unaligned
  166. success &= spi_test(handle, 36); //aligned
  167. success &= spi_test(handle, 128); //aligned
  168. success &= spi_test(handle, 129); //unaligned
  169. success &= spi_test(handle, 4096-2); //multiple descs, edge case 1
  170. success &= spi_test(handle, 4096-1); //multiple descs, edge case 2
  171. success &= spi_test(handle, 4096*3); //multiple descs
  172. master_free_device_bus(handle);
  173. printf("Testing bus at 80KHz, non-DMA\n");
  174. handle=setup_spi_bus(80000, false);
  175. success &= spi_test(handle, 4); //aligned
  176. success &= spi_test(handle, 16); //small
  177. success &= spi_test(handle, 21); //small, unaligned
  178. success &= spi_test(handle, 32); //small
  179. success &= spi_test(handle, 47); //small, unaligned
  180. success &= spi_test(handle, 63); //small
  181. success &= spi_test(handle, 64); //small, unaligned
  182. master_free_device_bus(handle);
  183. printf("Testing bus at 26MHz\n");
  184. handle=setup_spi_bus(20000000, true);
  185. success &= spi_test(handle, 128); //DMA, aligned
  186. success &= spi_test(handle, 4096*3); //DMA, multiple descs
  187. master_free_device_bus(handle);
  188. printf("Testing bus at 900KHz\n");
  189. handle=setup_spi_bus(9000000, true);
  190. success &= spi_test(handle, 128); //DMA, aligned
  191. success &= spi_test(handle, 4096*3); //DMA, multiple descs
  192. master_free_device_bus(handle);
  193. TEST_ASSERT(success);
  194. }
  195. TEST_CASE("SPI Master test, interaction of multiple devs", "[spi]") {
  196. esp_err_t ret;
  197. bool success = true;
  198. spi_device_interface_config_t devcfg={
  199. .command_bits=0,
  200. .address_bits=0,
  201. .dummy_bits=0,
  202. .clock_speed_hz=1000000,
  203. .duty_cycle_pos=128,
  204. .mode=0,
  205. .spics_io_num=23,
  206. .queue_size=3,
  207. };
  208. spi_device_handle_t handle1=setup_spi_bus(80000, true);
  209. spi_device_handle_t handle2;
  210. spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle2);
  211. printf("Sending to dev 1\n");
  212. success &= spi_test(handle1, 7);
  213. printf("Sending to dev 1\n");
  214. success &= spi_test(handle1, 15);
  215. printf("Sending to dev 2\n");
  216. success &= spi_test(handle2, 15);
  217. printf("Sending to dev 1\n");
  218. success &= spi_test(handle1, 32);
  219. printf("Sending to dev 2\n");
  220. success &= spi_test(handle2, 32);
  221. printf("Sending to dev 1\n");
  222. success &= spi_test(handle1, 63);
  223. printf("Sending to dev 2\n");
  224. success &= spi_test(handle2, 63);
  225. printf("Sending to dev 1\n");
  226. success &= spi_test(handle1, 5000);
  227. printf("Sending to dev 2\n");
  228. success &= spi_test(handle2, 5000);
  229. ret=spi_bus_remove_device(handle2);
  230. TEST_ASSERT(ret==ESP_OK);
  231. master_free_device_bus(handle1);
  232. TEST_ASSERT(success);
  233. }
  234. static esp_err_t test_master_pins(int mosi, int miso, int sclk, int cs)
  235. {
  236. esp_err_t ret;
  237. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  238. cfg.mosi_io_num = mosi;
  239. cfg.miso_io_num = miso;
  240. cfg.sclk_io_num = sclk;
  241. spi_device_interface_config_t master_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  242. master_cfg.spics_io_num = cs;
  243. ret = spi_bus_initialize(TEST_SPI_HOST, &cfg, 1);
  244. if (ret != ESP_OK) return ret;
  245. spi_device_handle_t spi;
  246. ret = spi_bus_add_device(TEST_SPI_HOST, &master_cfg, &spi);
  247. if (ret != ESP_OK) {
  248. spi_bus_free(TEST_SPI_HOST);
  249. return ret;
  250. }
  251. master_free_device_bus(spi);
  252. return ESP_OK;
  253. }
  254. static esp_err_t test_slave_pins(int mosi, int miso, int sclk, int cs)
  255. {
  256. esp_err_t ret;
  257. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  258. cfg.mosi_io_num = mosi;
  259. cfg.miso_io_num = miso;
  260. cfg.sclk_io_num = sclk;
  261. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  262. slave_cfg.spics_io_num = cs;
  263. ret = spi_slave_initialize(TEST_SLAVE_HOST, &cfg, &slave_cfg, 1);
  264. if (ret != ESP_OK) return ret;
  265. spi_slave_free(TEST_SLAVE_HOST);
  266. return ESP_OK;
  267. }
  268. TEST_CASE("spi placed on input-only pins", "[spi]")
  269. {
  270. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  271. TEST_ASSERT(test_master_pins(34, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS)!=ESP_OK);
  272. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, 34, PIN_NUM_CLK, PIN_NUM_CS));
  273. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, 34, PIN_NUM_CS)!=ESP_OK);
  274. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, 34)!=ESP_OK);
  275. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  276. TEST_ESP_OK(test_slave_pins(34, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  277. TEST_ASSERT(test_slave_pins(PIN_NUM_MOSI, 34, PIN_NUM_CLK, PIN_NUM_CS)!=ESP_OK);
  278. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, 34, PIN_NUM_CS));
  279. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, 34));
  280. }
  281. TEST_CASE("spi bus setting with different pin configs", "[spi]")
  282. {
  283. spi_bus_config_t cfg;
  284. uint32_t flags_o;
  285. uint32_t flags_expected;
  286. ESP_LOGI(TAG, "test 6 iomux output pins...");
  287. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_IOMUX_PINS | SPICOMMON_BUSFLAG_QUAD;
  288. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  289. .max_transfer_sz = 8, .flags = flags_expected};
  290. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  291. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  292. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  293. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  294. ESP_LOGI(TAG, "test 4 iomux output pins...");
  295. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_IOMUX_PINS | SPICOMMON_BUSFLAG_DUAL;
  296. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  297. .max_transfer_sz = 8, .flags = flags_expected};
  298. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  299. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  300. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  301. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  302. ESP_LOGI(TAG, "test 6 output pins...");
  303. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_QUAD;
  304. //swap MOSI and MISO
  305. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  306. .max_transfer_sz = 8, .flags = flags_expected};
  307. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  308. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  309. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  310. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  311. ESP_LOGI(TAG, "test 4 output pins...");
  312. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_DUAL;
  313. //swap MOSI and MISO
  314. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  315. .max_transfer_sz = 8, .flags = flags_expected};
