system_api.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. // Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <string.h>
  15. #include "esp_system.h"
  16. #include "esp_attr.h"
  17. #include "esp_wifi.h"
  18. #include "esp_private/wifi.h"
  19. #include "esp_log.h"
  20. #include "sdkconfig.h"
  21. #include "esp32/rom/efuse.h"
  22. #include "esp32/rom/cache.h"
  23. #include "esp32/rom/uart.h"
  24. #include "soc/dport_reg.h"
  25. #include "soc/gpio_periph.h"
  26. #include "soc/efuse_periph.h"
  27. #include "soc/rtc_periph.h"
  28. #include "soc/timer_periph.h"
  29. #include "soc/cpu.h"
  30. #include "soc/rtc.h"
  31. #include "soc/rtc_wdt.h"
  32. #include "soc/soc_memory_layout.h"
  33. #include "freertos/FreeRTOS.h"
  34. #include "freertos/task.h"
  35. #include "freertos/xtensa_api.h"
  36. #include "esp_heap_caps.h"
  37. #include "esp_private/system_internal.h"
  38. #include "esp_efuse.h"
  39. #include "esp_efuse_table.h"
  40. static const char* TAG = "system_api";
  41. static uint8_t base_mac_addr[6] = { 0 };
  42. #define SHUTDOWN_HANDLERS_NO 3
  43. static shutdown_handler_t shutdown_handlers[SHUTDOWN_HANDLERS_NO];
  44. esp_err_t esp_base_mac_addr_set(uint8_t *mac)
  45. {
  46. if (mac == NULL) {
  47. ESP_LOGE(TAG, "Base MAC address is NULL");
  48. abort();
  49. }
  50. memcpy(base_mac_addr, mac, 6);
  51. return ESP_OK;
  52. }
  53. esp_err_t esp_base_mac_addr_get(uint8_t *mac)
  54. {
  55. uint8_t null_mac[6] = {0};
  56. if (memcmp(base_mac_addr, null_mac, 6) == 0) {
  57. ESP_LOGI(TAG, "Base MAC address is not set, read default base MAC address from BLK0 of EFUSE");
  58. return ESP_ERR_INVALID_MAC;
  59. }
  60. memcpy(mac, base_mac_addr, 6);
  61. return ESP_OK;
  62. }
  63. esp_err_t esp_efuse_mac_get_custom(uint8_t *mac)
  64. {
  65. uint8_t version;
  66. esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM_VER, &version, 8);
  67. if (version != 1) {
  68. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE version error, version = %d", version);
  69. return ESP_ERR_INVALID_VERSION;
  70. }
  71. uint8_t efuse_crc;
  72. esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM, mac, 48);
  73. esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM_CRC, &efuse_crc, 8);
  74. uint8_t calc_crc = esp_crc8(mac, 6);
  75. if (efuse_crc != calc_crc) {
  76. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  77. return ESP_ERR_INVALID_CRC;
  78. }
  79. return ESP_OK;
  80. }
  81. esp_err_t esp_efuse_mac_get_default(uint8_t* mac)
  82. {
  83. uint8_t efuse_crc;
  84. esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48);
  85. esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY_CRC, &efuse_crc, 8);
  86. uint8_t calc_crc = esp_crc8(mac, 6);
  87. if (efuse_crc != calc_crc) {
  88. // Small range of MAC addresses are accepted even if CRC is invalid.
  89. // These addresses are reserved for Espressif internal use.
