log.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. /*
  14. * Log library implementation notes.
  15. *
  16. * Log library stores all tags provided to esp_log_level_set as a linked
  17. * list. See uncached_tag_entry_t structure.
  18. *
  19. * To avoid looking up log level for given tag each time message is
  20. * printed, this library caches pointers to tags. Because the suggested
  21. * way of creating tags uses one 'TAG' constant per file, this caching
  22. * should be effective. Cache is a binary min-heap of cached_tag_entry_t
  23. * items, ordering is done on 'generation' member. In this context,
  24. * generation is an integer which is incremented each time an operation
  25. * with cache is performed. When cache is full, new item is inserted in
  26. * place of an oldest item (that is, with smallest 'generation' value).
  27. * After that, bubble-down operation is performed to fix ordering in the
  28. * min-heap.
  29. *
  30. * The potential problem with wrap-around of cache generation counter is
  31. * ignored for now. This will happen if someone happens to output more
  32. * than 4 billion log entries, at which point wrap-around will not be
  33. * the biggest problem.
  34. *
  35. */
  36. #ifndef BOOTLOADER_BUILD
  37. #include <freertos/FreeRTOS.h>
  38. #include <freertos/FreeRTOSConfig.h>
  39. #include <freertos/task.h>
  40. #include <freertos/semphr.h>
  41. #endif
  42. #include "esp_attr.h"
  43. #include "xtensa/hal.h"
  44. #include "soc/soc.h"
  45. #include <stdbool.h>
  46. #include <stdarg.h>
  47. #include <string.h>
  48. #include <stdlib.h>
  49. #include <stdio.h>
  50. #include <assert.h>
  51. #include <ctype.h>
  52. #include "esp_log.h"
  53. #include "sys/queue.h"
  54. #include "soc/soc_memory_layout.h"
  55. //print number of bytes per line for esp_log_buffer_char and esp_log_buffer_hex
  56. #define BYTES_PER_LINE 16
  57. #ifndef BOOTLOADER_BUILD
  58. // Number of tags to be cached. Must be 2**n - 1, n >= 2.
  59. #define TAG_CACHE_SIZE 31
  60. // Maximum time to wait for the mutex in a logging statement.
  61. #define MAX_MUTEX_WAIT_MS 10
  62. #define MAX_MUTEX_WAIT_TICKS ((MAX_MUTEX_WAIT_MS + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS)
  63. // Uncomment this to enable consistency checks and cache statistics in this file.
  64. // #define LOG_BUILTIN_CHECKS
  65. typedef struct {
  66. const char* tag;
  67. uint32_t level : 3;
  68. uint32_t generation : 29;
  69. } cached_tag_entry_t;
  70. typedef struct uncached_tag_entry_{
  71. SLIST_ENTRY(uncached_tag_entry_) entries;
  72. uint8_t level; // esp_log_level_t as uint8_t
  73. char tag[0]; // beginning of a zero-terminated string
  74. } uncached_tag_entry_t;
  75. static esp_log_level_t s_log_default_level = ESP_LOG_VERBOSE;
  76. static SLIST_HEAD(log_tags_head , uncached_tag_entry_) s_log_tags = SLIST_HEAD_INITIALIZER(s_log_tags);
  77. static cached_tag_entry_t s_log_cache[TAG_CACHE_SIZE];
  78. static uint32_t s_log_cache_max_generation = 0;
  79. static uint32_t s_log_cache_entry_count = 0;
  80. static vprintf_like_t s_log_print_func = &vprintf;
  81. static SemaphoreHandle_t s_log_mutex = NULL;
  82. #ifdef LOG_BUILTIN_CHECKS
  83. static uint32_t s_log_cache_misses = 0;
  84. #endif
  85. static inline bool get_cached_log_level(const char* tag, esp_log_level_t* level);
  86. static inline bool get_uncached_log_level(const char* tag, esp_log_level_t* level);
  87. static inline void add_to_cache(const char* tag, esp_log_level_t level);
  88. static void heap_bubble_down(int index);
  89. static inline void heap_swap(int i, int j);
  90. static inline bool should_output(esp_log_level_t level_for_message, esp_log_level_t level_for_tag);
  91. static inline void clear_log_level_list();
  92. vprintf_like_t esp_log_set_vprintf(vprintf_like_t func)
  93. {
  94. if (!s_log_mutex) {
  95. s_log_mutex = xSemaphoreCreateMutex();
  96. }
  97. xSemaphoreTake(s_log_mutex, portMAX_DELAY);
  98. vprintf_like_t orig_func = s_log_print_func;
  99. s_log_print_func = func;
  100. xSemaphoreGive(s_log_mutex);
  101. return orig_func;
  102. }
  103. void esp_log_level_set(const char* tag, esp_log_level_t level)
  104. {
  105. if (!s_log_mutex) {
  106. s_log_mutex = xSemaphoreCreateMutex();
  107. }
  108. xSemaphoreTake(s_log_mutex, portMAX_DELAY);
