pm_esp32.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613
  1. // Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <stdbool.h>
  16. #include <string.h>
  17. #include <sys/param.h>
  18. #include "esp_attr.h"
  19. #include "esp_err.h"
  20. #include "esp_pm.h"
  21. #include "esp_log.h"
  22. #include "esp32/clk.h"
  23. #include "esp_private/crosscore_int.h"
  24. #include "soc/rtc.h"
  25. #include "freertos/FreeRTOS.h"
  26. #include "freertos/task.h"
  27. #include "freertos/xtensa_timer.h"
  28. #include "xtensa/core-macros.h"
  29. #include "esp_private/pm_impl.h"
  30. #include "esp_private/pm_trace.h"
  31. #include "esp_private/esp_timer_impl.h"
  32. #include "esp32/pm.h"
  33. #include "esp_sleep.h"
  34. /* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
  35. * for the purpose of detecting a deadlock.
  36. */
  37. #define CCOMPARE_UPDATE_TIMEOUT 1000000
  38. /* When changing CCOMPARE, don't allow changes if the difference is less
  39. * than this. This is to prevent setting CCOMPARE below CCOUNT.
  40. */
  41. #define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000
  42. /* When light sleep is used, wake this number of microseconds earlier than
  43. * the next tick.
  44. */
  45. #define LIGHT_SLEEP_EARLY_WAKEUP_US 100
  46. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  47. #define REF_CLK_DIV_MIN 10
  48. #define MHZ 1000000
  49. #ifdef CONFIG_PM_PROFILING
  50. #define WITH_PROFILING
  51. #endif
  52. static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
  53. /* The following state variables are protected using s_switch_lock: */
  54. /* Current sleep mode; When switching, contains old mode until switch is complete */
  55. static pm_mode_t s_mode = PM_MODE_CPU_MAX;
  56. /* True when switch is in progress */
  57. static volatile bool s_is_switching;
  58. /* When switch is in progress, this is the mode we are switching into */
  59. static pm_mode_t s_new_mode = PM_MODE_CPU_MAX;
  60. /* Number of times each mode was locked */
  61. static size_t s_mode_lock_counts[PM_MODE_COUNT];
  62. /* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
  63. static uint32_t s_mode_mask;
  64. /* Divider and multiplier used to adjust (ccompare - ccount) duration.
  65. * Only set to non-zero values when switch is in progress.
  66. */
  67. static uint32_t s_ccount_div;
  68. static uint32_t s_ccount_mul;
  69. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  70. /* Indicates if light sleep entry was skipped in vApplicationSleep for given CPU.
  71. * This in turn gets used in IDLE hook to decide if `waiti` needs
  72. * to be invoked or not.
  73. */
  74. static bool s_skipped_light_sleep[portNUM_PROCESSORS];
  75. #if portNUM_PROCESSORS == 2
  76. /* When light sleep is finished on one CPU, it is possible that the other CPU
  77. * will enter light sleep again very soon, before interrupts on the first CPU
  78. * get a chance to run. To avoid such situation, set a flag for the other CPU to
  79. * skip light sleep attempt.
  80. */
  81. static bool s_skip_light_sleep[portNUM_PROCESSORS];
  82. #endif // portNUM_PROCESSORS == 2
  83. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  84. /* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
  85. * Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
  86. */
  87. static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
  88. /* A flag indicating that Idle hook has run on a given CPU;
  89. * Next interrupt on the same CPU will take s_rtos_lock_handle.
  90. */
  91. static bool s_core_idle[portNUM_PROCESSORS];
  92. /* When no RTOS tasks are active, these locks are released to allow going into
  93. * a lower power mode. Used by ISR hook and idle hook.
  94. */
  95. static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
  96. /* Lookup table of CPU frequency configs to be used in each mode.
  97. * Initialized by esp_pm_impl_init and modified by esp_pm_configure.
  98. */
  99. rtc_cpu_freq_config_t s_cpu_freq_by_mode[PM_MODE_COUNT];
  100. /* Whether automatic light sleep is enabled */
  101. static bool s_light_sleep_en = false;
  102. /* When configuration is changed, current frequency may not match the
  103. * newly configured frequency for the current mode. This is an indicator
  104. * to the mode switch code to get the actual current frequency instead of
  105. * relying on the current mode.