  90. uint32_t mac_high = ((uint32_t)mac[0] << 8) | mac[1];
  91. if ((mac_high & 0xFFFF) == 0x18fe) {
  92. uint32_t mac_low = ((uint32_t)mac[2] << 24) | ((uint32_t)mac[3] << 16) | ((uint32_t)mac[4] << 8) | mac[5];
  93. if ((mac_low >= 0x346a85c7) && (mac_low <= 0x346a85f8)) {
  94. return ESP_OK;
  95. }
  96. } else {
  97. ESP_LOGE(TAG, "Base MAC address from BLK0 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  98. abort();
  99. }
  100. }
  101. return ESP_OK;
  102. }
  103. esp_err_t esp_derive_local_mac(uint8_t* local_mac, const uint8_t* universal_mac)
  104. {
  105. uint8_t idx;
  106. if (local_mac == NULL || universal_mac == NULL) {
  107. ESP_LOGE(TAG, "mac address param is NULL");
  108. return ESP_ERR_INVALID_ARG;
  109. }
  110. memcpy(local_mac, universal_mac, 6);
  111. for (idx = 0; idx < 64; idx++) {
  112. local_mac[0] = universal_mac[0] | 0x02;
  113. local_mac[0] ^= idx << 2;
  114. if (memcmp(local_mac, universal_mac, 6)) {
  115. break;
  116. }
  117. }
  118. return ESP_OK;
  119. }
  120. esp_err_t esp_read_mac(uint8_t* mac, esp_mac_type_t type)
  121. {
  122. uint8_t efuse_mac[6];
  123. if (mac == NULL) {
  124. ESP_LOGE(TAG, "mac address param is NULL");
  125. return ESP_ERR_INVALID_ARG;
  126. }
  127. if (type < ESP_MAC_WIFI_STA || type > ESP_MAC_ETH) {
  128. ESP_LOGE(TAG, "mac type is incorrect");
  129. return ESP_ERR_INVALID_ARG;
  130. }
  131. _Static_assert(UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR \
  132. || UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR, \
  133. "incorrect NUM_MAC_ADDRESS_FROM_EFUSE value");
  134. if (esp_base_mac_addr_get(efuse_mac) != ESP_OK) {
  135. esp_efuse_mac_get_default(efuse_mac);
  136. }
  137. switch (type) {
  138. case ESP_MAC_WIFI_STA:
  139. memcpy(mac, efuse_mac, 6);
  140. break;
  141. case ESP_MAC_WIFI_SOFTAP:
  142. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  143. memcpy(mac, efuse_mac, 6);
  144. mac[5] += 1;
  145. }
  146. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  147. esp_derive_local_mac(mac, efuse_mac);
  148. }
  149. break;
  150. case ESP_MAC_BT:
  151. memcpy(mac, efuse_mac, 6);
  152. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  153. mac[5] += 2;
  154. }
  155. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  156. mac[5] += 1;
  157. }
  158. break;
  159. case ESP_MAC_ETH:
  160. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  161. memcpy(mac, efuse_mac, 6);
  162. mac[5] += 3;
  163. }
  164. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  165. efuse_mac[5] += 1;
  166. esp_derive_local_mac(mac, efuse_mac);
  167. }
  168. break;
  169. default:
  170. ESP_LOGW(TAG, "incorrect mac type");
  171. break;
  172. }
  173. return ESP_OK;
  174. }
  175. esp_err_t esp_register_shutdown_handler(shutdown_handler_t handler)
  176. {
  177. for (int i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  178. if (shutdown_handlers[i] == handler) {
  179. return ESP_ERR_INVALID_STATE;
  180. } else if (shutdown_handlers[i] == NULL) {
  181. shutdown_handlers[i] = handler;
  182. return ESP_OK;
  183. }
  184. }
  185. return ESP_ERR_NO_MEM;
  186. }
  187. esp_err_t esp_unregister_shutdown_handler(shutdown_handler_t handler)
  188. {
  189. for (int i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  190. if (shutdown_handlers[i] == handler) {
  191. shutdown_handlers[i] = NULL;
  192. return ESP_OK;
  193. }
  194. }
  195. return ESP_ERR_INVALID_STATE;
  196. }
  197. void esp_restart_noos() __attribute__ ((noreturn));
  198. void IRAM_ATTR esp_restart(void)
  199. {
  200. int i;
  201. for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  202. if (shutdown_handlers[i]) {
  203. shutdown_handlers[i]();
  204. }
  205. }
  206. // Disable scheduler on this core.
