spiram_psram.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070
  1. /*
  2. Driver bits for PSRAM chips (at the moment only the ESP-PSRAM32 chip).
  3. */
  4. // Copyright 2013-2017 Espressif Systems (Shanghai) PTE LTD
  5. //
  6. // Licensed under the Apache License, Version 2.0 (the "License");
  7. // you may not use this file except in compliance with the License.
  8. // You may obtain a copy of the License at
  9. //
  10. // http://www.apache.org/licenses/LICENSE-2.0
  11. //
  12. // Unless required by applicable law or agreed to in writing, software
  13. // distributed under the License is distributed on an "AS IS" BASIS,
  14. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. // See the License for the specific language governing permissions and
  16. // limitations under the License.
  17. #include "sdkconfig.h"
  18. #include "string.h"
  19. #include "esp_attr.h"
  20. #include "esp_err.h"
  21. #include "esp_types.h"
  22. #include "esp_log.h"
  23. #include "spiram_psram.h"
  24. #include "esp32/rom/ets_sys.h"
  25. #include "esp32/rom/spi_flash.h"
  26. #include "esp32/rom/gpio.h"
  27. #include "esp32/rom/cache.h"
  28. #include "esp32/rom/efuse.h"
  29. #include "soc/dport_reg.h"
  30. #include "soc/efuse_periph.h"
  31. #include "soc/spi_caps.h"
  32. #include "driver/gpio.h"
  33. #include "driver/spi_common_internal.h"
  34. #include "driver/periph_ctrl.h"
  35. #include "bootloader_common.h"
  36. #if CONFIG_ESP32_SPIRAM_SUPPORT
  37. #include "soc/rtc.h"
  38. //Commands for PSRAM chip
  39. #define PSRAM_READ 0x03
  40. #define PSRAM_FAST_READ 0x0B
  41. #define PSRAM_FAST_READ_DUMMY 0x3
  42. #define PSRAM_FAST_READ_QUAD 0xEB
  43. #define PSRAM_FAST_READ_QUAD_DUMMY 0x5
  44. #define PSRAM_WRITE 0x02
  45. #define PSRAM_QUAD_WRITE 0x38
  46. #define PSRAM_ENTER_QMODE 0x35
  47. #define PSRAM_EXIT_QMODE 0xF5
  48. #define PSRAM_RESET_EN 0x66
  49. #define PSRAM_RESET 0x99
  50. #define PSRAM_SET_BURST_LEN 0xC0
  51. #define PSRAM_DEVICE_ID 0x9F
  52. typedef enum {
  53. PSRAM_CLK_MODE_NORM = 0, /*!< Normal SPI mode */
  54. PSRAM_CLK_MODE_DCLK = 1, /*!< Two extra clock cycles after CS is set high level */
  55. } psram_clk_mode_t;
  56. #define PSRAM_ID_KGD_M 0xff
  57. #define PSRAM_ID_KGD_S 8
  58. #define PSRAM_ID_KGD 0x5d
  59. #define PSRAM_ID_EID_M 0xff
  60. #define PSRAM_ID_EID_S 16
  61. // Use the [7:5](bit7~bit5) of EID to distinguish the psram size:
  62. //
  63. // BIT7 | BIT6 | BIT5 | SIZE(MBIT)
  64. // -------------------------------------
  65. // 0 | 0 | 0 | 16
  66. // 0 | 0 | 1 | 32
  67. // 0 | 1 | 0 | 64
  68. #define PSRAM_EID_SIZE_M 0x07
  69. #define PSRAM_EID_SIZE_S 5
  70. typedef enum {
  71. PSRAM_EID_SIZE_16MBITS = 0,
  72. PSRAM_EID_SIZE_32MBITS = 1,
  73. PSRAM_EID_SIZE_64MBITS = 2,
  74. } psram_eid_size_t;
  75. #define PSRAM_KGD(id) (((id) >> PSRAM_ID_KGD_S) & PSRAM_ID_KGD_M)
  76. #define PSRAM_EID(id) (((id) >> PSRAM_ID_EID_S) & PSRAM_ID_EID_M)
  77. #define PSRAM_SIZE_ID(id) ((PSRAM_EID(id) >> PSRAM_EID_SIZE_S) & PSRAM_EID_SIZE_M)
  78. #define PSRAM_IS_VALID(id) (PSRAM_KGD(id) == PSRAM_ID_KGD)
  79. // For the old version 32Mbit psram, using the spicial driver */
  80. #define PSRAM_IS_32MBIT_VER0(id) (PSRAM_EID(id) == 0x20)
  81. #define PSRAM_IS_64MBIT_TRIAL(id) (PSRAM_EID(id) == 0x26)
  82. // IO-pins for PSRAM.
  83. // WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines
  84. // hardcode the flash pins as well, making this code incompatible with either a setup
  85. // that has the flash on non-standard pins or ESP32s with built-in flash.
  86. #define PSRAM_SPIQ_SD0_IO 7
  87. #define PSRAM_SPID_SD1_IO 8
  88. #define PSRAM_SPIWP_SD3_IO 10
  89. #define PSRAM_SPIHD_SD2_IO 9
  90. #define FLASH_HSPI_CLK_IO 14
  91. #define FLASH_HSPI_CS_IO 15
  92. #define PSRAM_HSPI_SPIQ_SD0_IO 12
  93. #define PSRAM_HSPI_SPID_SD1_IO 13
  94. #define PSRAM_HSPI_SPIWP_SD3_IO 2
  95. #define PSRAM_HSPI_SPIHD_SD2_IO 4
  96. // PSRAM clock and cs IO should be configured based on hardware design.
  97. // For ESP32-WROVER or ESP32-WROVER-B module, the clock IO is IO17, the cs IO is IO16,
  98. // they are the default value for these two configs.
  99. #define D0WD_PSRAM_CLK_IO CONFIG_D0WD_PSRAM_CLK_IO // Default value is 17
  100. #define D0WD_PSRAM_CS_IO CONFIG_D0WD_PSRAM_CS_IO // Default value is 16
  101. #define D2WD_PSRAM_CLK_IO CONFIG_D2WD_PSRAM_CLK_IO // Default value is 9
  102. #define D2WD_PSRAM_CS_IO CONFIG_D2WD_PSRAM_CS_IO // Default value is 10
  103. // For ESP32-PICO chip, the psram share clock with flash. The flash clock pin is fixed, which is IO6.