  316. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  317. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  318. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  319. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  320. ESP_LOGI(TAG, "test master 5 output pins and MOSI on input-only pin...");
  321. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD;
  322. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  323. .max_transfer_sz = 8, .flags = flags_expected};
  324. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  325. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  326. ESP_LOGI(TAG, "test slave 5 output pins and MISO on input-only pin...");
  327. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD;
  328. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  329. .max_transfer_sz = 8, .flags = flags_expected};
  330. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  331. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  332. ESP_LOGI(TAG, "test master 3 output pins and MOSI on input-only pin...");
  333. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO;
  334. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  335. .max_transfer_sz = 8, .flags = flags_expected};
  336. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  337. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  338. ESP_LOGI(TAG, "test slave 3 output pins and MISO on input-only pin...");
  339. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO;
  340. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  341. .max_transfer_sz = 8, .flags = flags_expected};
  342. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  343. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  344. ESP_LOGI(TAG, "check native flag for 6 output pins...");
  345. flags_expected = SPICOMMON_BUSFLAG_IOMUX_PINS;
  346. //swap MOSI and MISO
  347. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  348. .max_transfer_sz = 8, .flags = flags_expected};
  349. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  350. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  351. ESP_LOGI(TAG, "check native flag for 4 output pins...");
  352. flags_expected = SPICOMMON_BUSFLAG_IOMUX_PINS;
  353. //swap MOSI and MISO
  354. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  355. .max_transfer_sz = 8, .flags = flags_expected};
  356. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  357. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  358. ESP_LOGI(TAG, "check dual flag for master 5 output pins and MISO/MOSI on input-only pin...");
  359. flags_expected = SPICOMMON_BUSFLAG_DUAL;
  360. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  361. .max_transfer_sz = 8, .flags = flags_expected};
  362. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  363. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  364. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  365. .max_transfer_sz = 8, .flags = flags_expected};
  366. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  367. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  368. ESP_LOGI(TAG, "check dual flag for master 3 output pins and MISO/MOSI on input-only pin...");
  369. flags_expected = SPICOMMON_BUSFLAG_DUAL;
  370. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  371. .max_transfer_sz = 8, .flags = flags_expected};
  372. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  373. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  374. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  375. .max_transfer_sz = 8, .flags = flags_expected};
  376. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  377. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  378. ESP_LOGI(TAG, "check sclk flag...");
  379. flags_expected = SPICOMMON_BUSFLAG_SCLK;
  380. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = -1, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  381. .max_transfer_sz = 8, .flags = flags_expected};
  382. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  383. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  384. ESP_LOGI(TAG, "check mosi flag...");
  385. flags_expected = SPICOMMON_BUSFLAG_MOSI;
  386. cfg = (spi_bus_config_t){.mosi_io_num = -1, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  387. .max_transfer_sz = 8, .flags = flags_expected};
  388. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  389. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  390. ESP_LOGI(TAG, "check miso flag...");
  391. flags_expected = SPICOMMON_BUSFLAG_MISO;
  392. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = -1, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  393. .max_transfer_sz = 8, .flags = flags_expected};
  394. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  395. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  396. ESP_LOGI(TAG, "check quad flag...");
  397. flags_expected = SPICOMMON_BUSFLAG_QUAD;
  398. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  399. .max_transfer_sz = 8, .flags = flags_expected};
  400. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  401. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  402. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = -1,
  403. .max_transfer_sz = 8, .flags = flags_expected};
  404. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  405. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  406. }
  407. TEST_CASE("SPI Master no response when switch from host1 (HSPI) to host2 (VSPI)", "[spi]")
  408. {
  409. //spi config
  410. spi_bus_config_t bus_config;
  411. spi_device_interface_config_t device_config;
  412. spi_device_handle_t spi;
  413. spi_host_device_t host;
  414. int dma = 1;
  415. memset(&bus_config, 0, sizeof(spi_bus_config_t));
  416. memset(&device_config, 0, sizeof(spi_device_interface_config_t));
  417. bus_config.miso_io_num = -1;
  418. bus_config.mosi_io_num = 26;
  419. bus_config.sclk_io_num = 25;
  420. bus_config.quadwp_io_num = -1;
  421. bus_config.quadhd_io_num = -1;
  422. device_config.clock_speed_hz = 50000;
  423. device_config.mode = 0;
  424. device_config.spics_io_num = -1;
  425. device_config.queue_size = 1;
  426. device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST;
  427. struct spi_transaction_t transaction = {
  428. .flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA,
  429. .length = 16,
  430. .rx_buffer = NULL,
  431. .tx_data = {0x04, 0x00}
  432. };
  433. //initialize for first host
  434. host = 1;
  435. TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
  436. TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
  437. printf("before first xmit\n");
  438. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
  439. printf("after first xmit\n");
  440. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  441. TEST_ASSERT(spi_bus_free(host) == ESP_OK);
  442. //for second host and failed before
  443. host = 2;
  444. TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
  445. TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
  446. printf("before second xmit\n");
  447. // the original version (bit mis-written) stucks here.
