ref_clock.c 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168
  1. // Copyright 2017 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. /* Unit tests need to have access to reliable timestamps even if CPU and APB
  15. * clock frequencies change over time. This reference clock is built upon two
  16. * peripherals: one RMT channel and one PCNT channel, plus one GPIO to connect
  17. * these peripherals.
  18. *
  19. * RMT channel is configured to use REF_TICK as clock source, which is a 1 MHz
  20. * clock derived from APB_CLK using a set of dividers. The divider is changed
  21. * automatically by hardware depending on the current clock source of APB_CLK.
  22. * For example, if APB_CLK is derived from PLL, one divider is used, and when
  23. * APB_CLK is derived from XTAL, another divider is used. RMT channel clocked
  24. * by REF_TICK is configured to generate a continuous 0.5 MHz signal, which is
  25. * connected to a GPIO. PCNT takes the input signal from this GPIO and counts
  26. * the edges (which occur at 1MHz frequency). PCNT counter is only 16 bit wide,
  27. * so an interrupt is configured to trigger when the counter reaches 30000,
  28. * incrementing a 32-bit millisecond counter maintained by software.
  29. * Together these two counters may be used at any time to obtain the timestamp.
  30. */
  31. #include "test_utils.h"
  32. #include "soc/rmt_periph.h"
  33. #include "soc/pcnt_periph.h"
  34. #include "soc/gpio_periph.h"
  35. #include "soc/dport_reg.h"
  36. #include "esp32/rom/gpio.h"
  37. #include "esp32/rom/ets_sys.h"
  38. #include "esp_intr_alloc.h"
  39. #include "freertos/FreeRTOS.h"
  40. #include "driver/periph_ctrl.h"
  41. /* Select which RMT and PCNT channels, and GPIO to use */
  42. #define REF_CLOCK_RMT_CHANNEL 7
  43. #define REF_CLOCK_PCNT_UNIT 0
  44. #define REF_CLOCK_GPIO 21
  45. #define REF_CLOCK_PRESCALER_MS 30
  46. static void IRAM_ATTR pcnt_isr(void* arg);
  47. static intr_handle_t s_intr_handle;
  48. static portMUX_TYPE s_lock = portMUX_INITIALIZER_UNLOCKED;
  49. static volatile uint32_t s_milliseconds;
  50. void ref_clock_init()
  51. {
  52. assert(s_intr_handle == NULL && "already initialized");
  53. // Route RMT output to GPIO matrix
  54. gpio_matrix_out(REF_CLOCK_GPIO, RMT_SIG_OUT0_IDX + REF_CLOCK_RMT_CHANNEL, false, false);
  55. // Initialize RMT
  56. periph_module_enable(PERIPH_RMT_MODULE);
  57. RMT.apb_conf.fifo_mask = 1;
  58. rmt_item32_t data = {
  59. .duration0 = 1,
  60. .level0 = 1,
  61. .duration1 = 0,
  62. .level1 = 0
  63. };
  64. RMTMEM.chan[REF_CLOCK_RMT_CHANNEL].data32[0] = data;
  65. RMTMEM.chan[REF_CLOCK_RMT_CHANNEL].data32[1].val = 0;
  66. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.clk_en = 1;
  67. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_start = 0;
  68. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.mem_owner = 0;
  69. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.mem_rd_rst = 1;
  70. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.apb_mem_rst = 1;
  71. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.carrier_en = 0;
  72. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.div_cnt = 1;
  73. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.mem_size = 1;
  74. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.ref_always_on = 0;
  75. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_conti_mode = 1;
  76. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_start = 1;
  77. // Route signal to PCNT
  78. int pcnt_sig_idx = (REF_CLOCK_PCNT_UNIT < 5) ?