  104. #define PICO_PSRAM_CLK_IO 6
  105. #define PICO_PSRAM_CS_IO CONFIG_PICO_PSRAM_CS_IO // Default value is 10
  106. typedef struct {
  107. uint8_t flash_clk_io;
  108. uint8_t flash_cs_io;
  109. uint8_t psram_clk_io;
  110. uint8_t psram_cs_io;
  111. uint8_t psram_spiq_sd0_io;
  112. uint8_t psram_spid_sd1_io;
  113. uint8_t psram_spiwp_sd3_io;
  114. uint8_t psram_spihd_sd2_io;
  115. } psram_io_t;
  116. #define PSRAM_INTERNAL_IO_28 28
  117. #define PSRAM_INTERNAL_IO_29 29
  118. #define PSRAM_IO_MATRIX_DUMMY_40M ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_40M
  119. #define PSRAM_IO_MATRIX_DUMMY_80M ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_80M
  120. #define _SPI_CACHE_PORT 0
  121. #define _SPI_FLASH_PORT 1
  122. #define _SPI_80M_CLK_DIV 1
  123. #define _SPI_40M_CLK_DIV 2
  124. //For 4MB PSRAM, we need one more SPI host, select which one to use by kconfig
  125. #ifdef CONFIG_SPIRAM_OCCUPY_HSPI_HOST
  126. #define PSRAM_SPI_MODULE PERIPH_HSPI_MODULE
  127. #define PSRAM_SPI_HOST HSPI_HOST
  128. #define PSRAM_CLK_SIGNAL HSPICLK_OUT_IDX
  129. #define PSRAM_SPI_NUM PSRAM_SPI_2
  130. #define PSRAM_SPICLKEN DPORT_SPI2_CLK_EN
  131. #elif defined CONFIG_SPIRAM_OCCUPY_VSPI_HOST
  132. #define PSRAM_SPI_MODULE PERIPH_VSPI_MODULE
  133. #define PSRAM_SPI_HOST VSPI_HOST
  134. #define PSRAM_CLK_SIGNAL VSPICLK_OUT_IDX
  135. #define PSRAM_SPI_NUM PSRAM_SPI_3
  136. #define PSRAM_SPICLKEN DPORT_SPI3_CLK_EN
  137. #else //set to SPI avoid HSPI and VSPI being used
  138. #define PSRAM_SPI_MODULE PERIPH_SPI_MODULE
  139. #define PSRAM_SPI_HOST SPI_HOST
  140. #define PSRAM_CLK_SIGNAL SPICLK_OUT_IDX
  141. #define PSRAM_SPI_NUM PSRAM_SPI_1
  142. #define PSRAM_SPICLKEN DPORT_SPI01_CLK_EN
  143. #endif
  144. static const char* TAG = "psram";
  145. typedef enum {
  146. PSRAM_SPI_1 = 0x1,
  147. PSRAM_SPI_2,
  148. PSRAM_SPI_3,
  149. PSRAM_SPI_MAX ,
  150. } psram_spi_num_t;
  151. static psram_cache_mode_t s_psram_mode = PSRAM_CACHE_MAX;
  152. static psram_clk_mode_t s_clk_mode = PSRAM_CLK_MODE_DCLK;
  153. static uint64_t s_psram_id = 0;
  154. static bool s_2t_mode_enabled = false;
  155. /* dummy_len_plus values defined in ROM for SPI flash configuration */
  156. extern uint8_t g_rom_spiflash_dummy_len_plus[];
  157. static int extra_dummy = 0;
  158. typedef enum {
  159. PSRAM_CMD_QPI,
  160. PSRAM_CMD_SPI,
  161. } psram_cmd_mode_t;
  162. typedef struct {
  163. uint16_t cmd; /*!< Command value */
  164. uint16_t cmdBitLen; /*!< Command byte length*/
  165. uint32_t *addr; /*!< Point to address value*/
  166. uint16_t addrBitLen; /*!< Address byte length*/
  167. uint32_t *txData; /*!< Point to send data buffer*/
  168. uint16_t txDataBitLen; /*!< Send data byte length.*/
  169. uint32_t *rxData; /*!< Point to recevie data buffer*/
  170. uint16_t rxDataBitLen; /*!< Recevie Data byte length.*/
  171. uint32_t dummyBitLen;
  172. } psram_cmd_t;
  173. static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode);
  174. static void psram_clear_spi_fifo(psram_spi_num_t spi_num)
  175. {
  176. int i;
  177. for (i = 0; i < 16; i++) {
  178. WRITE_PERI_REG(SPI_W0_REG(spi_num)+i*4, 0);
  179. }
  180. }
  181. //set basic SPI write mode
  182. static void psram_set_basic_write_mode(psram_spi_num_t spi_num)
  183. {
  184. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
  185. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
  186. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
  187. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
  188. }
  189. //set QPI write mode
  190. static void psram_set_qio_write_mode(psram_spi_num_t spi_num)
  191. {
  192. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
  193. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
  194. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
  195. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
  196. }
  197. //set QPI read mode
  198. static void psram_set_qio_read_mode(psram_spi_num_t spi_num)
  199. {
  200. SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
  201. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
  202. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
  203. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
  204. }
  205. //set SPI read mode
  206. static void psram_set_basic_read_mode(psram_spi_num_t spi_num)
  207. {
  208. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
  209. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
  210. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
  211. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
  212. }
  213. //start sending cmd/addr and optionally, receiving data
  214. static void IRAM_ATTR psram_cmd_recv_start(psram_spi_num_t spi_num, uint32_t* pRxData, uint16_t rxByteLen,
  215. psram_cmd_mode_t cmd_mode)
  216. {
  217. //get cs1
  218. CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
  219. SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
  220. uint32_t mode_backup = (READ_PERI_REG(SPI_USER_REG(spi_num)) >> SPI_FWRITE_DUAL_S) & 0xf;
  221. uint32_t rd_mode_backup = READ_PERI_REG(SPI_CTRL_REG(spi_num)) & (SPI_FREAD_DIO_M | SPI_FREAD_DUAL_M | SPI_FREAD_QUAD_M | SPI_FREAD_QIO_M);
  222. if (cmd_mode == PSRAM_CMD_SPI) {
  223. psram_set_basic_write_mode(spi_num);
  224. psram_set_basic_read_mode(spi_num);
  225. } else if (cmd_mode == PSRAM_CMD_QPI) {
  226. psram_set_qio_write_mode(spi_num);
  227. psram_set_qio_read_mode(spi_num);
  228. }
  229. //Wait for SPI0 to idle
  230. while ( READ_PERI_REG(SPI_EXT2_REG(0)) != 0);
  231. DPORT_SET_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
  232. // Start send data
  233. SET_PERI_REG_MASK(SPI_CMD_REG(spi_num), SPI_USR);
  234. while ((READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR));
  235. DPORT_CLEAR_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
  236. //recover spi mode
  237. SET_PERI_REG_BITS(SPI_USER_REG(spi_num), (pRxData?SPI_FWRITE_DUAL_M:0xf), mode_backup, SPI_FWRITE_DUAL_S);
  238. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), (SPI_FREAD_DIO_M|SPI_FREAD_DUAL_M|SPI_FREAD_QUAD_M|SPI_FREAD_QIO_M));
  239. SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), rd_mode_backup);
  240. //return cs to cs0
  241. SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
  242. CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
  243. if (pRxData) {
  244. int idx = 0;
  245. // Read data out
  246. do {
  247. *pRxData++ = READ_PERI_REG(SPI_W0_REG(spi_num) + (idx << 2));
  248. } while (++idx < ((rxByteLen / 4) + ((rxByteLen % 4) ? 1 : 0)));
  249. }
  250. }
  251. static uint32_t backup_usr[3];
  252. static uint32_t backup_usr1[3];
  253. static uint32_t backup_usr2[3];
  254. //setup spi command/addr/data/dummy in user mode
  255. static int psram_cmd_config(psram_spi_num_t spi_num, psram_cmd_t* pInData)
  256. {
  257. while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
  258. backup_usr[spi_num]=READ_PERI_REG(SPI_USER_REG(spi_num));
  259. backup_usr1[spi_num]=READ_PERI_REG(SPI_USER1_REG(spi_num));
  260. backup_usr2[spi_num]=READ_PERI_REG(SPI_USER2_REG(spi_num));
  261. // Set command by user.
