test_vfs_select.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614
  1. // Copyright 2018-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdio.h>
  15. #include <unistd.h>
  16. #include <sys/fcntl.h>
  17. #include <sys/param.h>
  18. #include "unity.h"
  19. #include "freertos/FreeRTOS.h"
  20. #include "driver/uart.h"
  21. #include "esp_vfs.h"
  22. #include "esp_vfs_dev.h"
  23. #include "esp_vfs_fat.h"
  24. #include "lwip/sockets.h"
  25. #include "lwip/netdb.h"
  26. #include "test_utils.h"
  27. typedef struct {
  28. int fd;
  29. int delay_ms;
  30. xSemaphoreHandle sem;
  31. } test_task_param_t;
  32. typedef struct {
  33. fd_set *rdfds;
  34. fd_set *wrfds;
  35. fd_set *errfds;
  36. int maxfds;
  37. struct timeval *tv;
  38. int select_ret;
  39. xSemaphoreHandle sem;
  40. } test_select_task_param_t;
  41. static const char message[] = "Hello world!";
  42. static int open_dummy_socket()
  43. {
  44. const struct addrinfo hints = {
  45. .ai_family = AF_INET,
  46. .ai_socktype = SOCK_DGRAM,
  47. };
  48. struct addrinfo *res = NULL;
  49. const int err = getaddrinfo("localhost", "80", &hints, &res);
  50. TEST_ASSERT_EQUAL(0, err);
  51. TEST_ASSERT_NOT_NULL(res);
  52. const int dummy_socket_fd = socket(res->ai_family, res->ai_socktype, 0);
  53. TEST_ASSERT(dummy_socket_fd >= 0);
  54. return dummy_socket_fd;
  55. }
  56. static int socket_init()
  57. {
  58. const struct addrinfo hints = {
  59. .ai_family = AF_INET,
  60. .ai_socktype = SOCK_DGRAM,
  61. };
  62. struct addrinfo *res;
  63. int err;
  64. struct sockaddr_in saddr = { 0 };
  65. int socket_fd = -1;
  66. err = getaddrinfo("localhost", "80", &hints, &res);
  67. TEST_ASSERT_EQUAL(err, 0);
  68. TEST_ASSERT_NOT_NULL(res);
  69. socket_fd = socket(res->ai_family, res->ai_socktype, 0);
  70. TEST_ASSERT(socket_fd >= 0);
  71. saddr.sin_family = PF_INET;
  72. saddr.sin_port = htons(80);
  73. saddr.sin_addr.s_addr = htonl(INADDR_ANY);
  74. err = bind(socket_fd, (struct sockaddr *) &saddr, sizeof(struct sockaddr_in));
  75. TEST_ASSERT(err >= 0);
  76. err = connect(socket_fd, res->ai_addr, res->ai_addrlen);
  77. TEST_ASSERT_EQUAL_MESSAGE(err, 0, "Socket connection failed");
  78. freeaddrinfo(res);
  79. return socket_fd;
  80. }
  81. static void uart1_init()
  82. {
  83. uart_config_t uart_config = {
  84. .baud_rate = 115200,
  85. .data_bits = UART_DATA_8_BITS,
  86. .parity = UART_PARITY_DISABLE,
  87. .stop_bits = UART_STOP_BITS_1,
  88. .flow_ctrl = UART_HW_FLOWCTRL_DISABLE
  89. };
  90. uart_param_config(UART_NUM_1, &uart_config);
  91. uart_driver_install(UART_NUM_1, 256, 256, 0, NULL, 0);
  92. }
  93. static void send_task(void *param)
  94. {
  95. const test_task_param_t *test_task_param = param;
  96. vTaskDelay(test_task_param->delay_ms / portTICK_PERIOD_MS);
  97. write(test_task_param->fd, message, sizeof(message));
  98. if (test_task_param->sem) {
  99. xSemaphoreGive(test_task_param->sem);
  100. }
  101. vTaskDelete(NULL);
  102. }
  103. static inline void start_task(const test_task_param_t *test_task_param)
  104. {
  105. xTaskCreate(send_task, "send_task", 4*1024, (void *) test_task_param, 5, NULL);
  106. }
  107. static void init(int *uart_fd, int *socket_fd)
  108. {
  109. test_case_uses_tcpip();
  110. uart1_init();
  111. UART1.conf0.loopback = 1;
  112. *uart_fd = open("/dev/uart/1", O_RDWR);
  113. TEST_ASSERT_NOT_EQUAL_MESSAGE(*uart_fd, -1, "Cannot open UART");
  114. esp_vfs_dev_uart_use_driver(1);
  115. *socket_fd = socket_init();
  116. }