  79. PCNT_SIG_CH0_IN0_IDX + 4 * REF_CLOCK_PCNT_UNIT :
  80. PCNT_SIG_CH0_IN5_IDX + 4 * (REF_CLOCK_PCNT_UNIT - 5);
  81. gpio_matrix_in(REF_CLOCK_GPIO, pcnt_sig_idx, false);
  82. if (REF_CLOCK_GPIO != 20) {
  83. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[REF_CLOCK_GPIO]);
  84. } else {
  85. PIN_INPUT_ENABLE(PERIPHS_IO_MUX_GPIO20_U);
  86. }
  87. // Initialize PCNT
  88. periph_module_enable(PERIPH_PCNT_MODULE);
  89. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_hctrl_mode = 0;
  90. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_lctrl_mode = 0;
  91. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_pos_mode = 1;
  92. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_neg_mode = 1;
  93. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_l_lim_en = 0;
  94. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_h_lim_en = 1;
  95. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_zero_en = 0;
  96. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_thres0_en = 0;
  97. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_thres1_en = 0;
  98. PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf2.cnt_h_lim = REF_CLOCK_PRESCALER_MS * 1000;
  99. // Enable PCNT and wait for it to start counting
  100. PCNT.ctrl.val &= ~(BIT(REF_CLOCK_PCNT_UNIT * 2 + 1));
  101. PCNT.ctrl.val |= BIT(REF_CLOCK_PCNT_UNIT * 2);
  102. PCNT.ctrl.val &= ~BIT(REF_CLOCK_PCNT_UNIT * 2);
  103. ets_delay_us(10000);
  104. // Enable interrupt
  105. s_milliseconds = 0;
  106. ESP_ERROR_CHECK(esp_intr_alloc(ETS_PCNT_INTR_SOURCE, ESP_INTR_FLAG_IRAM, pcnt_isr, NULL, &s_intr_handle));
  107. PCNT.int_clr.val = BIT(REF_CLOCK_PCNT_UNIT);
  108. PCNT.int_ena.val = BIT(REF_CLOCK_PCNT_UNIT);
  109. }
  110. static void IRAM_ATTR pcnt_isr(void* arg)
  111. {
  112. portENTER_CRITICAL_ISR(&s_lock);
  113. PCNT.int_clr.val = BIT(REF_CLOCK_PCNT_UNIT);
  114. s_milliseconds += REF_CLOCK_PRESCALER_MS;
  115. portEXIT_CRITICAL_ISR(&s_lock);
  116. }
  117. void ref_clock_deinit()
  118. {
  119. assert(s_intr_handle && "deinit called without init");
  120. // Disable interrupt
  121. PCNT.int_ena.val &= ~BIT(REF_CLOCK_PCNT_UNIT);
  122. esp_intr_free(s_intr_handle);
  123. s_intr_handle = NULL;
  124. // Disable RMT
  125. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_start = 0;
  126. RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.clk_en = 0;
  127. periph_module_disable(PERIPH_RMT_MODULE);
  128. // Disable PCNT
  129. PCNT.ctrl.val |= ~(BIT(REF_CLOCK_PCNT_UNIT * 2 + 1));
  130. periph_module_disable(PERIPH_PCNT_MODULE);
  131. }
  132. uint64_t ref_clock_get()
  133. {
  134. portENTER_CRITICAL(&s_lock);
  135. uint32_t microseconds = PCNT.cnt_unit[REF_CLOCK_PCNT_UNIT].cnt_val;
  136. uint32_t milliseconds = s_milliseconds;
  137. if (PCNT.int_st.val & BIT(REF_CLOCK_PCNT_UNIT)) {
  138. // refresh counter value, in case the overflow has happened after reading cnt_val
  139. microseconds = PCNT.cnt_unit[REF_CLOCK_PCNT_UNIT].cnt_val;
  140. milliseconds += REF_CLOCK_PRESCALER_MS;
  141. }
  142. portEXIT_CRITICAL(&s_lock);
  143. return 1000 * (uint64_t) milliseconds + (uint64_t) microseconds;
  144. }