  262. if (pInData->cmdBitLen != 0) {
  263. // Max command length 16 bits.
  264. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, pInData->cmdBitLen - 1,
  265. SPI_USR_COMMAND_BITLEN_S);
  266. // Enable command
  267. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
  268. // Load command,bit15-0 is cmd value.
  269. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_VALUE, pInData->cmd, SPI_USR_COMMAND_VALUE_S);
  270. } else {
  271. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
  272. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, 0, SPI_USR_COMMAND_BITLEN_S);
  273. }
  274. // Set Address by user.
  275. if (pInData->addrBitLen != 0) {
  276. SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, (pInData->addrBitLen - 1), SPI_USR_ADDR_BITLEN_S);
  277. // Enable address
  278. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
  279. // Set address
  280. WRITE_PERI_REG(SPI_ADDR_REG(spi_num), *pInData->addr);
  281. } else {
  282. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
  283. SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, 0, SPI_USR_ADDR_BITLEN_S);
  284. }
  285. // Set data by user.
  286. uint32_t* p_tx_val = pInData->txData;
  287. if (pInData->txDataBitLen != 0) {
  288. // Enable MOSI
  289. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
  290. // Load send buffer
  291. int len = (pInData->txDataBitLen + 31) / 32;
  292. if (p_tx_val != NULL) {
  293. memcpy((void*)SPI_W0_REG(spi_num), p_tx_val, len * 4);
  294. }
  295. // Set data send buffer length.Max data length 64 bytes.
  296. SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, (pInData->txDataBitLen - 1),
  297. SPI_USR_MOSI_DBITLEN_S);
  298. } else {
  299. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
  300. SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, 0, SPI_USR_MOSI_DBITLEN_S);
  301. }
  302. // Set rx data by user.
  303. if (pInData->rxDataBitLen != 0) {
  304. // Enable MOSI
  305. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
  306. // Set data send buffer length.Max data length 64 bytes.
  307. SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, (pInData->rxDataBitLen - 1),
  308. SPI_USR_MISO_DBITLEN_S);
  309. } else {
  310. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
  311. SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, 0, SPI_USR_MISO_DBITLEN_S);
  312. }
  313. if (pInData->dummyBitLen != 0) {
  314. SET_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
  315. SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, pInData->dummyBitLen - 1,
  316. SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  317. } else {
  318. CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
  319. SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, 0, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  320. }
  321. return 0;
  322. }
  323. static void psram_cmd_end(int spi_num) {
  324. while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
  325. WRITE_PERI_REG(SPI_USER_REG(spi_num), backup_usr[spi_num]);
  326. WRITE_PERI_REG(SPI_USER1_REG(spi_num), backup_usr1[spi_num]);
  327. WRITE_PERI_REG(SPI_USER2_REG(spi_num), backup_usr2[spi_num]);
  328. }
  329. //exit QPI mode(set back to SPI mode)
  330. static void psram_disable_qio_mode(psram_spi_num_t spi_num)
  331. {
  332. psram_cmd_t ps_cmd;
  333. uint32_t cmd_exit_qpi;
  334. cmd_exit_qpi = PSRAM_EXIT_QMODE;
  335. ps_cmd.txDataBitLen = 8;
  336. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  337. switch (s_psram_mode) {
  338. case PSRAM_CACHE_F80M_S80M:
  339. break;
  340. case PSRAM_CACHE_F80M_S40M:
  341. case PSRAM_CACHE_F40M_S40M:
  342. default:
  343. cmd_exit_qpi = PSRAM_EXIT_QMODE << 8;
  344. ps_cmd.txDataBitLen = 16;
  345. break;
  346. }
  347. }
  348. ps_cmd.txData = &cmd_exit_qpi;
  349. ps_cmd.cmd = 0;
  350. ps_cmd.cmdBitLen = 0;
  351. ps_cmd.addr = 0;
  352. ps_cmd.addrBitLen = 0;
  353. ps_cmd.rxData = NULL;
  354. ps_cmd.rxDataBitLen = 0;
  355. ps_cmd.dummyBitLen = 0;
  356. psram_cmd_config(spi_num, &ps_cmd);
  357. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_QPI);
  358. psram_cmd_end(spi_num);
  359. }
  360. //read psram id, should issue `psram_disable_qio_mode` before calling this
  361. static void psram_read_id(psram_spi_num_t spi_num, uint64_t* dev_id)
  362. {
  363. uint32_t dummy_bits = 0 + extra_dummy;
  364. uint32_t psram_id[2] = {0};
  365. psram_cmd_t ps_cmd;
  366. uint32_t addr = 0;
  367. ps_cmd.addrBitLen = 3 * 8;
  368. ps_cmd.cmd = PSRAM_DEVICE_ID;
  369. ps_cmd.cmdBitLen = 8;
  370. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  371. switch (s_psram_mode) {
  372. case PSRAM_CACHE_F80M_S80M:
  373. break;
  374. case PSRAM_CACHE_F80M_S40M:
  375. case PSRAM_CACHE_F40M_S40M:
  376. default:
  377. ps_cmd.cmdBitLen = 2; //this two bits is used to delay 2 clock cycle
  378. ps_cmd.cmd = 0;
  379. addr = (PSRAM_DEVICE_ID << 24) | 0;
  380. ps_cmd.addrBitLen = 4 * 8;
  381. break;
  382. }
  383. }
  384. ps_cmd.addr = &addr;
  385. ps_cmd.txDataBitLen = 0;
  386. ps_cmd.txData = NULL;
  387. ps_cmd.rxDataBitLen = 8 * 8;
  388. ps_cmd.rxData = psram_id;
  389. ps_cmd.dummyBitLen = dummy_bits;
  390. psram_cmd_config(spi_num, &ps_cmd);
  391. psram_clear_spi_fifo(spi_num);
  392. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_SPI);
  393. psram_cmd_end(spi_num);
  394. *dev_id = (uint64_t)(((uint64_t)psram_id[1] << 32) | psram_id[0]);
  395. }
  396. //enter QPI mode
  397. static esp_err_t IRAM_ATTR psram_enable_qio_mode(psram_spi_num_t spi_num)
  398. {
  399. psram_cmd_t ps_cmd;