  117. static void deinit(int uart_fd, int socket_fd)
  118. {
  119. esp_vfs_dev_uart_use_nonblocking(1);
  120. close(uart_fd);
  121. UART1.conf0.loopback = 0;
  122. uart_driver_delete(UART_NUM_1);
  123. close(socket_fd);
  124. }
  125. TEST_CASE("UART can do select()", "[vfs]")
  126. {
  127. int uart_fd;
  128. int socket_fd;
  129. struct timeval tv = {
  130. .tv_sec = 0,
  131. .tv_usec = 100000,
  132. };
  133. char recv_message[sizeof(message)];
  134. init(&uart_fd, &socket_fd);
  135. fd_set rfds;
  136. FD_ZERO(&rfds);
  137. FD_SET(uart_fd, &rfds);
  138. //without socket in rfds it will not use the same signalization
  139. const test_task_param_t test_task_param = {
  140. .fd = uart_fd,
  141. .delay_ms = 50,
  142. .sem = xSemaphoreCreateBinary(),
  143. };
  144. TEST_ASSERT_NOT_NULL(test_task_param.sem);
  145. start_task(&test_task_param);
  146. int s = select(uart_fd + 1, &rfds, NULL, NULL, &tv);
  147. TEST_ASSERT_EQUAL(s, 1);
  148. TEST_ASSERT(FD_ISSET(uart_fd, &rfds));
  149. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
  150. int read_bytes = read(uart_fd, recv_message, sizeof(message));
  151. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  152. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  153. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  154. FD_ZERO(&rfds);
  155. FD_SET(uart_fd, &rfds);
  156. FD_SET(socket_fd, &rfds);
  157. start_task(&test_task_param);
  158. s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv);
  159. TEST_ASSERT_EQUAL(s, 1);
  160. TEST_ASSERT(FD_ISSET(uart_fd, &rfds));
  161. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
  162. read_bytes = read(uart_fd, recv_message, sizeof(message));
  163. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  164. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  165. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  166. vSemaphoreDelete(test_task_param.sem);
  167. deinit(uart_fd, socket_fd);
  168. }
  169. TEST_CASE("UART can do poll()", "[vfs]")
  170. {
  171. int uart_fd;
  172. int socket_fd;
  173. char recv_message[sizeof(message)];
  174. init(&uart_fd, &socket_fd);
  175. struct pollfd poll_fds[] = {
  176. {
  177. .fd = uart_fd,
  178. .events = POLLIN,
  179. },
  180. {
  181. .fd = -1, // should be ignored according to the documentation of poll()
  182. },
  183. };
  184. const test_task_param_t test_task_param = {
  185. .fd = uart_fd,
  186. .delay_ms = 50,
  187. .sem = xSemaphoreCreateBinary(),
  188. };
  189. TEST_ASSERT_NOT_NULL(test_task_param.sem);
  190. start_task(&test_task_param);
  191. int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  192. TEST_ASSERT_EQUAL(s, 1);
  193. TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
  194. TEST_ASSERT_EQUAL(POLLIN, poll_fds[0].revents);
  195. TEST_ASSERT_EQUAL(-1, poll_fds[1].fd);
  196. TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
  197. int read_bytes = read(uart_fd, recv_message, sizeof(message));
  198. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  199. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  200. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  201. poll_fds[1].fd = socket_fd;
  202. poll_fds[1].events = POLLIN;
  203. start_task(&test_task_param);
  204. s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  205. TEST_ASSERT_EQUAL(s, 1);
  206. TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
  207. TEST_ASSERT_EQUAL(POLLIN, poll_fds[0].revents);
  208. TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd);