  448. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
  449. // test case success when see this.
  450. printf("after second xmit\n");
  451. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  452. TEST_ASSERT(spi_bus_free(host) == ESP_OK);
  453. }
  454. DRAM_ATTR static uint32_t data_dram[80]={0};
  455. //force to place in code area.
  456. static const uint8_t data_drom[320+3] = {
  457. 0xD8, 0xD1, 0x0A, 0xB8, 0xCE, 0x67, 0x1B, 0x11, 0x17, 0xA0, 0xDA, 0x89, 0x55, 0xC1, 0x40, 0x0F, 0x55, 0xEB, 0xF7, 0xEC, 0xF0, 0x3C, 0x0F, 0x4D, 0x2B, 0x9E, 0xBF, 0xCD, 0x57, 0x2C, 0x48, 0x1A,
  458. 0x8B, 0x47, 0xC5, 0x01, 0x0C, 0x05, 0x80, 0x30, 0xF4, 0xEA, 0xE5, 0x92, 0x56, 0x97, 0x98, 0x78, 0x21, 0x34, 0xA1, 0xBC, 0xAE, 0x93, 0x7E, 0x96, 0x08, 0xE6, 0x54, 0x6A, 0x6C, 0x67, 0xCF, 0x58,
  459. 0xEE, 0x15, 0xA8, 0xB6, 0x32, 0x8C, 0x85, 0xF7, 0xE9, 0x88, 0x5E, 0xB1, 0x76, 0xE4, 0xB2, 0xC7, 0x0F, 0x57, 0x51, 0x7A, 0x2F, 0xAB, 0x12, 0xC3, 0x37, 0x99, 0x4E, 0x67, 0x75, 0x28, 0xE4, 0x1D,
  460. 0xF8, 0xBA, 0x22, 0xCB, 0xA1, 0x18, 0x4C, 0xAB, 0x5F, 0xC9, 0xF3, 0xA2, 0x39, 0x92, 0x44, 0xE6, 0x7B, 0xE3, 0xD0, 0x16, 0xC5, 0xC2, 0xCB, 0xD9, 0xC0, 0x7F, 0x06, 0xBF, 0x3E, 0xCE, 0xE1, 0x26,
  461. 0xD5, 0x3C, 0xAD, 0x0E, 0xC1, 0xC7, 0x7D, 0x0D, 0x56, 0x85, 0x6F, 0x32, 0xC8, 0x63, 0x8D, 0x12, 0xAB, 0x1E, 0x81, 0x7B, 0xF4, 0xF1, 0xA9, 0xAF, 0xD9, 0x74, 0x60, 0x05, 0x3D, 0xCC, 0x0C, 0x34,
  462. 0x11, 0x44, 0xAE, 0x2A, 0x13, 0x2F, 0x04, 0xC3, 0x59, 0xF0, 0x54, 0x07, 0xBA, 0x26, 0xD9, 0xFB, 0x80, 0x95, 0xC0, 0x14, 0xFA, 0x27, 0xEF, 0xD3, 0x58, 0xB8, 0xE4, 0xA2, 0xE3, 0x5E, 0x94, 0xB3,
  463. 0xCD, 0x2C, 0x4F, 0xAC, 0x3B, 0xD1, 0xCA, 0xBE, 0x61, 0x71, 0x7B, 0x62, 0xEB, 0xF0, 0xFC, 0xEF, 0x22, 0xB7, 0x3F, 0x56, 0x65, 0x19, 0x61, 0x73, 0x1A, 0x4D, 0xE4, 0x23, 0xE5, 0x3A, 0x91, 0x5C,
  464. 0xE6, 0x1B, 0x5F, 0x0E, 0x10, 0x94, 0x7C, 0x9F, 0xCF, 0x75, 0xB3, 0xEB, 0x42, 0x4C, 0xCF, 0xFE, 0xAF, 0x68, 0x62, 0x3F, 0x9A, 0x3C, 0x81, 0x3E, 0x7A, 0x45, 0x92, 0x79, 0x91, 0x4F, 0xFF, 0xDE,
  465. 0x25, 0x18, 0x33, 0xB9, 0xA9, 0x3A, 0x3F, 0x1F, 0x4F, 0x4B, 0x5C, 0x71, 0x82, 0x75, 0xB0, 0x1F, 0xE9, 0x98, 0xA3, 0xE2, 0x65, 0xBB, 0xCA, 0x4F, 0xB7, 0x1D, 0x23, 0x43, 0x16, 0x73, 0xBD, 0x83,
  466. 0x70, 0x22, 0x7D, 0x0A, 0x6D, 0xD3, 0x77, 0x73, 0xD0, 0xF4, 0x06, 0xB2, 0x19, 0x8C, 0xFF, 0x58, 0xE4, 0xDB, 0xE9, 0xEC, 0x89, 0x6A, 0xF4, 0x0E, 0x67, 0x12, 0xEC, 0x11, 0xD2, 0x1F, 0x8D, 0xD7,
  467. };
  468. TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
  469. {
  470. #ifdef CONFIG_ESP32_SPIRAM_SUPPORT
  471. //test psram if enabled
  472. ESP_LOGI(TAG, "testing PSRAM...");
  473. uint32_t* data_malloc = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_SPIRAM);
  474. TEST_ASSERT(esp_ptr_external_ram(data_malloc));
  475. #else
  476. uint32_t* data_malloc = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_DMA);
  477. TEST_ASSERT(esp_ptr_in_dram(data_malloc));
  478. #endif
  479. TEST_ASSERT(data_malloc != NULL);
  480. //refer to soc_memory_layout.c
  481. uint32_t* data_iram = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_EXEC);
  482. TEST_ASSERT(data_iram != NULL);
  483. ESP_LOGI(TAG, "iram: %p, dram: %p", data_iram, data_dram);
  484. ESP_LOGI(TAG, "drom: %p, malloc: %p", data_drom, data_malloc);
  485. TEST_ASSERT(esp_ptr_in_dram(data_dram));
  486. TEST_ASSERT(esp_ptr_in_iram(data_iram));
  487. TEST_ASSERT(esp_ptr_in_drom(data_drom));
  488. srand(52);
  489. for (int i = 0; i < 320/4; i++) {
