spi_common.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498
  1. // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <string.h>
  15. #include "sdkconfig.h"
  16. #include "driver/spi_master.h"
  17. #include "soc/spi_periph.h"
  18. #include "esp_types.h"
  19. #include "esp_attr.h"
  20. #include "esp_log.h"
  21. #include "esp_err.h"
  22. #include "soc/soc.h"
  23. #include "soc/dport_reg.h"
  24. #include "soc/lldesc.h"
  25. #include "driver/gpio.h"
  26. #include "driver/periph_ctrl.h"
  27. #include "esp_heap_caps.h"
  28. #include "driver/spi_common_internal.h"
  29. #include "stdatomic.h"
  30. #include "hal/spi_hal.h"
  31. static const char *SPI_TAG = "spi";
  32. #define SPI_CHECK(a, str, ret_val) do { \
  33. if (!(a)) { \
  34. ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  35. return (ret_val); \
  36. } \
  37. } while(0)
  38. #define SPI_CHECK_PIN(pin_num, pin_name, check_output) if (check_output) { \
  39. SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
  40. } else { \
  41. SPI_CHECK(GPIO_IS_VALID_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
  42. }
  43. typedef struct spi_device_t spi_device_t;
  44. #define FUNC_GPIO PIN_FUNC_GPIO
  45. #define DMA_CHANNEL_ENABLED(dma_chan) (BIT(dma_chan-1))
  46. //Periph 1 is 'claimed' by SPI flash code.
  47. static atomic_bool spi_periph_claimed[SOC_SPI_PERIPH_NUM] = { ATOMIC_VAR_INIT(true), ATOMIC_VAR_INIT(false), ATOMIC_VAR_INIT(false),
  48. #if SOC_SPI_PERIPH_NUM >= 4
  49. ATOMIC_VAR_INIT(false),
  50. #endif
  51. };
  52. static const char* spi_claiming_func[3] = {NULL, NULL, NULL};
  53. static uint8_t spi_dma_chan_enabled = 0;
  54. static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;
  55. //Returns true if this peripheral is successfully claimed, false if otherwise.
  56. bool spicommon_periph_claim(spi_host_device_t host, const char* source)
  57. {
  58. bool false_var = false;
  59. bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &false_var, true);
  60. if (ret) {
  61. spi_claiming_func[host] = source;
  62. periph_module_enable(spi_periph_signal[host].module);
  63. } else {
  64. ESP_EARLY_LOGE(SPI_TAG, "SPI%d already claimed by %s.", host+1, spi_claiming_func[host]);
  65. }
  66. return ret;
  67. }
  68. bool spicommon_periph_in_use(spi_host_device_t host)
  69. {
  70. return atomic_load(&spi_periph_claimed[host]);
  71. }
  72. //Returns true if this peripheral is successfully freed, false if otherwise.
  73. bool spicommon_periph_free(spi_host_device_t host)
  74. {
  75. bool true_var = true;
  76. bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &true_var, false);
  77. if (ret) periph_module_disable(spi_periph_signal[host].module);
  78. return ret;
  79. }
  80. int spicommon_irqsource_for_host(spi_host_device_t host)
  81. {
  82. return spi_periph_signal[host].irq;
  83. }
  84. int spicommon_irqdma_source_for_host(spi_host_device_t host)
  85. {
  86. return spi_periph_signal[host].irq_dma;
  87. }
  88. static inline uint32_t get_dma_periph(int dma_chan)
  89. {
  90. #ifdef CONFIG_IDF_TARGET_ESP32S2BETA
  91. if (dma_chan==1) {
  92. return PERIPH_SPI2_DMA_MODULE;
  93. } else if (dma_chan==2) {
  94. return PERIPH_SPI3_DMA_MODULE;
  95. } else if (dma_chan==3) {
  96. return PERIPH_SPI_SHARED_DMA_MODULE;
  97. } else {
  98. abort();
  99. return -1;
  100. }
  101. #elif defined(CONFIG_IDF_TARGET_ESP32)
  102. return PERIPH_SPI_DMA_MODULE;
  103. #endif
  104. }
  105. bool spicommon_dma_chan_claim (int dma_chan)
  106. {
  107. bool ret = false;
  108. assert(dma_chan >= 1 && dma_chan <= SOC_SPI_DMA_CHAN_NUM);
  109. portENTER_CRITICAL(&spi_dma_spinlock);
  110. if ( !(spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan)) ) {
  111. // get the channel only when it's not claimed yet.