  400. uint32_t addr = (PSRAM_ENTER_QMODE << 24) | 0;
  401. ps_cmd.cmdBitLen = 0;
  402. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  403. switch (s_psram_mode) {
  404. case PSRAM_CACHE_F80M_S80M:
  405. break;
  406. case PSRAM_CACHE_F80M_S40M:
  407. case PSRAM_CACHE_F40M_S40M:
  408. default:
  409. ps_cmd.cmdBitLen = 2;
  410. break;
  411. }
  412. }
  413. ps_cmd.cmd = 0;
  414. ps_cmd.addr = &addr;
  415. ps_cmd.addrBitLen = 8;
  416. ps_cmd.txData = NULL;
  417. ps_cmd.txDataBitLen = 0;
  418. ps_cmd.rxData = NULL;
  419. ps_cmd.rxDataBitLen = 0;
  420. ps_cmd.dummyBitLen = 0;
  421. psram_cmd_config(spi_num, &ps_cmd);
  422. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  423. psram_cmd_end(spi_num);
  424. return ESP_OK;
  425. }
  426. #if CONFIG_SPIRAM_2T_MODE
  427. // use SPI user mode to write psram
  428. static void spi_user_psram_write(psram_spi_num_t spi_num, uint32_t address, uint32_t *data_buffer, uint32_t data_len)
  429. {
  430. uint32_t addr = (PSRAM_QUAD_WRITE << 24) | (address & 0x7fffff);
  431. psram_cmd_t ps_cmd;
  432. ps_cmd.cmdBitLen = 0;
  433. ps_cmd.cmd = 0;
  434. ps_cmd.addr = &addr;
  435. ps_cmd.addrBitLen = 4 * 8;
  436. ps_cmd.txDataBitLen = 32 * 8;
  437. ps_cmd.txData = NULL;
  438. ps_cmd.rxDataBitLen = 0;
  439. ps_cmd.rxData = NULL;
  440. ps_cmd.dummyBitLen = 0;
  441. for(uint32_t i=0; i<data_len; i+=32) {
  442. psram_clear_spi_fifo(spi_num);
  443. addr = (PSRAM_QUAD_WRITE << 24) | ((address & 0x7fffff) + i);
  444. ps_cmd.txData = data_buffer + (i / 4);
  445. psram_cmd_config(spi_num, &ps_cmd);
  446. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_QPI);
  447. }
  448. psram_cmd_end(spi_num);
  449. }
  450. // use SPI user mode to read psram
  451. static void spi_user_psram_read(psram_spi_num_t spi_num, uint32_t address, uint32_t *data_buffer, uint32_t data_len)
  452. {
  453. uint32_t addr = (PSRAM_FAST_READ_QUAD << 24) | (address & 0x7fffff);
  454. uint32_t dummy_bits = PSRAM_FAST_READ_QUAD_DUMMY + 1;
  455. psram_cmd_t ps_cmd;
  456. ps_cmd.cmdBitLen = 0;
  457. ps_cmd.cmd = 0;
  458. ps_cmd.addr = &addr;
  459. ps_cmd.addrBitLen = 4 * 8;
  460. ps_cmd.txDataBitLen = 0;
  461. ps_cmd.txData = NULL;
  462. ps_cmd.rxDataBitLen = 32 * 8;
  463. ps_cmd.dummyBitLen = dummy_bits + extra_dummy;
  464. for(uint32_t i=0; i<data_len; i+=32) {
  465. psram_clear_spi_fifo(spi_num);
  466. addr = (PSRAM_FAST_READ_QUAD << 24) | ((address & 0x7fffff) + i);
  467. ps_cmd.rxData = data_buffer + (i / 4);
  468. psram_cmd_config(spi_num, &ps_cmd);
  469. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_QPI);
  470. }
  471. psram_cmd_end(spi_num);
  472. }
  473. //enable psram 2T mode
  474. static esp_err_t IRAM_ATTR psram_2t_mode_enable(psram_spi_num_t spi_num)
  475. {
  476. psram_disable_qio_mode(spi_num);
  477. // configure psram clock as 5 MHz
  478. uint32_t div = rtc_clk_apb_freq_get() / 5000000;
  479. esp_rom_spiflash_config_clk(div, spi_num);
  480. psram_cmd_t ps_cmd;
  481. // setp1: send cmd 0x5e
  482. // send one more bit clock after send cmd
  483. ps_cmd.cmd = 0x5e;
  484. ps_cmd.cmdBitLen = 8;
  485. ps_cmd.addrBitLen = 0;
  486. ps_cmd.addr = 0;
  487. ps_cmd.txDataBitLen = 0;
  488. ps_cmd.txData = NULL;
  489. ps_cmd.rxDataBitLen =0;
  490. ps_cmd.rxData = NULL;
  491. ps_cmd.dummyBitLen = 1;
  492. psram_cmd_config(spi_num, &ps_cmd);
  493. psram_clear_spi_fifo(spi_num);
  494. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  495. psram_cmd_end(spi_num);
  496. // setp2: send cmd 0x5f
  497. // send one more bit clock after send cmd
  498. ps_cmd.cmd = 0x5f;
  499. psram_cmd_config(spi_num, &ps_cmd);
  500. psram_clear_spi_fifo(spi_num);
  501. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  502. psram_cmd_end(spi_num);
  503. // setp3: keep cs as high level
  504. // send 128 cycles clock
  505. // send 1 bit high levle in ninth clock from the back to PSRAM SIO1
  506. GPIO_OUTPUT_SET(D0WD_PSRAM_CS_IO, 1);
  507. gpio_matrix_out(D0WD_PSRAM_CS_IO, SIG_GPIO_OUT_IDX, 0, 0);
  508. gpio_matrix_out(PSRAM_SPID_SD1_IO, SPIQ_OUT_IDX, 0, 0);
  509. gpio_matrix_in(PSRAM_SPID_SD1_IO, SPIQ_IN_IDX, 0);
  510. gpio_matrix_out(PSRAM_SPIQ_SD0_IO, SPID_OUT_IDX, 0, 0);
  511. gpio_matrix_in(PSRAM_SPIQ_SD0_IO, SPID_IN_IDX, 0);
  512. uint32_t w_data_2t[4] = {0x0, 0x0, 0x0, 0x00010000};
  513. ps_cmd.cmd = 0;
  514. ps_cmd.cmdBitLen = 0;
  515. ps_cmd.txDataBitLen = 128;
  516. ps_cmd.txData = w_data_2t;
  517. ps_cmd.dummyBitLen = 0;
  518. psram_clear_spi_fifo(spi_num);
  519. psram_cmd_config(spi_num, &ps_cmd);
  520. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  521. psram_cmd_end(spi_num);
  522. gpio_matrix_out(PSRAM_SPIQ_SD0_IO, SPIQ_OUT_IDX, 0, 0);
  523. gpio_matrix_in(PSRAM_SPIQ_SD0_IO, SPIQ_IN_IDX, 0);
  524. gpio_matrix_out(PSRAM_SPID_SD1_IO, SPID_OUT_IDX, 0, 0);
  525. gpio_matrix_in(PSRAM_SPID_SD1_IO, SPID_IN_IDX, 0);
  526. gpio_matrix_out(D0WD_PSRAM_CS_IO, SPICS1_OUT_IDX, 0, 0);
  527. // setp4: send cmd 0x5f
  528. // send one more bit clock after send cmd
  529. ps_cmd.cmd = 0x5f;
  530. ps_cmd.cmdBitLen = 8;
  531. ps_cmd.txDataBitLen = 0;
  532. ps_cmd.txData = NULL;
  533. ps_cmd.dummyBitLen = 1;
  534. psram_cmd_config(spi_num, &ps_cmd);
  535. psram_clear_spi_fifo(spi_num);
  536. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  537. psram_cmd_end(spi_num);
  538. // configure psram clock back to the default value
  539. switch (s_psram_mode) {
  540. case PSRAM_CACHE_F80M_S40M:
  541. case PSRAM_CACHE_F40M_S40M:
  542. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, spi_num);
  543. break;
  544. case PSRAM_CACHE_F80M_S80M:
  545. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, spi_num);
  546. break;
  547. default:
  548. break;
  549. }
  550. psram_enable_qio_mode(spi_num);
  551. return ESP_OK;
  552. }
  553. #define CHECK_DATA_LEN (1024)
  554. #define CHECK_ADDR_STEP (0x100000)
  555. #define SIZE_32MBIT (0x400000)
  556. #define SIZE_64MBIT (0x800000)
  557. static esp_err_t psram_2t_mode_check(psram_spi_num_t spi_num)
  558. {
  559. uint8_t w_check_data[CHECK_DATA_LEN] = {0};
  560. uint8_t r_check_data[CHECK_DATA_LEN] = {0};
  561. for (uint32_t addr=0; addr<SIZE_32MBIT; addr+=CHECK_ADDR_STEP) {
  562. spi_user_psram_write(spi_num, addr, (uint32_t *)w_check_data, CHECK_DATA_LEN);
  563. }
  564. memset(w_check_data, 0xff, sizeof(w_check_data));
  565. for (uint32_t addr=SIZE_32MBIT; addr<SIZE_64MBIT; addr+=CHECK_ADDR_STEP) {
  566. spi_user_psram_write(spi_num, addr, (uint32_t *)w_check_data, CHECK_DATA_LEN);
  567. }
  568. for (uint32_t addr=0; addr<SIZE_32MBIT; addr+=CHECK_ADDR_STEP) {
  569. spi_user_psram_read(spi_num, addr, (uint32_t *)r_check_data, CHECK_DATA_LEN);
  570. for (uint32_t j=0; j<CHECK_DATA_LEN; j++) {
  571. if (r_check_data[j] != 0xff) {
  572. return ESP_FAIL;
  573. }
  574. }
  575. }
  576. return ESP_OK;
  577. }
  578. #endif
  579. void psram_set_cs_timing(psram_spi_num_t spi_num, psram_clk_mode_t clk_mode)
  580. {
  581. if (clk_mode == PSRAM_CLK_MODE_NORM) {
  582. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
  583. // Set cs time.
  584. SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_HOLD_TIME_V, 1, SPI_HOLD_TIME_S);
  585. SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_SETUP_TIME_V, 0, SPI_SETUP_TIME_S);
  586. } else {
  587. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
  588. }
  589. }
  590. //spi param init for psram
  591. void IRAM_ATTR psram_spi_init(psram_spi_num_t spi_num, psram_cache_mode_t mode)
  592. {
  593. CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_TRANS_DONE << 5);
  594. // SPI_CPOL & SPI_CPHA
  595. CLEAR_PERI_REG_MASK(SPI_PIN_REG(spi_num), SPI_CK_IDLE_EDGE);
  596. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CK_OUT_EDGE);
  597. // SPI bit order
  598. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_WR_BIT_ORDER);
  599. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_RD_BIT_ORDER);
  600. // SPI bit order
  601. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_DOUTDIN);
  602. // May be not must to do.
  603. WRITE_PERI_REG(SPI_USER1_REG(spi_num), 0);
  604. // SPI mode type
  605. CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_SLAVE_MODE);
  606. memset((void*)SPI_W0_REG(spi_num), 0, 16 * 4);
  607. psram_set_cs_timing(spi_num, s_clk_mode);
  608. }
  609. //psram gpio init , different working frequency we have different solutions
  610. static void IRAM_ATTR psram_gpio_config(psram_io_t *psram_io, psram_cache_mode_t mode)
  611. {
  612. int spi_cache_dummy = 0;
  613. uint32_t rd_mode_reg = READ_PERI_REG(SPI_CTRL_REG(0));
  614. if (rd_mode_reg & SPI_FREAD_QIO_M) {
  615. spi_cache_dummy = SPI0_R_QIO_DUMMY_CYCLELEN;
  616. } else if (rd_mode_reg & SPI_FREAD_DIO_M) {
  617. spi_cache_dummy = SPI0_R_DIO_DUMMY_CYCLELEN;
  618. SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_ADDR_BITLEN_V, SPI0_R_DIO_ADDR_BITSLEN, SPI_USR_ADDR_BITLEN_S);
  619. } else if (rd_mode_reg & (SPI_FREAD_QUAD_M | SPI_FREAD_DUAL_M)) {
  620. spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
  621. } else {
  622. spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
  623. }
  624. switch (mode) {
  625. case PSRAM_CACHE_F80M_S40M:
  626. extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
  627. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  628. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  629. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  630. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
  631. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
  632. //set drive ability for clock
  633. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
  634. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
  635. break;
  636. case PSRAM_CACHE_F80M_S80M:
  637. extra_dummy = PSRAM_IO_MATRIX_DUMMY_80M;
  638. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  639. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  640. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  641. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
  642. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_FLASH_PORT);
  643. //set drive ability for clock
  644. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
  645. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 3, FUN_DRV_S);
  646. break;
  647. case PSRAM_CACHE_F40M_S40M:
  648. extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
  649. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  650. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  651. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_40M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  652. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_CACHE_PORT);
  653. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
  654. //set drive ability for clock
  655. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 2, FUN_DRV_S);
  656. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
  657. break;
  658. default:
  659. break;
  660. }
  661. SET_PERI_REG_MASK(SPI_USER_REG(0), SPI_USR_DUMMY); // dummy enable
  662. // In bootloader, all the signals are already configured,
  663. // We keep the following code in case the bootloader is some older version.