  490. data_iram[i] = rand();
  491. data_dram[i] = rand();
  492. data_malloc[i] = rand();
  493. }
  494. esp_err_t ret;
  495. spi_device_handle_t spi;
  496. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  497. buscfg.miso_io_num = PIN_NUM_MOSI;
  498. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  499. //Initialize the SPI bus
  500. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1);
  501. TEST_ASSERT(ret==ESP_OK);
  502. //Attach the LCD to the SPI bus
  503. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi);
  504. TEST_ASSERT(ret==ESP_OK);
  505. //connect MOSI to two devices breaks the output, fix it.
  506. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  507. #define TEST_REGION_SIZE 5
  508. static spi_transaction_t trans[TEST_REGION_SIZE];
  509. int x;
  510. memset(trans, 0, sizeof(trans));
  511. trans[0].length = 320*8,
  512. trans[0].tx_buffer = data_iram;
  513. trans[0].rx_buffer = data_malloc+1;
  514. trans[1].length = 320*8,
  515. trans[1].tx_buffer = data_dram;
  516. trans[1].rx_buffer = data_iram;
  517. trans[2].length = 320*8,
  518. trans[2].tx_buffer = data_malloc+2;
  519. trans[2].rx_buffer = data_dram;
  520. trans[3].length = 320*8,
  521. trans[3].tx_buffer = data_drom;
  522. trans[3].rx_buffer = data_iram;
  523. trans[4].length = 4*8,
  524. trans[4].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
  525. uint32_t* ptr = (uint32_t*)trans[4].rx_data;
  526. *ptr = 0x54545454;
  527. ptr = (uint32_t*)trans[4].tx_data;
  528. *ptr = 0xbc124960;
  529. //Queue all transactions.
  530. for (x=0; x<TEST_REGION_SIZE; x++) {
  531. ESP_LOGI(TAG, "transmitting %d...", x);
  532. ret=spi_device_transmit(spi,&trans[x]);
  533. TEST_ASSERT(ret==ESP_OK);
  534. if (trans[x].flags & SPI_TRANS_USE_RXDATA) {
  535. TEST_ASSERT_EQUAL_HEX8_ARRAY(trans[x].tx_data, trans[x].rx_data, 4);
  536. } else {
  537. TEST_ASSERT_EQUAL_HEX32_ARRAY(trans[x].tx_buffer, trans[x].rx_buffer, trans[x].length / 8 /4);
  538. }
  539. }
  540. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  541. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  542. free(data_malloc);
  543. free(data_iram);
  544. }
  545. //this part tests 3 DMA issues in master mode, full-duplex in IDF2.1
  546. // 1. RX buffer not aligned (start and end)
  547. // 2. not setting rx_buffer
  548. // 3. setting rx_length != length
  549. TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
  550. {
  551. uint8_t tx_buf[320]={0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
  552. uint8_t rx_buf[320];
  553. esp_err_t ret;
  554. spi_device_handle_t spi;
  555. spi_bus_config_t buscfg={
  556. .miso_io_num=PIN_NUM_MOSI,
  557. .mosi_io_num=PIN_NUM_MOSI,
  558. .sclk_io_num=PIN_NUM_CLK,
  559. .quadwp_io_num=-1,
  560. .quadhd_io_num=-1
  561. };
  562. spi_device_interface_config_t devcfg={
  563. .clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
  564. .mode=0, //SPI mode 0
  565. .spics_io_num=PIN_NUM_CS, //CS pin
  566. .queue_size=7, //We want to be able to queue 7 transactions at a time
  567. .pre_cb=NULL,
  568. };
  569. //Initialize the SPI bus
  570. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1);
  571. TEST_ASSERT(ret==ESP_OK);
  572. //Attach the LCD to the SPI bus
  573. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi);
  574. TEST_ASSERT(ret==ESP_OK);
  575. //connect MOSI to two devices breaks the output, fix it.