  106. */
  107. static bool s_config_changed = false;
  108. #ifdef WITH_PROFILING
  109. /* Time, in microseconds, spent so far in each mode */
  110. static pm_time_t s_time_in_mode[PM_MODE_COUNT];
  111. /* Timestamp, in microseconds, when the mode switch last happened */
  112. static pm_time_t s_last_mode_change_time;
  113. /* User-readable mode names, used by esp_pm_impl_dump_stats */
  114. static const char* s_mode_names[] = {
  115. "SLEEP",
  116. "APB_MIN",
  117. "APB_MAX",
  118. "CPU_MAX"
  119. };
  120. #endif // WITH_PROFILING
  121. static const char* TAG = "pm_esp32";
  122. static void update_ccompare();
  123. static void do_switch(pm_mode_t new_mode);
  124. static void leave_idle();
  125. static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
  126. pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
  127. {
  128. (void) arg;
  129. if (type == ESP_PM_CPU_FREQ_MAX) {
  130. return PM_MODE_CPU_MAX;
  131. } else if (type == ESP_PM_APB_FREQ_MAX) {
  132. return PM_MODE_APB_MAX;
  133. } else if (type == ESP_PM_NO_LIGHT_SLEEP) {
  134. return PM_MODE_APB_MIN;
  135. } else {
  136. // unsupported mode
  137. abort();
  138. }
  139. }
  140. esp_err_t esp_pm_configure(const void* vconfig)
  141. {
  142. #ifndef CONFIG_PM_ENABLE
  143. return ESP_ERR_NOT_SUPPORTED;
  144. #endif
  145. const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
  146. #ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  147. if (config->light_sleep_enable) {
  148. return ESP_ERR_NOT_SUPPORTED;
  149. }
  150. #endif
  151. int min_freq_mhz = config->min_freq_mhz;
  152. int max_freq_mhz = config->max_freq_mhz;
  153. if (min_freq_mhz > max_freq_mhz) {
  154. return ESP_ERR_INVALID_ARG;
  155. }
  156. rtc_cpu_freq_config_t freq_config;
  157. if (!rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &freq_config)) {
  158. ESP_LOGW(TAG, "invalid min_freq_mhz value (%d)", min_freq_mhz);
  159. return ESP_ERR_INVALID_ARG;
  160. }
  161. int xtal_freq_mhz = (int) rtc_clk_xtal_freq_get();
  162. if (min_freq_mhz < xtal_freq_mhz && min_freq_mhz * MHZ / REF_CLK_FREQ < REF_CLK_DIV_MIN) {
  163. ESP_LOGW(TAG, "min_freq_mhz should be >= %d", REF_CLK_FREQ * REF_CLK_DIV_MIN / MHZ);
  164. return ESP_ERR_INVALID_ARG;
  165. }
  166. if (!rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &freq_config)) {
  167. ESP_LOGW(TAG, "invalid max_freq_mhz value (%d)", max_freq_mhz);
  168. return ESP_ERR_INVALID_ARG;
  169. }
  170. int apb_max_freq = max_freq_mhz; /* CPU frequency in APB_MAX mode */
  171. if (max_freq_mhz == 240) {
  172. /* We can't switch between 240 and 80/160 without disabling PLL,
  173. * so use 240MHz CPU frequency when 80MHz APB frequency is requested.
  174. */
  175. apb_max_freq = 240;
  176. } else if (max_freq_mhz == 160 || max_freq_mhz == 80) {
  177. /* Otherwise, can use 80MHz
  178. * CPU frequency when 80MHz APB frequency is requested.