  664. gpio_matrix_out(psram_io->flash_cs_io, SPICS0_OUT_IDX, 0, 0);
  665. gpio_matrix_out(psram_io->psram_cs_io, SPICS1_OUT_IDX, 0, 0);
  666. gpio_matrix_out(psram_io->psram_spiq_sd0_io, SPIQ_OUT_IDX, 0, 0);
  667. gpio_matrix_in(psram_io->psram_spiq_sd0_io, SPIQ_IN_IDX, 0);
  668. gpio_matrix_out(psram_io->psram_spid_sd1_io, SPID_OUT_IDX, 0, 0);
  669. gpio_matrix_in(psram_io->psram_spid_sd1_io, SPID_IN_IDX, 0);
  670. gpio_matrix_out(psram_io->psram_spiwp_sd3_io, SPIWP_OUT_IDX, 0, 0);
  671. gpio_matrix_in(psram_io->psram_spiwp_sd3_io, SPIWP_IN_IDX, 0);
  672. gpio_matrix_out(psram_io->psram_spihd_sd2_io, SPIHD_OUT_IDX, 0, 0);
  673. gpio_matrix_in(psram_io->psram_spihd_sd2_io, SPIHD_IN_IDX, 0);
  674. //select pin function gpio
  675. if ((psram_io->flash_clk_io == SPI_IOMUX_PIN_NUM_CLK) && (psram_io->flash_clk_io != psram_io->psram_clk_io)) {
  676. //flash clock signal should come from IO MUX.
  677. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUNC_SD_CLK_SPICLK);
  678. } else {
  679. //flash clock signal should come from GPIO matrix.
  680. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], PIN_FUNC_GPIO);
  681. }
  682. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_cs_io], PIN_FUNC_GPIO);
  683. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_cs_io], PIN_FUNC_GPIO);
  684. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], PIN_FUNC_GPIO);
  685. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io], PIN_FUNC_GPIO);
  686. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io], PIN_FUNC_GPIO);
  687. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], PIN_FUNC_GPIO);
  688. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], PIN_FUNC_GPIO);
  689. uint32_t flash_id = g_rom_flashchip.device_id;
  690. if (flash_id == FLASH_ID_GD25LQ32C) {
  691. // Set drive ability for 1.8v flash in 80Mhz.
  692. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_cs_io], FUN_DRV_V, 3, FUN_DRV_S);
  693. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
  694. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_cs_io], FUN_DRV_V, 3, FUN_DRV_S);
  695. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
  696. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io], FUN_DRV_V, 3, FUN_DRV_S);
  697. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io], FUN_DRV_V, 3, FUN_DRV_S);
  698. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], FUN_DRV_V, 3, FUN_DRV_S);
  699. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], FUN_DRV_V, 3, FUN_DRV_S);
  700. }
  701. }
  702. psram_size_t psram_get_size()
  703. {
  704. if ((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id)) {
  705. return s_2t_mode_enabled ? PSRAM_SIZE_32MBITS : PSRAM_SIZE_64MBITS;
  706. } else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_32MBITS) {
  707. return PSRAM_SIZE_32MBITS;
  708. } else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_16MBITS) {
  709. return PSRAM_SIZE_16MBITS;
  710. } else {
  711. return PSRAM_SIZE_MAX;
  712. }
  713. }
  714. //used in UT only
  715. bool psram_is_32mbit_ver0(void)
  716. {
  717. return PSRAM_IS_32MBIT_VER0(s_psram_id);
  718. }
  719. /*
  720. * Psram mode init will overwrite original flash speed mode, so that it is possible to change psram and flash speed after OTA.
  721. * Flash read mode(QIO/QOUT/DIO/DOUT) will not be changed in app bin. It is decided by bootloader, OTA can not change this mode.