  209. TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
  210. read_bytes = read(uart_fd, recv_message, sizeof(message));
  211. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  212. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  213. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  214. vSemaphoreDelete(test_task_param.sem);
  215. deinit(uart_fd, socket_fd);
  216. }
  217. TEST_CASE("socket can do select()", "[vfs]")
  218. {
  219. int uart_fd;
  220. int socket_fd;
  221. struct timeval tv = {
  222. .tv_sec = 0,
  223. .tv_usec = 100000,
  224. };
  225. char recv_message[sizeof(message)];
  226. init(&uart_fd, &socket_fd);
  227. const int dummy_socket_fd = open_dummy_socket();
  228. fd_set rfds;
  229. FD_ZERO(&rfds);
  230. FD_SET(uart_fd, &rfds);
  231. FD_SET(socket_fd, &rfds);
  232. FD_SET(dummy_socket_fd, &rfds);
  233. const test_task_param_t test_task_param = {
  234. .fd = socket_fd,
  235. .delay_ms = 50,
  236. .sem = xSemaphoreCreateBinary(),
  237. };
  238. TEST_ASSERT_NOT_NULL(test_task_param.sem);
  239. start_task(&test_task_param);
  240. const int s = select(MAX(MAX(uart_fd, socket_fd), dummy_socket_fd) + 1, &rfds, NULL, NULL, &tv);
  241. TEST_ASSERT_EQUAL(1, s);
  242. TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds));
  243. TEST_ASSERT_UNLESS(FD_ISSET(dummy_socket_fd, &rfds));
  244. TEST_ASSERT(FD_ISSET(socket_fd, &rfds));
  245. int read_bytes = read(socket_fd, recv_message, sizeof(message));
  246. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  247. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  248. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  249. vSemaphoreDelete(test_task_param.sem);
  250. deinit(uart_fd, socket_fd);
  251. close(dummy_socket_fd);
  252. }
  253. TEST_CASE("socket can do poll()", "[vfs]")
  254. {
  255. int uart_fd;
  256. int socket_fd;
  257. char recv_message[sizeof(message)];
  258. init(&uart_fd, &socket_fd);
  259. const int dummy_socket_fd = open_dummy_socket();
  260. struct pollfd poll_fds[] = {
  261. {
  262. .fd = uart_fd,
  263. .events = POLLIN,
  264. },
  265. {
  266. .fd = socket_fd,
  267. .events = POLLIN,
  268. },
  269. {
  270. .fd = dummy_socket_fd,
  271. .events = POLLIN,
  272. },
  273. };
  274. const test_task_param_t test_task_param = {
  275. .fd = socket_fd,
  276. .delay_ms = 50,
  277. .sem = xSemaphoreCreateBinary(),
  278. };
  279. TEST_ASSERT_NOT_NULL(test_task_param.sem);
  280. start_task(&test_task_param);
  281. int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  282. TEST_ASSERT_EQUAL(s, 1);
  283. TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
  284. TEST_ASSERT_EQUAL(0, poll_fds[0].revents);
  285. TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd);
  286. TEST_ASSERT_EQUAL(POLLIN, poll_fds[1].revents);
  287. TEST_ASSERT_EQUAL(dummy_socket_fd, poll_fds[2].fd);
  288. TEST_ASSERT_EQUAL(0, poll_fds[2].revents);
  289. int read_bytes = read(socket_fd, recv_message, sizeof(message));
  290. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  291. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  292. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  293. vSemaphoreDelete(test_task_param.sem);
  294. deinit(uart_fd, socket_fd);
  295. close(dummy_socket_fd);
  296. }
  297. TEST_CASE("select() timeout", "[vfs]")
  298. {
  299. int uart_fd;
  300. int socket_fd;
  301. struct timeval tv = {
  302. .tv_sec = 0,
  303. .tv_usec = 100000,
  304. };
  305. init(&uart_fd, &socket_fd);
  306. fd_set rfds;
  307. FD_ZERO(&rfds);
  308. FD_SET(uart_fd, &rfds);