  576. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  577. memset(rx_buf, 0x66, 320);
  578. for ( int i = 0; i < 8; i ++ ) {
  579. memset( rx_buf, 0x66, sizeof(rx_buf));
  580. spi_transaction_t t = {};
  581. t.length = 8*(i+1);
  582. t.rxlength = 0;
  583. t.tx_buffer = tx_buf+2*i;
  584. t.rx_buffer = rx_buf + i;
  585. if ( i == 1 ) {
  586. //test set no start
  587. t.rx_buffer = NULL;
  588. } else if ( i == 2 ) {
  589. //test rx length != tx_length
  590. t.rxlength = t.length - 8;
  591. }
  592. spi_device_transmit( spi, &t );
  593. for( int i = 0; i < 16; i ++ ) {
  594. printf("%02X ", rx_buf[i]);
  595. }
  596. printf("\n");
  597. if ( i == 1 ) {
  598. // no rx, skip check
  599. } else if ( i == 2 ) {
  600. //test rx length = tx length-1
  601. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8-1 );
  602. } else {
  603. //normal check
  604. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8 );
  605. }
  606. }
  607. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  608. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  609. }
  610. static uint8_t bitswap(uint8_t in)
  611. {
  612. uint8_t out = 0;
  613. for (int i = 0; i < 8; i++) {
  614. out = out >> 1;
  615. if (in&0x80) out |= 0x80;
  616. in = in << 1;
  617. }
  618. return out;
  619. }
  620. void test_cmd_addr(spi_slave_task_context_t *slave_context, bool lsb_first)
  621. {
  622. spi_device_handle_t spi;
  623. ESP_LOGI(MASTER_TAG, ">>>>>>>>> TEST %s FIRST <<<<<<<<<<<", lsb_first?"LSB":"MSB");
  624. //initial master, mode 0, 1MHz
  625. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  626. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1));
  627. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  628. devcfg.clock_speed_hz = 1*1000*1000;
  629. if (lsb_first) devcfg.flags |= SPI_DEVICE_BIT_LSBFIRST;
  630. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  631. //connecting pins to two peripherals breaks the output, fix it.
  632. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  633. spitest_gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  634. spitest_gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  635. spitest_gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  636. for (int i= 0; i < 8; i++) {
  637. //prepare slave tx data
  638. slave_txdata_t slave_txdata = (slave_txdata_t) {
  639. .start = spitest_slave_send + 4*(i%3),
  640. .len = 256,
  641. };
  642. xQueueSend(slave_context->data_to_send, &slave_txdata, portMAX_DELAY);
  643. vTaskDelay(50);
  644. //prepare master tx data
  645. int cmd_bits = (i+1)*2;
  646. int addr_bits = 56-8*i;
  647. int round_up = (cmd_bits+addr_bits+7)/8*8;
  648. addr_bits = round_up - cmd_bits;
  649. spi_transaction_ext_t trans = (spi_transaction_ext_t) {
  650. .base = {
  651. .flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
  652. .addr = 0x456789abcdef0123,
  653. .cmd = 0xcdef,
  654. },
  655. .command_bits = cmd_bits,
  656. .address_bits = addr_bits,
  657. };
  658. ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
  659. ESP_LOGI(MASTER_TAG, "cmd_bits: %d, addr_bits: %d", cmd_bits, addr_bits);
  660. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&trans));
  661. //wait for both master and slave end
  662. size_t rcv_len;
  663. slave_rxdata_t *rcv_data = xRingbufferReceive(slave_context->data_received, &rcv_len, portMAX_DELAY);
  664. rcv_len-=8;
  665. uint8_t *buffer = rcv_data->data;
  666. ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
  667. TEST_ASSERT_EQUAL(rcv_len, (rcv_data->len+7)/8);
  668. TEST_ASSERT_EQUAL(rcv_data->len, cmd_bits+addr_bits);
  669. ESP_LOG_BUFFER_HEX("slave rx", buffer, rcv_len);
  670. uint16_t cmd_expected = trans.base.cmd & (BIT(cmd_bits) - 1);
  671. uint64_t addr_expected = trans.base.addr & ((1ULL<<addr_bits) - 1);
  672. uint8_t *data_ptr = buffer;
  673. uint16_t cmd_got = *(uint16_t*)data_ptr;
  674. data_ptr += cmd_bits/8;
  675. cmd_got = __builtin_bswap16(cmd_got);
  676. cmd_got = cmd_got >> (16-cmd_bits);
  677. int remain_bits = cmd_bits % 8;
  678. uint64_t addr_got = *(uint64_t*)data_ptr;
  679. data_ptr += 8;
  680. addr_got = __builtin_bswap64(addr_got);
  681. addr_got = (addr_got << remain_bits);
  682. addr_got |= (*data_ptr >> (8-remain_bits));
  683. addr_got = addr_got >> (64-addr_bits);
  684. if (lsb_first) {
  685. cmd_got = __builtin_bswap16(cmd_got);
  686. addr_got = __builtin_bswap64(addr_got);
  687. uint8_t *swap_ptr = (uint8_t*)&cmd_got;
  688. swap_ptr[0] = bitswap(swap_ptr[0]);
  689. swap_ptr[1] = bitswap(swap_ptr[1]);
  690. cmd_got = cmd_got >> (16-cmd_bits);
  691. swap_ptr = (uint8_t*)&addr_got;
  692. for (int j = 0; j < 8; j++) swap_ptr[j] = bitswap(swap_ptr[j]);
  693. addr_got = addr_got >> (64-addr_bits);
  694. }
  695. ESP_LOGI(SLAVE_TAG, "cmd_got: %04X, addr_got: %08X%08X", cmd_got, (uint32_t)(addr_got>>32), (uint32_t)addr_got);
  696. TEST_ASSERT_EQUAL_HEX16(cmd_expected, cmd_got);
  697. if (addr_bits > 0) {
  698. TEST_ASSERT_EQUAL_HEX32(addr_expected, addr_got);