  207. vTaskSuspendAll();
  208. esp_restart_noos();
  209. }
  210. /* "inner" restart function for after RTOS, interrupts & anything else on this
  211. * core are already stopped. Stalls other core, resets hardware,
  212. * triggers restart.
  213. */
  214. void IRAM_ATTR esp_restart_noos()
  215. {
  216. // Disable interrupts
  217. xt_ints_off(0xFFFFFFFF);
  218. // Enable RTC watchdog for 1 second
  219. rtc_wdt_protect_off();
  220. rtc_wdt_disable();
  221. rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_RESET_RTC);
  222. rtc_wdt_set_stage(RTC_WDT_STAGE1, RTC_WDT_STAGE_ACTION_RESET_SYSTEM);
  223. rtc_wdt_set_length_of_reset_signal(RTC_WDT_SYS_RESET_SIG, RTC_WDT_LENGTH_200ns);
  224. rtc_wdt_set_length_of_reset_signal(RTC_WDT_CPU_RESET_SIG, RTC_WDT_LENGTH_200ns);
  225. rtc_wdt_set_time(RTC_WDT_STAGE0, 1000);
  226. rtc_wdt_flashboot_mode_enable();
  227. // Reset and stall the other CPU.
  228. // CPU must be reset before stalling, in case it was running a s32c1i
  229. // instruction. This would cause memory pool to be locked by arbiter
  230. // to the stalled CPU, preventing current CPU from accessing this pool.
  231. const uint32_t core_id = xPortGetCoreID();
  232. const uint32_t other_core_id = (core_id == 0) ? 1 : 0;
  233. esp_cpu_reset(other_core_id);
  234. esp_cpu_stall(other_core_id);
  235. // Other core is now stalled, can access DPORT registers directly
  236. esp_dport_access_int_abort();
  237. // Disable TG0/TG1 watchdogs
  238. TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  239. TIMERG0.wdt_config0.en = 0;
  240. TIMERG0.wdt_wprotect=0;
  241. TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  242. TIMERG1.wdt_config0.en = 0;
  243. TIMERG1.wdt_wprotect=0;
  244. // Flush any data left in UART FIFOs
  245. uart_tx_wait_idle(0);
  246. uart_tx_wait_idle(1);
  247. uart_tx_wait_idle(2);
  248. #ifdef CONFIG_SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY
  249. if (esp_ptr_external_ram(get_sp())) {
  250. // If stack_addr is from External Memory (CONFIG_SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY is used)
  251. // then need to switch SP to Internal Memory otherwise
  252. // we will get the "Cache disabled but cached memory region accessed" error after Cache_Read_Disable.
  253. uint32_t new_sp = SOC_DRAM_LOW + (SOC_DRAM_HIGH - SOC_DRAM_LOW) / 2;
  254. SET_STACK(new_sp);
  255. }
  256. #endif
  257. // Disable cache
  258. Cache_Read_Disable(0);
  259. Cache_Read_Disable(1);
  260. // 2nd stage bootloader reconfigures SPI flash signals.
  261. // Reset them to the defaults expected by ROM.