  109. // for wildcard tag, remove all linked list items and clear the cache
  110. if (strcmp(tag, "*") == 0) {
  111. s_log_default_level = level;
  112. clear_log_level_list();
  113. xSemaphoreGive(s_log_mutex);
  114. return;
  115. }
  116. //searching exist tag
  117. uncached_tag_entry_t *it = NULL;
  118. SLIST_FOREACH( it, &s_log_tags, entries ) {
  119. if ( strcmp(it->tag, tag)==0 ) {
  120. //one tag in the linked list match, update the level
  121. it->level = level;
  122. //quit with it != NULL
  123. break;
  124. }
  125. }
  126. //no exist tag, append new one
  127. if ( it == NULL ) {
  128. // allocate new linked list entry and append it to the head of the list
  129. size_t entry_size = offsetof(uncached_tag_entry_t, tag) + strlen(tag) + 1;
  130. uncached_tag_entry_t* new_entry = (uncached_tag_entry_t*) malloc(entry_size);
  131. if (!new_entry) {
  132. xSemaphoreGive(s_log_mutex);
  133. return;
  134. }
  135. new_entry->level = (uint8_t) level;
  136. strcpy(new_entry->tag, tag);
  137. SLIST_INSERT_HEAD( &s_log_tags, new_entry, entries );
  138. }
  139. //search in the cache and update it if exist
  140. for (int i = 0; i < s_log_cache_entry_count; ++i) {
  141. #ifdef LOG_BUILTIN_CHECKS
  142. assert(i == 0 || s_log_cache[(i - 1) / 2].generation < s_log_cache[i].generation);
  143. #endif
  144. if (strcmp(s_log_cache[i].tag,tag) == 0) {
  145. s_log_cache[i].level = level;
  146. break;
  147. }
  148. }
  149. xSemaphoreGive(s_log_mutex);
  150. }
  151. void clear_log_level_list()
  152. {
  153. uncached_tag_entry_t *it;
  154. while((it = SLIST_FIRST(&s_log_tags)) != NULL) {
  155. SLIST_REMOVE_HEAD(&s_log_tags, entries );
  156. free(it);
  157. }
  158. s_log_cache_entry_count = 0;
  159. s_log_cache_max_generation = 0;
  160. #ifdef LOG_BUILTIN_CHECKS
  161. s_log_cache_misses = 0;
  162. #endif
  163. }
  164. void IRAM_ATTR esp_log_writev(esp_log_level_t level,
  165. const char* tag,
  166. const char* format,
  167. va_list args)
  168. {
  169. if (!s_log_mutex) {
  170. s_log_mutex = xSemaphoreCreateMutex();
  171. }
  172. if (xSemaphoreTake(s_log_mutex, MAX_MUTEX_WAIT_TICKS) == pdFALSE) {
  173. return;
  174. }
  175. esp_log_level_t level_for_tag;
  176. // Look for the tag in cache first, then in the linked list of all tags
  177. if (!get_cached_log_level(tag, &level_for_tag)) {
  178. if (!get_uncached_log_level(tag, &level_for_tag)) {
  179. level_for_tag = s_log_default_level;
  180. }
  181. add_to_cache(tag, level_for_tag);
  182. #ifdef LOG_BUILTIN_CHECKS
  183. ++s_log_cache_misses;
  184. #endif
  185. }
  186. xSemaphoreGive(s_log_mutex);
  187. if (!should_output(level, level_for_tag)) {
  188. return;
  189. }
  190. (*s_log_print_func)(format, args);
  191. }
  192. void IRAM_ATTR esp_log_write(esp_log_level_t level,
  193. const char* tag,
  194. const char* format, ...)
  195. {
  196. va_list list;
  197. va_start(list, format);
  198. esp_log_writev(level, tag, format, list);
  199. va_end(list);
  200. }
  201. static inline bool get_cached_log_level(const char* tag, esp_log_level_t* level)
  202. {
  203. // Look for `tag` in cache
  204. int i;
  205. for (i = 0; i < s_log_cache_entry_count; ++i) {
  206. #ifdef LOG_BUILTIN_CHECKS
  207. assert(i == 0 || s_log_cache[(i - 1) / 2].generation < s_log_cache[i].generation);
  208. #endif
  209. if (s_log_cache[i].tag == tag) {
  210. break;
  211. }
  212. }
  213. if (i == s_log_cache_entry_count) { // Not found in cache
  214. return false;
  215. }
  216. // Return level from cache
  217. *level = (esp_log_level_t) s_log_cache[i].level;
  218. // If cache has been filled, start taking ordering into account
  219. // (other options are: dynamically resize cache, add "dummy" entries
  220. // to the cache; this option was chosen because code is much simpler,
  221. // and the unfair behavior of cache will show it self at most once, when
  222. // it has just been filled)
  223. if (s_log_cache_entry_count == TAG_CACHE_SIZE) {
  224. // Update item generation
  225. s_log_cache[i].generation = s_log_cache_max_generation++;
  226. // Restore heap ordering
  227. heap_bubble_down(i);
  228. }
  229. return true;
  230. }
  231. static inline void add_to_cache(const char* tag, esp_log_level_t level)
  232. {
  233. uint32_t generation = s_log_cache_max_generation++;
  234. // First consider the case when cache is not filled yet.