  179. */
  180. apb_max_freq = 80;
  181. }
  182. apb_max_freq = MAX(apb_max_freq, min_freq_mhz);
  183. ESP_LOGI(TAG, "Frequency switching config: "
  184. "CPU_MAX: %d, APB_MAX: %d, APB_MIN: %d, Light sleep: %s",
  185. max_freq_mhz,
  186. apb_max_freq,
  187. min_freq_mhz,
  188. config->light_sleep_enable ? "ENABLED" : "DISABLED");
  189. portENTER_CRITICAL(&s_switch_lock);
  190. rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_CPU_MAX]);
  191. rtc_clk_cpu_freq_mhz_to_config(apb_max_freq, &s_cpu_freq_by_mode[PM_MODE_APB_MAX]);
  192. rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_APB_MIN]);
  193. s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = s_cpu_freq_by_mode[PM_MODE_APB_MIN];
  194. s_light_sleep_en = config->light_sleep_enable;
  195. s_config_changed = true;
  196. portEXIT_CRITICAL(&s_switch_lock);
  197. return ESP_OK;
  198. }
  199. static pm_mode_t IRAM_ATTR get_lowest_allowed_mode()
  200. {
  201. /* TODO: optimize using ffs/clz */
  202. if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
  203. return PM_MODE_CPU_MAX;
  204. } else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
  205. return PM_MODE_APB_MAX;
  206. } else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
  207. return PM_MODE_APB_MIN;
  208. } else {
  209. return PM_MODE_LIGHT_SLEEP;
  210. }
  211. }
  212. void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
  213. pm_mode_switch_t lock_or_unlock, pm_time_t now)
  214. {
  215. bool need_switch = false;
  216. uint32_t mode_mask = BIT(mode);
  217. portENTER_CRITICAL_SAFE(&s_switch_lock);
  218. uint32_t count;
  219. if (lock_or_unlock == MODE_LOCK) {
  220. count = ++s_mode_lock_counts[mode];
  221. } else {
  222. count = s_mode_lock_counts[mode]--;
  223. }
  224. if (count == 1) {
  225. if (lock_or_unlock == MODE_LOCK) {
  226. s_mode_mask |= mode_mask;
  227. } else {
  228. s_mode_mask &= ~mode_mask;
  229. }
  230. need_switch = true;
  231. }
  232. pm_mode_t new_mode = s_mode;
  233. if (need_switch) {
  234. new_mode = get_lowest_allowed_mode();
  235. #ifdef WITH_PROFILING
  236. if (s_last_mode_change_time != 0) {
  237. pm_time_t diff = now - s_last_mode_change_time;
  238. s_time_in_mode[s_mode] += diff;
  239. }
  240. s_last_mode_change_time = now;
  241. #endif // WITH_PROFILING
  242. }
  243. portEXIT_CRITICAL_SAFE(&s_switch_lock);
  244. if (need_switch && new_mode != s_mode) {
  245. do_switch(new_mode);
  246. }
  247. }
  248. /**
  249. * @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
  250. * values on both CPUs.
  251. * @param old_ticks_per_us old CPU frequency
  252. * @param ticks_per_us new CPU frequency
  253. */
  254. static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
  255. {
  256. uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
  257. uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
  258. /* Update APB frequency value used by the timer */
  259. if (old_apb_ticks_per_us != apb_ticks_per_us) {
  260. esp_timer_impl_update_apb_freq(apb_ticks_per_us);
  261. }
  262. /* Calculate new tick divisor */
  263. _xt_tick_divisor = ticks_per_us * MHZ / XT_TICK_PER_SEC;
  264. int core_id = xPortGetCoreID();
  265. if (s_rtos_lock_handle[core_id] != NULL) {
  266. ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
  267. /* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
  268. * to calculate new CCOMPARE value.
  269. */
  270. s_ccount_div = old_ticks_per_us;
  271. s_ccount_mul = ticks_per_us;
  272. /* Update CCOMPARE value on this CPU */
  273. update_ccompare();
  274. #if portNUM_PROCESSORS == 2
  275. /* Send interrupt to the other CPU to update CCOMPARE value */
  276. int other_core_id = (core_id == 0) ? 1 : 0;
  277. s_need_update_ccompare[other_core_id] = true;
  278. esp_crosscore_int_send_freq_switch(other_core_id);
  279. int timeout = 0;
  280. while (s_need_update_ccompare[other_core_id]) {
  281. if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
  282. assert(false && "failed to update CCOMPARE, possible deadlock");
  283. }
  284. }
  285. #endif // portNUM_PROCESSORS == 2
  286. s_ccount_mul = 0;
  287. s_ccount_div = 0;
  288. ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
  289. }
  290. }
  291. /**
  292. * Perform the switch to new power mode.
  293. * Currently only changes the CPU frequency and adjusts clock dividers.
  294. * No light sleep yet.