  262. WRITE_PERI_REG(GPIO_FUNC0_IN_SEL_CFG_REG, 0x30);
  263. WRITE_PERI_REG(GPIO_FUNC1_IN_SEL_CFG_REG, 0x30);
  264. WRITE_PERI_REG(GPIO_FUNC2_IN_SEL_CFG_REG, 0x30);
  265. WRITE_PERI_REG(GPIO_FUNC3_IN_SEL_CFG_REG, 0x30);
  266. WRITE_PERI_REG(GPIO_FUNC4_IN_SEL_CFG_REG, 0x30);
  267. WRITE_PERI_REG(GPIO_FUNC5_IN_SEL_CFG_REG, 0x30);
  268. // Reset wifi/bluetooth/ethernet/sdio (bb/mac)
  269. DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG,
  270. DPORT_BB_RST | DPORT_FE_RST | DPORT_MAC_RST |
  271. DPORT_BT_RST | DPORT_BTMAC_RST | DPORT_SDIO_RST |
  272. DPORT_SDIO_HOST_RST | DPORT_EMAC_RST | DPORT_MACPWR_RST |
  273. DPORT_RW_BTMAC_RST | DPORT_RW_BTLP_RST);
  274. DPORT_REG_WRITE(DPORT_CORE_RST_EN_REG, 0);
  275. // Reset timer/spi/uart
  276. DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,
  277. DPORT_TIMERS_RST | DPORT_SPI01_RST | DPORT_SPI2_RST | DPORT_SPI3_RST | DPORT_SPI_DMA_RST | DPORT_UART_RST | DPORT_UART1_RST | DPORT_UART2_RST | DPORT_UART_MEM_RST);
  278. DPORT_REG_WRITE(DPORT_PERIP_RST_EN_REG, 0);
  279. // Set CPU back to XTAL source, no PLL, same as hard reset
  280. rtc_clk_cpu_freq_set_xtal();
  281. // Clear entry point for APP CPU
  282. DPORT_REG_WRITE(DPORT_APPCPU_CTRL_D_REG, 0);
  283. // Reset CPUs
  284. if (core_id == 0) {
  285. // Running on PRO CPU: APP CPU is stalled. Can reset both CPUs.
  286. esp_cpu_reset(1);
  287. esp_cpu_reset(0);
  288. } else {
  289. // Running on APP CPU: need to reset PRO CPU and unstall it,
  290. // then reset APP CPU
  291. esp_cpu_reset(0);
  292. esp_cpu_unstall(0);
  293. esp_cpu_reset(1);
  294. }
  295. while(true) {
  296. ;
  297. }
  298. }
  299. uint32_t esp_get_free_heap_size( void )
  300. {
  301. return heap_caps_get_free_size( MALLOC_CAP_DEFAULT );
  302. }
  303. uint32_t esp_get_free_internal_heap_size( void )
  304. {
  305. return heap_caps_get_free_size( MALLOC_CAP_8BIT | MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL );
  306. }
  307. uint32_t esp_get_minimum_free_heap_size( void )
  308. {
  309. return heap_caps_get_minimum_free_size( MALLOC_CAP_DEFAULT );
  310. }
  311. const char* esp_get_idf_version(void)
  312. {
  313. return IDF_VER;
  314. }
  315. void esp_chip_info(esp_chip_info_t* out_info)
  316. {
  317. uint32_t efuse_rd3 = REG_READ(EFUSE_BLK0_RDATA3_REG);
  318. memset(out_info, 0, sizeof(*out_info));
  319. out_info->model = CHIP_ESP32;
  320. out_info->revision = esp_efuse_get_chip_ver();
  321. if ((efuse_rd3 & EFUSE_RD_CHIP_VER_DIS_APP_CPU_M) == 0) {
  322. out_info->cores = 2;
  323. } else {
  324. out_info->cores = 1;
  325. }
  326. out_info->features = CHIP_FEATURE_WIFI_BGN;
  327. if ((efuse_rd3 & EFUSE_RD_CHIP_VER_DIS_BT_M) == 0) {
  328. out_info->features |= CHIP_FEATURE_BT | CHIP_FEATURE_BLE;
  329. }
  330. int package = (efuse_rd3 & EFUSE_RD_CHIP_VER_PKG_M) >> EFUSE_RD_CHIP_VER_PKG_S;
  331. if (package == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5 ||
  332. package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2 ||
  333. package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) {
  334. out_info->features |= CHIP_FEATURE_EMB_FLASH;
  335. }
  336. }