  235. // In this case, just add new entry at the end.
  236. // This happens to satisfy binary min-heap ordering.
  237. if (s_log_cache_entry_count < TAG_CACHE_SIZE) {
  238. s_log_cache[s_log_cache_entry_count] = (cached_tag_entry_t) {
  239. .generation = generation,
  240. .level = level,
  241. .tag = tag
  242. };
  243. ++s_log_cache_entry_count;
  244. return;
  245. }
  246. // Cache is full, so we replace the oldest entry (which is at index 0
  247. // because this is a min-heap) with the new one, and do bubble-down
  248. // operation to restore min-heap ordering.
  249. s_log_cache[0] = (cached_tag_entry_t) {
  250. .tag = tag,
  251. .level = level,
  252. .generation = generation
  253. };
  254. heap_bubble_down(0);
  255. }
  256. static inline bool get_uncached_log_level(const char* tag, esp_log_level_t* level)
  257. {
  258. // Walk the linked list of all tags and see if given tag is present in the list.
  259. // This is slow because tags are compared as strings.
  260. uncached_tag_entry_t *it;
  261. SLIST_FOREACH( it, &s_log_tags, entries ) {
  262. if (strcmp(tag, it->tag) == 0) {
  263. *level = it->level;
  264. return true;
  265. }
  266. }
  267. return false;
  268. }
  269. static inline bool should_output(esp_log_level_t level_for_message, esp_log_level_t level_for_tag)
  270. {
  271. return level_for_message <= level_for_tag;
  272. }
  273. static void heap_bubble_down(int index)
  274. {
  275. while (index < TAG_CACHE_SIZE / 2) {
  276. int left_index = index * 2 + 1;
  277. int right_index = left_index + 1;
  278. int next = (s_log_cache[left_index].generation < s_log_cache[right_index].generation) ? left_index : right_index;
  279. heap_swap(index, next);
  280. index = next;
  281. }
  282. }
  283. static inline void heap_swap(int i, int j)
  284. {
  285. cached_tag_entry_t tmp = s_log_cache[i];
  286. s_log_cache[i] = s_log_cache[j];
  287. s_log_cache[j] = tmp;
  288. }
  289. #endif //BOOTLOADER_BUILD
  290. #ifndef BOOTLOADER_BUILD
  291. #define ATTR IRAM_ATTR
  292. #else
  293. #define ATTR
  294. #endif // BOOTLOADER_BUILD
  295. //the variable defined in ROM is the cpu frequency in MHz.
  296. //as a workaround before the interface for this variable
  297. extern uint32_t g_ticks_per_us_pro;
  298. uint32_t ATTR esp_log_early_timestamp()
  299. {
  300. return xthal_get_ccount() / (g_ticks_per_us_pro * 1000);
  301. }
  302. #ifndef BOOTLOADER_BUILD
  303. uint32_t IRAM_ATTR esp_log_timestamp()
  304. {
  305. if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
  306. return esp_log_early_timestamp();
  307. }
  308. static uint32_t base = 0;
  309. if (base == 0 && xPortGetCoreID() == 0) {
  310. base = esp_log_early_timestamp();
  311. }
  312. TickType_t tick_count = xPortInIsrContext() ? xTaskGetTickCountFromISR() : xTaskGetTickCount();
  313. return base + tick_count * (1000 / configTICK_RATE_HZ);
  314. }
  315. #else
  316. uint32_t esp_log_timestamp() __attribute__((alias("esp_log_early_timestamp")));
  317. #endif //BOOTLOADER_BUILD
  318. void esp_log_buffer_hex_internal(const char *tag, const void *buffer, uint16_t buff_len,
  319. esp_log_level_t log_level)
  320. {
  321. if ( buff_len == 0 ) return;
  322. char temp_buffer[BYTES_PER_LINE+3]; //for not-byte-accessible memory
  323. char hex_buffer[3*BYTES_PER_LINE+1];
  324. const char *ptr_line;
  325. int bytes_cur_line;
  326. do {