  699. TEST_ASSERT_EQUAL_HEX32(addr_expected >> 8, addr_got >> 8);
  700. }
  701. //clean
  702. vRingbufferReturnItem(slave_context->data_received, buffer);
  703. }
  704. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  705. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  706. }
  707. TEST_CASE("SPI master variable cmd & addr test","[spi]")
  708. {
  709. spi_slave_task_context_t slave_context = {};
  710. esp_err_t err = init_slave_context( &slave_context );
  711. TEST_ASSERT( err == ESP_OK );
  712. TaskHandle_t handle_slave;
  713. xTaskCreate( spitest_slave_task, "spi_slave", 4096, &slave_context, 0, &handle_slave);
  714. //initial slave, mode 0, no dma
  715. int dma_chan = 0;
  716. int slave_mode = 0;
  717. spi_bus_config_t slv_buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  718. spi_slave_interface_config_t slvcfg=SPI_SLAVE_TEST_DEFAULT_CONFIG();
  719. slvcfg.mode = slave_mode;
  720. //Initialize SPI slave interface
  721. TEST_ESP_OK( spi_slave_initialize(TEST_SLAVE_HOST, &slv_buscfg, &slvcfg, dma_chan) );
  722. test_cmd_addr(&slave_context, false);
  723. test_cmd_addr(&slave_context, true);
  724. vTaskDelete( handle_slave );
  725. handle_slave = 0;
  726. deinit_slave_context(&slave_context);
  727. TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
  728. ESP_LOGI(MASTER_TAG, "test passed.");
  729. }
  730. void test_dummy(spi_device_handle_t spi, int dummy_n, uint8_t* data_to_send, int len)
  731. {
  732. ESP_LOGI(TAG, "testing dummy n=%d", dummy_n);
  733. WORD_ALIGNED_ATTR uint8_t slave_buffer[len+(dummy_n+7)/8];
  734. spi_slave_transaction_t slave_t = {
  735. .tx_buffer = slave_buffer,
  736. .rx_buffer = slave_buffer,
  737. .length = len*8+((dummy_n+7)&(~8))+32, //receive more bytes to avoid slave discarding data
  738. };
  739. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
  740. vTaskDelay(50);
  741. spi_transaction_ext_t t = {
  742. .base = {
  743. .tx_buffer = data_to_send,
  744. .length = (len+1)*8, //send one more byte force slave receive all data
  745. .flags = SPI_TRANS_VARIABLE_DUMMY,
  746. },
  747. .dummy_bits = dummy_n,
  748. };
  749. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&t));
  750. spi_slave_transaction_t *ret_slave;
  751. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
  752. TEST_ASSERT(ret_slave == &slave_t);
  753. ESP_LOG_BUFFER_HEXDUMP("rcv", slave_buffer, len+4, ESP_LOG_INFO);
  754. int skip_cnt = dummy_n/8;
  755. int dummy_remain = dummy_n % 8;
  756. uint8_t *slave_ptr = slave_buffer;
  757. if (dummy_remain > 0) {
  758. for (int i = 0; i < len; i++) {
  759. slave_ptr[0] = (slave_ptr[skip_cnt] << dummy_remain) | (slave_ptr[skip_cnt+1] >> (8-dummy_remain));
  760. slave_ptr++;
  761. }
  762. } else {
  763. for (int i = 0; i < len; i++) {
  764. slave_ptr[0] = slave_ptr[skip_cnt];
  765. slave_ptr++;
  766. }
  767. }
  768. TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_send, slave_buffer, len);
  769. }
  770. TEST_CASE("SPI master variable dummy test", "[spi]")
  771. {
  772. spi_device_handle_t spi;
  773. spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  774. spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  775. dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
  776. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, 0));
  777. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
  778. spi_slave_interface_config_t slave_cfg =SPI_SLAVE_TEST_DEFAULT_CONFIG();
  779. TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &bus_cfg, &slave_cfg, 0));
  780. spitest_gpio_output_sel(bus_cfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  781. spitest_gpio_output_sel(bus_cfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  782. spitest_gpio_output_sel(dev_cfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  783. spitest_gpio_output_sel(bus_cfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  784. uint8_t data_to_send[] = {0x12, 0x34, 0x56, 0x78};
  785. test_dummy(spi, 0, data_to_send, sizeof(data_to_send));
  786. test_dummy(spi, 1, data_to_send, sizeof(data_to_send));
  787. test_dummy(spi, 2, data_to_send, sizeof(data_to_send));
  788. test_dummy(spi, 3, data_to_send, sizeof(data_to_send));
  789. test_dummy(spi, 4, data_to_send, sizeof(data_to_send));
  790. test_dummy(spi, 8, data_to_send, sizeof(data_to_send));
  791. test_dummy(spi, 12, data_to_send, sizeof(data_to_send));
  792. test_dummy(spi, 16, data_to_send, sizeof(data_to_send));
  793. spi_slave_free(TEST_SLAVE_HOST);
  794. master_free_device_bus(spi);
  795. }
  796. /********************************************************************************
  797. * Test SPI transaction interval
  798. ********************************************************************************/
  799. #define RECORD_TIME_PREPARE() uint32_t __t1, __t2
  800. #define RECORD_TIME_START() do {__t1 = xthal_get_ccount();}while(0)
  801. #define RECORD_TIME_END(p_time) do{__t2 = xthal_get_ccount(); *p_time = (__t2-__t1);}while(0)
  802. #define GET_US_BY_CCOUNT(t) ((t)/240.)