  309. FD_SET(socket_fd, &rfds);
  310. int s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv);
  311. TEST_ASSERT_EQUAL(s, 0);
  312. TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds));
  313. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
  314. FD_ZERO(&rfds);
  315. s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv);
  316. TEST_ASSERT_EQUAL(s, 0);
  317. TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds));
  318. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
  319. deinit(uart_fd, socket_fd);
  320. }
  321. TEST_CASE("poll() timeout", "[vfs]")
  322. {
  323. int uart_fd;
  324. int socket_fd;
  325. init(&uart_fd, &socket_fd);
  326. struct pollfd poll_fds[] = {
  327. {
  328. .fd = uart_fd,
  329. .events = POLLIN,
  330. },
  331. {
  332. .fd = socket_fd,
  333. .events = POLLIN,
  334. },
  335. };
  336. int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  337. TEST_ASSERT_EQUAL(s, 0);
  338. TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
  339. TEST_ASSERT_EQUAL(0, poll_fds[0].revents);
  340. TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd);
  341. TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
  342. poll_fds[0].fd = -1;
  343. poll_fds[1].fd = -1;
  344. s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  345. TEST_ASSERT_EQUAL(s, 0);
  346. TEST_ASSERT_EQUAL(-1, poll_fds[0].fd);
  347. TEST_ASSERT_EQUAL(0, poll_fds[0].revents);
  348. TEST_ASSERT_EQUAL(-1, poll_fds[1].fd);
  349. TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
  350. deinit(uart_fd, socket_fd);
  351. }
  352. static void select_task(void *task_param)
  353. {
  354. const test_select_task_param_t *param = task_param;
  355. int s = select(param->maxfds, param->rdfds, param->wrfds, param->errfds, param->tv);
  356. TEST_ASSERT_EQUAL(param->select_ret, s);
  357. if (param->sem) {
  358. xSemaphoreGive(param->sem);
  359. }
  360. vTaskDelete(NULL);
  361. }
  362. static void inline start_select_task(test_select_task_param_t *param)
  363. {
  364. xTaskCreate(select_task, "select_task", 4*1024, (void *) param, 5, NULL);
  365. }
  366. TEST_CASE("concurrent selects work", "[vfs]")
  367. {
  368. int uart_fd, socket_fd;
  369. init(&uart_fd, &socket_fd);
  370. const int dummy_socket_fd = open_dummy_socket();
  371. {
  372. // Two tasks will wait for the same UART FD for reading and they will time-out
  373. struct timeval tv = {
  374. .tv_sec = 0,
  375. .tv_usec = 100000,
  376. };
  377. fd_set rdfds1;
  378. FD_ZERO(&rdfds1);
  379. FD_SET(uart_fd, &rdfds1);
  380. test_select_task_param_t param = {
  381. .rdfds = &rdfds1,
  382. .wrfds = NULL,
  383. .errfds = NULL,
  384. .maxfds = uart_fd + 1,
  385. .tv = &tv,
  386. .select_ret = 0, // expected timeout
  387. .sem = xSemaphoreCreateBinary(),
  388. };
  389. TEST_ASSERT_NOT_NULL(param.sem);
  390. fd_set rdfds2;
  391. FD_ZERO(&rdfds2);
  392. FD_SET(uart_fd, &rdfds2);
  393. FD_SET(socket_fd, &rdfds2);
  394. FD_SET(dummy_socket_fd, &rdfds2);
  395. start_select_task(&param);
  396. vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
  397. int s = select(MAX(MAX(uart_fd, dummy_socket_fd), socket_fd) + 1, &rdfds2, NULL, NULL, &tv);
  398. TEST_ASSERT_EQUAL(0, s); // timeout here as well
  399. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1000 / portTICK_PERIOD_MS));
  400. vSemaphoreDelete(param.sem);
  401. }
  402. {
  403. // One tasks waits for UART reading and one for writing. The former will be successful and latter will
  404. // time-out.