  327. if ( buff_len > BYTES_PER_LINE ) {
  328. bytes_cur_line = BYTES_PER_LINE;
  329. } else {
  330. bytes_cur_line = buff_len;
  331. }
  332. if ( !esp_ptr_byte_accessible(buffer) ) {
  333. //use memcpy to get around alignment issue
  334. memcpy( temp_buffer, buffer, (bytes_cur_line+3)/4*4 );
  335. ptr_line = temp_buffer;
  336. } else {
  337. ptr_line = buffer;
  338. }
  339. for( int i = 0; i < bytes_cur_line; i ++ ) {
  340. sprintf( hex_buffer + 3*i, "%02x ", ptr_line[i] );
  341. }
  342. ESP_LOG_LEVEL( log_level, tag, "%s", hex_buffer );
  343. buffer += bytes_cur_line;
  344. buff_len -= bytes_cur_line;
  345. } while( buff_len );
  346. }
  347. void esp_log_buffer_char_internal(const char *tag, const void *buffer, uint16_t buff_len,
  348. esp_log_level_t log_level)
  349. {
  350. if ( buff_len == 0 ) return;
  351. char temp_buffer[BYTES_PER_LINE+3]; //for not-byte-accessible memory
  352. char char_buffer[BYTES_PER_LINE+1];
  353. const char *ptr_line;
  354. int bytes_cur_line;
  355. do {
  356. if ( buff_len > BYTES_PER_LINE ) {
  357. bytes_cur_line = BYTES_PER_LINE;
  358. } else {
  359. bytes_cur_line = buff_len;
  360. }
  361. if ( !esp_ptr_byte_accessible(buffer) ) {
  362. //use memcpy to get around alignment issue
  363. memcpy( temp_buffer, buffer, (bytes_cur_line+3)/4*4 );
  364. ptr_line = temp_buffer;
  365. } else {
  366. ptr_line = buffer;
  367. }
  368. for( int i = 0; i < bytes_cur_line; i ++ ) {
  369. sprintf( char_buffer + i, "%c", ptr_line[i] );
  370. }
  371. ESP_LOG_LEVEL( log_level, tag, "%s", char_buffer );
  372. buffer += bytes_cur_line;
  373. buff_len -= bytes_cur_line;
  374. } while( buff_len );
  375. }
  376. void esp_log_buffer_hexdump_internal( const char *tag, const void *buffer, uint16_t buff_len, esp_log_level_t log_level)
  377. {
  378. if ( buff_len == 0 ) return;
  379. char temp_buffer[BYTES_PER_LINE+3]; //for not-byte-accessible memory
  380. const char *ptr_line;
  381. //format: field[length]
  382. // ADDR[10]+" "+DATA_HEX[8*3]+" "+DATA_HEX[8*3]+" |"+DATA_CHAR[8]+"|"
  383. char hd_buffer[10+3+BYTES_PER_LINE*3+3+BYTES_PER_LINE+1+1];
  384. char *ptr_hd;
  385. int bytes_cur_line;
  386. do {
  387. if ( buff_len > BYTES_PER_LINE ) {
  388. bytes_cur_line = BYTES_PER_LINE;
  389. } else {
  390. bytes_cur_line = buff_len;
  391. }
  392. if ( !esp_ptr_byte_accessible(buffer) ) {
  393. //use memcpy to get around alignment issue
  394. memcpy( temp_buffer, buffer, (bytes_cur_line+3)/4*4 );
  395. ptr_line = temp_buffer;
  396. } else {
  397. ptr_line = buffer;
  398. }
  399. ptr_hd = hd_buffer;
  400. ptr_hd += sprintf( ptr_hd, "%p ", buffer );
  401. for( int i = 0; i < BYTES_PER_LINE; i ++ ) {
  402. if ( (i&7)==0 ) {
  403. ptr_hd += sprintf( ptr_hd, " " );
  404. }
  405. if ( i < bytes_cur_line ) {
  406. ptr_hd += sprintf( ptr_hd, " %02x", ptr_line[i] );
  407. } else {
  408. ptr_hd += sprintf( ptr_hd, " " );
  409. }
  410. }
  411. ptr_hd += sprintf( ptr_hd, " |" );
  412. for( int i = 0; i < bytes_cur_line; i ++ ) {
  413. if ( isprint((int)ptr_line[i]) ) {
  414. ptr_hd += sprintf( ptr_hd, "%c", ptr_line[i] );
  415. } else {
  416. ptr_hd += sprintf( ptr_hd, "." );
  417. }
  418. }
  419. ptr_hd += sprintf( ptr_hd, "|" );
  420. ESP_LOG_LEVEL( log_level, tag, "%s", hd_buffer );
  421. buffer += bytes_cur_line;
  422. buff_len -= bytes_cur_line;
  423. } while( buff_len );
  424. }