  803. static void speed_setup(spi_device_handle_t* spi, bool use_dma)
  804. {
  805. esp_err_t ret;
  806. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  807. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  808. devcfg.queue_size=8; //We want to be able to queue 7 transactions at a time
  809. //Initialize the SPI bus and the device to test
  810. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, (use_dma?1:0));
  811. TEST_ASSERT(ret==ESP_OK);
  812. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi);
  813. TEST_ASSERT(ret==ESP_OK);
  814. }
  815. static void sorted_array_insert(uint32_t* array, int* size, uint32_t item)
  816. {
  817. int pos;
  818. for (pos = *size; pos>0; pos--) {
  819. if (array[pos-1] < item) break;
  820. array[pos] = array[pos-1];
  821. }
  822. array[pos]=item;
  823. (*size)++;
  824. }
  825. #define TEST_TIMES 11
  826. static IRAM_ATTR void spi_transmit_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight)
  827. {
  828. RECORD_TIME_PREPARE();
  829. spi_device_transmit(spi, trans); // prime the flash cache
  830. RECORD_TIME_START();
  831. spi_device_transmit(spi, trans);
  832. RECORD_TIME_END(t_flight);
  833. }
  834. static IRAM_ATTR void spi_transmit_polling_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight)
  835. {
  836. spi_flash_disable_interrupts_caches_and_other_cpu(); //this can test the code are all in the IRAM at the same time
  837. RECORD_TIME_PREPARE();
  838. spi_device_polling_transmit(spi, trans); // prime the flash cache
  839. RECORD_TIME_START();
  840. spi_device_polling_transmit(spi, trans);
  841. RECORD_TIME_END(t_flight);
  842. spi_flash_enable_interrupts_caches_and_other_cpu();
  843. }
  844. TEST_CASE("spi_speed","[spi]")
  845. {
  846. #ifdef CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
  847. return;
  848. #endif
  849. uint32_t t_flight;
  850. //to get rid of the influence of randomly interrupts, we measured the performance by median value
  851. uint32_t t_flight_sorted[TEST_TIMES];
  852. esp_err_t ret;
  853. int t_flight_num = 0;
  854. spi_device_handle_t spi;
  855. const bool use_dma = true;
  856. WORD_ALIGNED_ATTR spi_transaction_t trans = {
  857. .length = 1*8,
  858. .flags = SPI_TRANS_USE_TXDATA,
  859. };
  860. //first work with DMA
  861. speed_setup(&spi, use_dma);
  862. //record flight time by isr, with DMA
  863. t_flight_num = 0;
  864. for (int i = 0; i < TEST_TIMES; i++) {
  865. spi_transmit_measure(spi, &trans, &t_flight);
  866. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  867. }
  868. for (int i = 0; i < TEST_TIMES; i++) {
  869. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  870. }
  871. #ifndef CONFIG_SPIRAM_SUPPORT
  872. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES+1)/2]));
  873. #endif
  874. //acquire the bus to send polling transactions faster
  875. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  876. TEST_ESP_OK(ret);
  877. //record flight time by polling and with DMA
  878. t_flight_num = 0;
  879. for (int i = 0; i < TEST_TIMES; i++) {
  880. spi_transmit_polling_measure(spi, &trans, &t_flight);
  881. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  882. }
  883. for (int i = 0; i < TEST_TIMES; i++) {
  884. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  885. }
  886. #ifndef CONFIG_SPIRAM_SUPPORT
  887. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES+1)/2]));
  888. #endif
  889. //release the bus
  890. spi_device_release_bus(spi);
  891. master_free_device_bus(spi);
  892. speed_setup(&spi, !use_dma);
  893. //record flight time by isr, without DMA
  894. t_flight_num = 0;
  895. for (int i = 0; i < TEST_TIMES; i++) {
  896. spi_transmit_measure(spi, &trans, &t_flight);
  897. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  898. }
  899. for (int i = 0; i < TEST_TIMES; i++) {
  900. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  901. }
  902. #ifndef CONFIG_SPIRAM_SUPPORT
  903. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES+1)/2]));
  904. #endif
  905. //acquire the bus to send polling transactions faster
  906. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  907. TEST_ESP_OK(ret);
  908. //record flight time by polling, without DMA
  909. t_flight_num = 0;
  910. for (int i = 0; i < TEST_TIMES; i++) {
  911. spi_transmit_polling_measure(spi, &trans, &t_flight);
  912. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  913. }
  914. for (int i = 0; i < TEST_TIMES; i++) {
  915. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  916. }
  917. #ifndef CONFIG_SPIRAM_SUPPORT
  918. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING_NO_DMA, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES+1)/2]));
  919. #endif
  920. //release the bus
  921. spi_device_release_bus(spi);
  922. master_free_device_bus(spi);
  923. }
  924. typedef struct {
  925. spi_device_handle_t handle;