  722. */
  723. esp_err_t IRAM_ATTR psram_enable(psram_cache_mode_t mode, psram_vaddr_mode_t vaddrmode) //psram init
  724. {
  725. psram_io_t psram_io={0};
  726. uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
  727. uint32_t pkg_ver = chip_ver & 0x7;
  728. if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
  729. ESP_EARLY_LOGI(TAG, "This chip is ESP32-D2WD");
  730. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  731. if (cfg.tieh != RTC_VDDSDIO_TIEH_1_8V) {
  732. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 1.8V");
  733. return ESP_FAIL;
  734. }
  735. psram_io.psram_clk_io = D2WD_PSRAM_CLK_IO;
  736. psram_io.psram_cs_io = D2WD_PSRAM_CS_IO;
  737. } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4)) {
  738. ESP_EARLY_LOGI(TAG, "This chip is ESP32-PICO");
  739. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  740. if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
  741. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
  742. return ESP_FAIL;
  743. }
  744. s_clk_mode = PSRAM_CLK_MODE_NORM;
  745. psram_io.psram_clk_io = PICO_PSRAM_CLK_IO;
  746. psram_io.psram_cs_io = PICO_PSRAM_CS_IO;
  747. } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5)){
  748. ESP_EARLY_LOGI(TAG, "This chip is ESP32-D0WD");
  749. psram_io.psram_clk_io = D0WD_PSRAM_CLK_IO;
  750. psram_io.psram_cs_io = D0WD_PSRAM_CS_IO;
  751. } else {
  752. ESP_EARLY_LOGE(TAG, "Not a valid or known package id: %d", pkg_ver);
  753. abort();
  754. }
  755. const uint32_t spiconfig = ets_efuse_get_spiconfig();
  756. if (spiconfig == EFUSE_SPICONFIG_SPI_DEFAULTS) {
  757. psram_io.flash_clk_io = SPI_IOMUX_PIN_NUM_CLK;
  758. psram_io.flash_cs_io = SPI_IOMUX_PIN_NUM_CS;
  759. psram_io.psram_spiq_sd0_io = PSRAM_SPIQ_SD0_IO;
  760. psram_io.psram_spid_sd1_io = PSRAM_SPID_SD1_IO;
  761. psram_io.psram_spiwp_sd3_io = PSRAM_SPIWP_SD3_IO;
  762. psram_io.psram_spihd_sd2_io = PSRAM_SPIHD_SD2_IO;
  763. } else if (spiconfig == EFUSE_SPICONFIG_HSPI_DEFAULTS) {
  764. psram_io.flash_clk_io = FLASH_HSPI_CLK_IO;
  765. psram_io.flash_cs_io = FLASH_HSPI_CS_IO;
  766. psram_io.psram_spiq_sd0_io = PSRAM_HSPI_SPIQ_SD0_IO;
  767. psram_io.psram_spid_sd1_io = PSRAM_HSPI_SPID_SD1_IO;
  768. psram_io.psram_spiwp_sd3_io = PSRAM_HSPI_SPIWP_SD3_IO;
  769. psram_io.psram_spihd_sd2_io = PSRAM_HSPI_SPIHD_SD2_IO;
  770. } else {
  771. psram_io.flash_clk_io = EFUSE_SPICONFIG_RET_SPICLK(spiconfig);
  772. psram_io.flash_cs_io = EFUSE_SPICONFIG_RET_SPICS0(spiconfig);
  773. psram_io.psram_spiq_sd0_io = EFUSE_SPICONFIG_RET_SPIQ(spiconfig);
  774. psram_io.psram_spid_sd1_io = EFUSE_SPICONFIG_RET_SPID(spiconfig);
  775. psram_io.psram_spihd_sd2_io = EFUSE_SPICONFIG_RET_SPIHD(spiconfig);
  776. // If flash mode is set to QIO or QOUT, the WP pin is equal the value configured in bootloader.
  777. // If flash mode is set to DIO or DOUT, the WP pin should config it via menuconfig.
  778. #if CONFIG_ESPTOOLPY_FLASHMODE_QIO || CONFIG_FLASHMODE_QOUT
  779. psram_io.psram_spiwp_sd3_io = CONFIG_BOOTLOADER_SPI_WP_PIN;
  780. #else
  781. psram_io.psram_spiwp_sd3_io = CONFIG_SPIRAM_SPIWP_SD3_PIN;
  782. #endif
  783. }
  784. assert(mode < PSRAM_CACHE_MAX && "we don't support any other mode for now.");
  785. s_psram_mode = mode;
  786. WRITE_PERI_REG(SPI_EXT3_REG(0), 0x1);
  787. CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_PREP_HOLD_M);
  788. psram_spi_init(PSRAM_SPI_1, mode);
  789. switch (mode) {
  790. case PSRAM_CACHE_F80M_S80M:
  791. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  792. break;
  793. case PSRAM_CACHE_F80M_S40M:
  794. case PSRAM_CACHE_F40M_S40M:
  795. default:
  796. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  797. /* We need to delay CLK to the PSRAM with respect to the clock signal as output by the SPI peripheral.
  798. We do this by routing it signal to signal 224/225, which are used as a loopback; the extra run through
  799. the GPIO matrix causes the delay. We use GPIO20 (which is not in any package but has pad logic in
  800. silicon) as a temporary pad for this. So the signal path is:
  801. SPI CLK --> GPIO28 --> signal224(in then out) --> internal GPIO29 --> signal225(in then out) --> GPIO17(PSRAM CLK)
  802. */
  803. gpio_matrix_out(PSRAM_INTERNAL_IO_28, SPICLK_OUT_IDX, 0, 0);
  804. gpio_matrix_in(PSRAM_INTERNAL_IO_28, SIG_IN_FUNC224_IDX, 0);
  805. gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC224_IDX, 0, 0);
  806. gpio_matrix_in(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC225_IDX, 0);
  807. gpio_matrix_out(psram_io.psram_clk_io, SIG_IN_FUNC225_IDX, 0, 0);
  808. } else {
  809. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  810. }
  811. break;
  812. }
  813. // Rise VDDSIO for 1.8V psram.
  814. bootloader_common_vddsdio_configure();
  815. // GPIO related settings
  816. psram_gpio_config(&psram_io, mode);
  817. psram_spi_num_t spi_num = PSRAM_SPI_1;
  818. psram_disable_qio_mode(spi_num);
  819. psram_read_id(spi_num, &s_psram_id);
  820. if (!PSRAM_IS_VALID(s_psram_id)) {
  821. /* 16Mbit psram ID read error workaround:
  822. * treat the first read id as a dummy one as the pre-condition,
  823. * Send Read ID command again
  824. */
  825. psram_read_id(spi_num, &s_psram_id);
  826. if (!PSRAM_IS_VALID(s_psram_id)) {
  827. ESP_EARLY_LOGE(TAG, "PSRAM ID read error: 0x%08x", (uint32_t)s_psram_id);
  828. return ESP_FAIL;
  829. }
  830. }
  831. if (psram_is_32mbit_ver0()) {
  832. s_clk_mode = PSRAM_CLK_MODE_DCLK;
  833. if (mode == PSRAM_CACHE_F80M_S80M) {
  834. #ifdef CONFIG_SPIRAM_OCCUPY_NO_HOST
  835. ESP_EARLY_LOGE(TAG, "This version of PSRAM needs to claim an extra SPI peripheral at 80MHz. Please either: choose lower frequency by SPIRAM_SPEED_, or select one SPI peripheral it by SPIRAM_OCCUPY_*SPI_HOST in the menuconfig.");
  836. abort();
  837. #else
  838. /* note: If the third mode(80Mhz+80Mhz) is enabled for 32MBit 1V8 psram, one of HSPI/VSPI port will be
  839. occupied by the system (according to kconfig).
  840. Application code should never touch HSPI/VSPI hardware in this case. We try to stop applications
  841. from doing this using the drivers by claiming the port for ourselves */
  842. periph_module_enable(PSRAM_SPI_MODULE);
  843. bool r=spicommon_periph_claim(PSRAM_SPI_HOST, "psram");
  844. if (!r) {
  845. return ESP_ERR_INVALID_STATE;
  846. }
  847. gpio_matrix_out(psram_io.psram_clk_io, PSRAM_CLK_SIGNAL, 0, 0);
  848. //use spi3 clock,but use spi1 data/cs wires
  849. //We get a solid 80MHz clock from SPI3 by setting it up, starting a transaction, waiting until it
  850. //is in progress, then cutting the clock (but not the reset!) to that peripheral.