  295. * @param new_mode mode to switch to
  296. */
  297. static void IRAM_ATTR do_switch(pm_mode_t new_mode)
  298. {
  299. const int core_id = xPortGetCoreID();
  300. do {
  301. portENTER_CRITICAL_ISR(&s_switch_lock);
  302. if (!s_is_switching) {
  303. break;
  304. }
  305. if (s_new_mode <= new_mode) {
  306. portEXIT_CRITICAL_ISR(&s_switch_lock);
  307. return;
  308. }
  309. if (s_need_update_ccompare[core_id]) {
  310. s_need_update_ccompare[core_id] = false;
  311. }
  312. portEXIT_CRITICAL_ISR(&s_switch_lock);
  313. } while (true);
  314. s_new_mode = new_mode;
  315. s_is_switching = true;
  316. bool config_changed = s_config_changed;
  317. s_config_changed = false;
  318. portEXIT_CRITICAL_ISR(&s_switch_lock);
  319. rtc_cpu_freq_config_t new_config = s_cpu_freq_by_mode[new_mode];
  320. rtc_cpu_freq_config_t old_config;
  321. if (!config_changed) {
  322. old_config = s_cpu_freq_by_mode[s_mode];
  323. } else {
  324. rtc_clk_cpu_freq_get_config(&old_config);
  325. }
  326. if (new_config.freq_mhz != old_config.freq_mhz) {
  327. uint32_t old_ticks_per_us = old_config.freq_mhz;
  328. uint32_t new_ticks_per_us = new_config.freq_mhz;
  329. bool switch_down = new_ticks_per_us < old_ticks_per_us;
  330. ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
  331. if (switch_down) {
  332. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  333. }
  334. rtc_clk_cpu_freq_set_config_fast(&new_config);
  335. if (!switch_down) {
  336. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  337. }
  338. ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
  339. }
  340. portENTER_CRITICAL_ISR(&s_switch_lock);
  341. s_mode = new_mode;
  342. s_is_switching = false;
  343. portEXIT_CRITICAL_ISR(&s_switch_lock);
  344. }
  345. /**
  346. * @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
  347. *
  348. * Adjusts CCOMPARE value so that the interrupt happens at the same time as it
  349. * would happen without the frequency change.
  350. * Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
  351. */
  352. static void IRAM_ATTR update_ccompare()
  353. {
  354. uint32_t ccount = XTHAL_GET_CCOUNT();
  355. uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
  356. if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) {
  357. uint32_t diff = ccompare - ccount;
  358. uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
  359. if (diff_scaled < _xt_tick_divisor) {
  360. uint32_t new_ccompare = ccount + diff_scaled;
  361. XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
  362. }
  363. }
  364. }
  365. static void IRAM_ATTR leave_idle()
  366. {
  367. int core_id = xPortGetCoreID();
  368. if (s_core_idle[core_id]) {
  369. // TODO: possible optimization: raise frequency here first
  370. esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
  371. s_core_idle[core_id] = false;
  372. }
  373. }
  374. void esp_pm_impl_idle_hook()
  375. {
  376. int core_id = xPortGetCoreID();
  377. uint32_t state = portENTER_CRITICAL_NESTED();
  378. if (!s_core_idle[core_id]) {
  379. esp_pm_lock_release(s_rtos_lock_handle[core_id]);
  380. s_core_idle[core_id] = true;
  381. }
  382. portEXIT_CRITICAL_NESTED(state);
  383. ESP_PM_TRACE_ENTER(IDLE, core_id);
  384. }
  385. void IRAM_ATTR esp_pm_impl_isr_hook()
  386. {
  387. int core_id = xPortGetCoreID();
  388. ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
  389. /* Prevent higher level interrupts (than the one this function was called from)
  390. * from happening in this section, since they will also call into esp_pm_impl_isr_hook.
  391. */
  392. uint32_t state = portENTER_CRITICAL_NESTED();
  393. #if portNUM_PROCESSORS == 2
  394. if (s_need_update_ccompare[core_id]) {
  395. update_ccompare();
  396. s_need_update_ccompare[core_id] = false;
  397. } else {
  398. leave_idle();
  399. }
  400. #else
  401. leave_idle();
  402. #endif // portNUM_PROCESSORS == 2
  403. portEXIT_CRITICAL_NESTED(state);
  404. ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
  405. }
  406. void esp_pm_impl_waiti()
  407. {
  408. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  409. int core_id = xPortGetCoreID();
  410. if (s_skipped_light_sleep[core_id]) {
  411. asm("waiti 0");
  412. /* Interrupt took the CPU out of waiti and s_rtos_lock_handle[core_id]
  413. * is now taken. However since we are back to idle task, we can release
  414. * the lock so that vApplicationSleep can attempt to enter light sleep.