  112. spi_dma_chan_enabled |= DMA_CHANNEL_ENABLED(dma_chan);
  113. ret = true;
  114. }
  115. #if CONFIG_IDF_TARGET_ESP32
  116. periph_module_enable(get_dma_periph(dma_chan));
  117. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  118. if (dma_chan==1) {
  119. periph_module_enable(PERIPH_SPI2_DMA_MODULE);
  120. } else if (dma_chan==2) {
  121. periph_module_enable(PERIPH_SPI3_DMA_MODULE);
  122. } else if (dma_chan==3) {
  123. periph_module_enable(PERIPH_SPI_SHARED_DMA_MODULE);
  124. }
  125. #endif
  126. portEXIT_CRITICAL(&spi_dma_spinlock);
  127. return ret;
  128. }
  129. bool spicommon_dma_chan_in_use(int dma_chan)
  130. {
  131. assert(dma_chan==1 || dma_chan == 2);
  132. return spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan);
  133. }
  134. bool spicommon_dma_chan_free(int dma_chan)
  135. {
  136. assert( dma_chan == 1 || dma_chan == 2 );
  137. assert( spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan) );
  138. portENTER_CRITICAL(&spi_dma_spinlock);
  139. spi_dma_chan_enabled &= ~DMA_CHANNEL_ENABLED(dma_chan);
  140. #if CONFIG_IDF_TARGET_ESP32
  141. if ( spi_dma_chan_enabled == 0 ) {
  142. //disable the DMA only when all the channels are freed.
  143. periph_module_disable(get_dma_periph(dma_chan));
  144. }
  145. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  146. if (dma_chan==1) {
  147. periph_module_disable(PERIPH_SPI2_DMA_MODULE);
  148. } else if (dma_chan==2) {
  149. periph_module_disable(PERIPH_SPI3_DMA_MODULE);
  150. } else if (dma_chan==3) {
  151. periph_module_disable(PERIPH_SPI_SHARED_DMA_MODULE);
  152. }
  153. #endif
  154. portEXIT_CRITICAL(&spi_dma_spinlock);
  155. return true;
  156. }
  157. static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config)
  158. {
  159. if (bus_config->sclk_io_num>=0 &&
  160. bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) return false;
  161. if (bus_config->quadwp_io_num>=0 &&
  162. bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) return false;
  163. if (bus_config->quadhd_io_num>=0 &&
  164. bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) return false;
  165. if (bus_config->mosi_io_num >= 0 &&
  166. bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) return false;
  167. if (bus_config->miso_io_num>=0 &&
  168. bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) return false;
  169. return true;
  170. }
  171. /*
  172. Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a
  173. bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value,
  174. it should be able to be initialized.
  175. */
  176. esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, uint32_t flags, uint32_t* flags_o)
  177. {
  178. uint32_t temp_flag=0;
  179. bool miso_need_output;
  180. bool mosi_need_output;
  181. bool sclk_need_output;
  182. if ((flags&SPICOMMON_BUSFLAG_MASTER) != 0) {
  183. //initial for master
  184. miso_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
  185. mosi_need_output = true;
  186. sclk_need_output = true;
  187. } else {
  188. //initial for slave
  189. miso_need_output = true;
  190. mosi_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
  191. sclk_need_output = false;
  192. }
  193. const bool wp_need_output = true;
  194. const bool hd_need_output = true;
  195. //check pin capabilities
  196. if (bus_config->sclk_io_num>=0) {
  197. temp_flag |= SPICOMMON_BUSFLAG_SCLK;
  198. SPI_CHECK_PIN(bus_config->sclk_io_num, "sclk", sclk_need_output);
  199. }
  200. if (bus_config->quadwp_io_num>=0) {
  201. SPI_CHECK_PIN(bus_config->quadwp_io_num, "wp", wp_need_output);
  202. }
  203. if (bus_config->quadhd_io_num>=0) {
  204. SPI_CHECK_PIN(bus_config->quadhd_io_num, "hd", hd_need_output);
  205. }
  206. //set flags for QUAD mode according to the existence of wp and hd
  207. if (bus_config->quadhd_io_num >= 0 && bus_config->quadwp_io_num >= 0) temp_flag |= SPICOMMON_BUSFLAG_WPHD;
  208. if (bus_config->mosi_io_num >= 0) {
  209. temp_flag |= SPICOMMON_BUSFLAG_MOSI;
  210. SPI_CHECK_PIN(bus_config->mosi_io_num, "mosi", mosi_need_output);
  211. }
  212. if (bus_config->miso_io_num>=0) {
  213. temp_flag |= SPICOMMON_BUSFLAG_MISO;
  214. SPI_CHECK_PIN(bus_config->miso_io_num, "miso", miso_need_output);
  215. }
  216. //set flags for DUAL mode according to output-capability of MOSI and MISO pins.