  926. bool finished;
  927. } task_context_t;
  928. void spi_task1(void* arg)
  929. {
  930. //task1 send 50 polling transactions, acquire the bus and send another 50
  931. int count=0;
  932. spi_transaction_t t = {
  933. .flags = SPI_TRANS_USE_TXDATA,
  934. .tx_data = { 0x80, 0x12, 0x34, 0x56 },
  935. .length = 4*8,
  936. };
  937. spi_device_handle_t handle = ((task_context_t*)arg)->handle;
  938. for( int j = 0; j < 50; j ++ ) {
  939. TEST_ESP_OK(spi_device_polling_transmit( handle, &t ));
  940. ESP_LOGI( TAG, "task1:%d", count++ );
  941. }
  942. TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
  943. for( int j = 0; j < 50; j ++ ) {
  944. TEST_ESP_OK(spi_device_polling_transmit( handle, &t ));
  945. ESP_LOGI( TAG, "task1:%d", count++ );
  946. }
  947. spi_device_release_bus(handle);
  948. ESP_LOGI(TAG, "task1 terminates");
  949. ((task_context_t*)arg)->finished = true;
  950. vTaskDelete(NULL);
  951. }
  952. void spi_task2(void* arg)
  953. {
  954. int count=0;
  955. //task2 acquire the bus, send 50 polling transactions and then 50 non-polling
  956. spi_transaction_t t = {
  957. .flags = SPI_TRANS_USE_TXDATA,
  958. .tx_data = { 0x80, 0x12, 0x34, 0x56 },
  959. .length = 4*8,
  960. };
  961. spi_transaction_t *ret_t;
  962. spi_device_handle_t handle = ((task_context_t*)arg)->handle;
  963. TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
  964. for (int i = 0; i < 50; i ++) {
  965. TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
  966. ESP_LOGI( TAG, "task2: %d", count++ );
  967. }
  968. for( int j = 0; j < 50; j ++ ) {
  969. TEST_ESP_OK(spi_device_queue_trans( handle, &t, portMAX_DELAY ));
  970. }
  971. for( int j = 0; j < 50; j ++ ) {
  972. TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY));
  973. assert(ret_t == &t);
  974. ESP_LOGI( TAG, "task2: %d", count++ );
  975. }
  976. spi_device_release_bus(handle);
  977. vTaskDelay(1);
  978. ESP_LOGI(TAG, "task2 terminates");
  979. ((task_context_t*)arg)->finished = true;
  980. vTaskDelete(NULL);
  981. }
  982. void spi_task3(void* arg)
  983. {
  984. //task3 send 30 polling transactions, acquire the bus, send 20 polling transactions and then 50 non-polling
  985. int count=0;
  986. spi_transaction_t t = {
  987. .flags = SPI_TRANS_USE_TXDATA,
  988. .tx_data = { 0x80, 0x12, 0x34, 0x56 },
  989. .length = 4*8,
  990. };
  991. spi_transaction_t *ret_t;
  992. spi_device_handle_t handle = ((task_context_t*)arg)->handle;
  993. for (int i = 0; i < 30; i ++) {
  994. TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
  995. ESP_LOGI( TAG, "task3: %d", count++ );
  996. }
  997. TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
  998. for (int i = 0; i < 20; i ++) {
  999. TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
  1000. ESP_LOGI( TAG, "task3: %d", count++ );
  1001. }
  1002. for (int j = 0; j < 50; j++) {
  1003. TEST_ESP_OK(spi_device_queue_trans(handle, &t, portMAX_DELAY));
  1004. }
  1005. for (int j = 0; j < 50; j++) {
  1006. TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY));
  1007. assert(ret_t == &t);
  1008. ESP_LOGI(TAG, "task3: %d", count++);
  1009. }
  1010. spi_device_release_bus(handle);
  1011. ESP_LOGI(TAG, "task3 terminates");
  1012. ((task_context_t*)arg)->finished = true;
  1013. vTaskDelete(NULL);
  1014. }
  1015. TEST_CASE("spi poll tasks","[spi]")
  1016. {
  1017. task_context_t context1={};
  1018. task_context_t context2={};
  1019. task_context_t context3={};
  1020. TaskHandle_t task1, task2, task3;
  1021. esp_err_t ret;
  1022. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  1023. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  1024. devcfg.queue_size = 100;
  1025. //Initialize the SPI bus and 3 devices
  1026. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1);
  1027. TEST_ASSERT(ret==ESP_OK);
  1028. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &context1.handle);
  1029. TEST_ASSERT(ret==ESP_OK);
  1030. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &context2.handle);
  1031. TEST_ASSERT(ret==ESP_OK);
  1032. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &context3.handle);
  1033. TEST_ASSERT(ret==ESP_OK);
  1034. xTaskCreate( spi_task1, "task1", 3072, &context1, 0, &task1 );
  1035. xTaskCreate( spi_task2, "task2", 3072, &context2, 0, &task2 );
  1036. xTaskCreate( spi_task3, "task3", 3072, &context3, 0, &task3 );
  1037. for(;;){
  1038. vTaskDelay(10);
  1039. if (context1.finished && context2.finished && context3.finished) break;
  1040. }
  1041. TEST_ESP_OK( spi_bus_remove_device(context1.handle) );
  1042. TEST_ESP_OK( spi_bus_remove_device(context2.handle) );
  1043. TEST_ESP_OK( spi_bus_remove_device(context3.handle) );
  1044. TEST_ESP_OK( spi_bus_free(TEST_SPI_HOST) );
  1045. }
  1046. //TODO: add a case when a non-polling transaction happened in the bus-acquiring time and then release the bus then queue a new trans