  851. WRITE_PERI_REG(SPI_ADDR_REG(PSRAM_SPI_NUM), 32 << 24);
  852. SET_PERI_REG_MASK(SPI_CMD_REG(PSRAM_SPI_NUM), SPI_FLASH_READ_M);
  853. uint32_t spi_status;
  854. while (1) {
  855. spi_status = READ_PERI_REG(SPI_EXT2_REG(PSRAM_SPI_NUM));
  856. if (spi_status != 0 && spi_status != 1) {
  857. DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, PSRAM_SPICLKEN);
  858. break;
  859. }
  860. }
  861. #endif
  862. }
  863. } else {
  864. // For other psram, we don't need any extra clock cycles after cs get back to high level
  865. s_clk_mode = PSRAM_CLK_MODE_NORM;
  866. gpio_matrix_out(PSRAM_INTERNAL_IO_28, SIG_GPIO_OUT_IDX, 0, 0);
  867. gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_GPIO_OUT_IDX, 0, 0);
  868. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  869. }
  870. // Update cs timing according to psram driving method.
  871. psram_set_cs_timing(PSRAM_SPI_1, s_clk_mode);
  872. psram_set_cs_timing(_SPI_CACHE_PORT, s_clk_mode);
  873. psram_enable_qio_mode(PSRAM_SPI_1);
  874. if(((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id))) {
  875. #if CONFIG_SPIRAM_2T_MODE
  876. #if CONFIG_SPIRAM_BANKSWITCH_ENABLE
  877. ESP_EARLY_LOGE(TAG, "PSRAM 2T mode and SPIRAM bank switching can not enabled meanwhile. Please read the help text for SPIRAM_2T_MODE in the project configuration menu.");
  878. abort();
  879. #endif
  880. /* Note: 2T mode command should not be sent twice,
  881. otherwise psram would get back to normal mode. */
  882. if (psram_2t_mode_check(PSRAM_SPI_1) != ESP_OK) {
  883. psram_2t_mode_enable(PSRAM_SPI_1);
  884. if (psram_2t_mode_check(PSRAM_SPI_1) != ESP_OK) {
  885. ESP_EARLY_LOGE(TAG, "PSRAM 2T mode enable fail!");
  886. return ESP_FAIL;
  887. }
  888. }
  889. s_2t_mode_enabled = true;
  890. ESP_EARLY_LOGI(TAG, "PSRAM is in 2T mode");
  891. #endif
  892. }
  893. psram_cache_init(mode, vaddrmode);
  894. return ESP_OK;
  895. }
  896. //register initialization for sram cache params and r/w commands
  897. static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode)
  898. {
  899. switch (psram_cache_mode) {
  900. case PSRAM_CACHE_F80M_S80M:
  901. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk,80+40;
  902. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0. FLASH DIV 2+SRAM DIV4
  903. break;
  904. case PSRAM_CACHE_F80M_S40M:
  905. CLEAR_PERI_REG_MASK(SPI_CLOCK_REG(0), SPI_CLK_EQU_SYSCLK_M);
  906. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKDIV_PRE_V, 0, SPI_CLKDIV_PRE_S);
  907. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_N, 1, SPI_CLKCNT_N_S);
  908. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_H, 0, SPI_CLKCNT_H_S);
  909. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_L, 1, SPI_CLKCNT_L_S);
  910. SET_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
  911. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0.
  912. break;
  913. case PSRAM_CACHE_F40M_S40M:
  914. default:
  915. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
  916. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div
  917. break;
  918. }
  919. CLEAR_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_DIO_M); //disable dio mode for cache command
  920. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_QIO_M); //enable qio mode for cache command
  921. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_RCMD_M); //enable cache read command
  922. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_WCMD_M); //enable cache write command
  923. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_ADDR_BITLEN_V, 23, SPI_SRAM_ADDR_BITLEN_S); //write address for cache command.
  924. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_RD_SRAM_DUMMY_M); //enable cache read dummy
  925. //config sram cache r/w command
  926. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 7,
  927. SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S);
  928. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, PSRAM_FAST_READ_QUAD,
  929. SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB
  930. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 7,
  931. SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S);
  932. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, PSRAM_QUAD_WRITE,
  933. SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38
  934. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
  935. SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
  936. switch (psram_cache_mode) {
  937. case PSRAM_CACHE_F80M_S80M: //in this mode , no delay is needed
  938. break;
  939. case PSRAM_CACHE_F80M_S40M: //if sram is @40M, need 2 cycles of delay
  940. case PSRAM_CACHE_F40M_S40M:
  941. default:
  942. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  943. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 15,
  944. SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S); //read command length, 2 bytes(1byte for delay),sending in qio mode in cache
  945. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, ((PSRAM_FAST_READ_QUAD) << 8),
  946. SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB, read command value,(0x00 for delay,0xeb for cmd)
  947. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 15,
  948. SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S); //write command length,2 bytes(1byte for delay,send in qio mode in cache)
  949. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, ((PSRAM_QUAD_WRITE) << 8),
  950. SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38, write command value,(0x00 for delay)
  951. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
  952. SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
  953. }
  954. break;
  955. }
  956. DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL|DPORT_PRO_DRAM_SPLIT);
  957. DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL|DPORT_APP_DRAM_SPLIT);
  958. if (vaddrmode == PSRAM_VADDR_MODE_LOWHIGH) {
  959. DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL);
  960. DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL);
  961. } else if (vaddrmode == PSRAM_VADDR_MODE_EVENODD) {
  962. DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_SPLIT);
  963. DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_SPLIT);
  964. }
  965. DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DRAM1|DPORT_PRO_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
  966. //cache page mode : 1 -->16k 4 -->2k 0-->32k,(accord with the settings in cache_sram_mmu_set)
  967. DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CMMU_SRAM_PAGE_MODE, 0, DPORT_PRO_CMMU_SRAM_PAGE_MODE_S);
  968. DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DRAM1|DPORT_APP_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
  969. //cache page mode : 1 -->16k 4 -->2k 0-->32k,(accord with the settings in cache_sram_mmu_set)
  970. DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CMMU_SRAM_PAGE_MODE, 0, DPORT_APP_CMMU_SRAM_PAGE_MODE_S);
  971. CLEAR_PERI_REG_MASK(SPI_PIN_REG(0), SPI_CS1_DIS_M); //ENABLE SPI0 CS1 TO PSRAM(CS0--FLASH; CS1--SRAM)
  972. }
  973. #endif // CONFIG_ESP32_SPIRAM_SUPPORT