  415. */
  416. esp_pm_impl_idle_hook();
  417. s_skipped_light_sleep[core_id] = false;
  418. }
  419. #else
  420. asm("waiti 0");
  421. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  422. }
  423. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  424. static inline bool IRAM_ATTR should_skip_light_sleep(int core_id)
  425. {
  426. #if portNUM_PROCESSORS == 2
  427. if (s_skip_light_sleep[core_id]) {
  428. s_skip_light_sleep[core_id] = false;
  429. s_skipped_light_sleep[core_id] = true;
  430. return true;
  431. }
  432. #endif // portNUM_PROCESSORS == 2
  433. if (s_mode != PM_MODE_LIGHT_SLEEP || s_is_switching) {
  434. s_skipped_light_sleep[core_id] = true;
  435. } else {
  436. s_skipped_light_sleep[core_id] = false;
  437. }
  438. return s_skipped_light_sleep[core_id];
  439. }
  440. static inline void IRAM_ATTR other_core_should_skip_light_sleep(int core_id)
  441. {
  442. #if portNUM_PROCESSORS == 2
  443. s_skip_light_sleep[!core_id] = true;
  444. #endif
  445. }
  446. void IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime )
  447. {
  448. portENTER_CRITICAL(&s_switch_lock);
  449. int core_id = xPortGetCoreID();
  450. if (!should_skip_light_sleep(core_id)) {
  451. /* Calculate how much we can sleep */
  452. int64_t next_esp_timer_alarm = esp_timer_get_next_alarm();
  453. int64_t now = esp_timer_get_time();
  454. int64_t time_until_next_alarm = next_esp_timer_alarm - now;
  455. int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime;
  456. int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm);
  457. if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) {
  458. esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US);
  459. #ifdef CONFIG_PM_TRACE
  460. /* to force tracing GPIOs to keep state */
  461. esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
  462. #endif
  463. /* Enter sleep */
  464. ESP_PM_TRACE_ENTER(SLEEP, core_id);
  465. int64_t sleep_start = esp_timer_get_time();
  466. esp_light_sleep_start();
  467. int64_t slept_us = esp_timer_get_time() - sleep_start;
  468. ESP_PM_TRACE_EXIT(SLEEP, core_id);
  469. uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL);
  470. if (slept_ticks > 0) {
  471. /* Adjust RTOS tick count based on the amount of time spent in sleep */
  472. vTaskStepTick(slept_ticks);
  473. /* Trigger tick interrupt, since sleep time was longer
  474. * than portTICK_PERIOD_MS. Note that setting INTSET does not
  475. * work for timer interrupt, and changing CCOMPARE would clear
  476. * the interrupt flag.
  477. */
  478. XTHAL_SET_CCOUNT(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16);
  479. while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) {
  480. ;
  481. }
  482. }
  483. other_core_should_skip_light_sleep(core_id);
  484. }
  485. }
  486. portEXIT_CRITICAL(&s_switch_lock);
  487. }
  488. #endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE
  489. #ifdef WITH_PROFILING
  490. void esp_pm_impl_dump_stats(FILE* out)
  491. {
  492. pm_time_t time_in_mode[PM_MODE_COUNT];
  493. portENTER_CRITICAL_ISR(&s_switch_lock);
  494. memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
  495. pm_time_t last_mode_change_time = s_last_mode_change_time;
  496. pm_mode_t cur_mode = s_mode;
  497. pm_time_t now = pm_get_time();
  498. portEXIT_CRITICAL_ISR(&s_switch_lock);
  499. time_in_mode[cur_mode] += now - last_mode_change_time;
  500. fprintf(out, "Mode stats:\n");
  501. for (int i = 0; i < PM_MODE_COUNT; ++i) {
  502. if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) {
  503. /* don't display light sleep mode if it's not enabled */
  504. continue;
  505. }
  506. fprintf(out, "%8s %3dM %12lld %2d%%\n",
  507. s_mode_names[i],
  508. s_cpu_freq_by_mode[i].freq_mhz,
  509. time_in_mode[i],
  510. (int) (time_in_mode[i] * 100 / now));
  511. }
  512. }
  513. #endif // WITH_PROFILING
  514. void esp_pm_impl_init()
  515. {
  516. #ifdef CONFIG_PM_TRACE
  517. esp_pm_trace_init();
  518. #endif
  519. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
  520. &s_rtos_lock_handle[0]));
  521. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
  522. #if portNUM_PROCESSORS == 2
  523. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
  524. &s_rtos_lock_handle[1]));
  525. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
  526. #endif // portNUM_PROCESSORS == 2
  527. /* Configure all modes to use the default CPU frequency.
  528. * This will be modified later by a call to esp_pm_configure.
  529. */
  530. rtc_cpu_freq_config_t default_config;
  531. if (!rtc_clk_cpu_freq_mhz_to_config(CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ, &default_config)) {
  532. assert(false && "unsupported frequency");
  533. }
  534. for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
  535. s_cpu_freq_by_mode[i] = default_config;
  536. }
  537. }