  405. struct timeval tv = {
  406. .tv_sec = 0,
  407. .tv_usec = 100000,
  408. };
  409. fd_set wrfds1;
  410. FD_ZERO(&wrfds1);
  411. FD_SET(uart_fd, &wrfds1);
  412. test_select_task_param_t param = {
  413. .rdfds = NULL,
  414. .wrfds = &wrfds1,
  415. .errfds = NULL,
  416. .maxfds = uart_fd + 1,
  417. .tv = &tv,
  418. .select_ret = 0, // expected timeout
  419. .sem = xSemaphoreCreateBinary(),
  420. };
  421. TEST_ASSERT_NOT_NULL(param.sem);
  422. start_select_task(&param);
  423. fd_set rdfds2;
  424. FD_ZERO(&rdfds2);
  425. FD_SET(uart_fd, &rdfds2);
  426. FD_SET(socket_fd, &rdfds2);
  427. FD_SET(dummy_socket_fd, &rdfds2);
  428. const test_task_param_t send_param = {
  429. .fd = uart_fd,
  430. .delay_ms = 50,
  431. .sem = xSemaphoreCreateBinary(),
  432. };
  433. TEST_ASSERT_NOT_NULL(send_param.sem);
  434. start_task(&send_param); // This task will write to UART which will be detected by select()
  435. int s = select(MAX(MAX(uart_fd, dummy_socket_fd), socket_fd) + 1, &rdfds2, NULL, NULL, &tv);
  436. TEST_ASSERT_EQUAL(1, s);
  437. TEST_ASSERT(FD_ISSET(uart_fd, &rdfds2));
  438. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rdfds2));
  439. TEST_ASSERT_UNLESS(FD_ISSET(dummy_socket_fd, &rdfds2));
  440. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1000 / portTICK_PERIOD_MS));
  441. vSemaphoreDelete(param.sem);
  442. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(send_param.sem, 1000 / portTICK_PERIOD_MS));
  443. vSemaphoreDelete(send_param.sem);
  444. }
  445. deinit(uart_fd, socket_fd);
  446. close(dummy_socket_fd);
  447. }
  448. TEST_CASE("select() works with concurrent mount", "[vfs][fatfs]")
  449. {
  450. wl_handle_t test_wl_handle;
  451. int uart_fd, socket_fd;
  452. init(&uart_fd, &socket_fd);
  453. const int dummy_socket_fd = open_dummy_socket();
  454. esp_vfs_fat_sdmmc_mount_config_t mount_config = {
  455. .format_if_mount_failed = true,
  456. .max_files = 2
  457. };
  458. // select() will be waiting for a socket & UART and FATFS mount will occur in parallel
  459. struct timeval tv = {
  460. .tv_sec = 1,
  461. .tv_usec = 0,
  462. };
  463. fd_set rdfds;
  464. FD_ZERO(&rdfds);
  465. FD_SET(uart_fd, &rdfds);
  466. FD_SET(dummy_socket_fd, &rdfds);
  467. test_select_task_param_t param = {
  468. .rdfds = &rdfds,
  469. .wrfds = NULL,
  470. .errfds = NULL,
  471. .maxfds = MAX(uart_fd, dummy_socket_fd) + 1,
  472. .tv = &tv,
  473. .select_ret = 0, // expected timeout
  474. .sem = xSemaphoreCreateBinary(),
  475. };
  476. TEST_ASSERT_NOT_NULL(param.sem);
  477. start_select_task(&param);
  478. vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
  479. TEST_ESP_OK(esp_vfs_fat_spiflash_mount("/spiflash", NULL, &mount_config, &test_wl_handle));
  480. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1500 / portTICK_PERIOD_MS));
  481. // select() will be waiting for a socket & UART and FATFS unmount will occur in parallel
  482. FD_ZERO(&rdfds);
  483. FD_SET(uart_fd, &rdfds);
  484. FD_SET(dummy_socket_fd, &rdfds);
  485. start_select_task(&param);
  486. vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
  487. TEST_ESP_OK(esp_vfs_fat_spiflash_unmount("/spiflash", test_wl_handle));
  488. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1500 / portTICK_PERIOD_MS));
  489. vSemaphoreDelete(param.sem);
  490. deinit(uart_fd, socket_fd);
  491. close(dummy_socket_fd);
  492. }