  217. if ( (bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) &&
  218. (bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num)) ) {
  219. temp_flag |= SPICOMMON_BUSFLAG_DUAL;
  220. }
  221. //check if the selected pins correspond to the iomux pins of the peripheral
  222. bool use_iomux = bus_uses_iomux_pins(host, bus_config);
  223. if (use_iomux) temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS;
  224. uint32_t missing_flag = flags & ~temp_flag;
  225. missing_flag &= ~SPICOMMON_BUSFLAG_MASTER;//don't check this flag
  226. if (missing_flag != 0) {
  227. //check pins existence
  228. if (missing_flag & SPICOMMON_BUSFLAG_SCLK) ESP_LOGE(SPI_TAG, "sclk pin required.");
  229. if (missing_flag & SPICOMMON_BUSFLAG_MOSI) ESP_LOGE(SPI_TAG, "mosi pin required.");
  230. if (missing_flag & SPICOMMON_BUSFLAG_MISO) ESP_LOGE(SPI_TAG, "miso pin required.");
  231. if (missing_flag & SPICOMMON_BUSFLAG_DUAL) ESP_LOGE(SPI_TAG, "not both mosi and miso output capable");
  232. if (missing_flag & SPICOMMON_BUSFLAG_WPHD) ESP_LOGE(SPI_TAG, "both wp and hd required.");
  233. if (missing_flag & SPICOMMON_BUSFLAG_IOMUX_PINS) ESP_LOGE(SPI_TAG, "not using iomux pins");
  234. SPI_CHECK(missing_flag == 0, "not all required capabilities satisfied.", ESP_ERR_INVALID_ARG);
  235. }
  236. if (use_iomux) {
  237. //All SPI iomux pin selections resolve to 1, so we put that here instead of trying to figure
  238. //out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway.
  239. ESP_LOGD(SPI_TAG, "SPI%d use iomux pins.", host+1);
  240. if (bus_config->mosi_io_num >= 0) {
  241. gpio_iomux_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in);
  242. gpio_iomux_out(bus_config->mosi_io_num, spi_periph_signal[host].func, false);
  243. }
  244. if (bus_config->miso_io_num >= 0) {
  245. gpio_iomux_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in);
  246. gpio_iomux_out(bus_config->miso_io_num, spi_periph_signal[host].func, false);
  247. }
  248. if (bus_config->quadwp_io_num >= 0) {
  249. gpio_iomux_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in);
  250. gpio_iomux_out(bus_config->quadwp_io_num, spi_periph_signal[host].func, false);
  251. }
  252. if (bus_config->quadhd_io_num >= 0) {
  253. gpio_iomux_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in);
  254. gpio_iomux_out(bus_config->quadhd_io_num, spi_periph_signal[host].func, false);
  255. }
  256. if (bus_config->sclk_io_num >= 0) {
  257. gpio_iomux_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in);
  258. gpio_iomux_out(bus_config->sclk_io_num, spi_periph_signal[host].func, false);
  259. }
  260. temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS;
  261. } else {
  262. //Use GPIO matrix
  263. ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host+1);
  264. if (bus_config->mosi_io_num >= 0) {
  265. if (mosi_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
  266. gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT);
  267. gpio_matrix_out(bus_config->mosi_io_num, spi_periph_signal[host].spid_out, false, false);
  268. } else {
  269. gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT);
  270. }
  271. gpio_matrix_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in, false);
  272. #if CONFIG_IDF_TARGET_ESP32S2BETA
  273. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->mosi_io_num]);
  274. #endif
  275. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], FUNC_GPIO);
  276. }
  277. if (bus_config->miso_io_num >= 0) {
  278. if (miso_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
  279. gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT);
  280. gpio_matrix_out(bus_config->miso_io_num, spi_periph_signal[host].spiq_out, false, false);
  281. } else {
  282. gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT);
  283. }
  284. gpio_matrix_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in, false);
  285. #if CONFIG_IDF_TARGET_ESP32S2BETA
  286. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->miso_io_num]);
  287. #endif
  288. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], FUNC_GPIO);
  289. }
  290. if (bus_config->quadwp_io_num >= 0) {
  291. gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT);
  292. gpio_matrix_out(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_out, false, false);
  293. gpio_matrix_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in, false);
  294. #if CONFIG_IDF_TARGET_ESP32S2BETA
  295. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num]);
  296. #endif
  297. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], FUNC_GPIO);
  298. }
  299. if (bus_config->quadhd_io_num >= 0) {
  300. gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT);
  301. gpio_matrix_out(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_out, false, false);
  302. gpio_matrix_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in, false);
  303. #if CONFIG_IDF_TARGET_ESP32S2BETA
  304. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num]);
  305. #endif
  306. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], FUNC_GPIO);
  307. }
  308. if (bus_config->sclk_io_num >= 0) {
  309. if (sclk_need_output) {
  310. gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT);
  311. gpio_matrix_out(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_out, false, false);
  312. } else {
  313. gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT);
  314. }
  315. gpio_matrix_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in, false);
  316. #if CONFIG_IDF_TARGET_ESP32S2BETA
  317. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->sclk_io_num]);
  318. #endif
  319. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], FUNC_GPIO);
  320. }
  321. }
  322. //Select DMA channel.
  323. #ifdef CONFIG_IDF_TARGET_ESP32
  324. DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
  325. #elif defined(CONFIG_IDF_TARGET_ESP32S2BETA)
  326. if (dma_chan==VSPI_HOST) {
  327. DPORT_SET_PERI_REG_MASK(DPORT_SPI_DMA_CHAN_SEL_REG, DPORT_SPI_SHARED_DMA_SEL_M);
  328. }
  329. #endif
  330. if (flags_o) *flags_o = temp_flag;
  331. return ESP_OK;
  332. }
  333. esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg)
  334. {
  335. int pin_array[] = {
  336. bus_cfg->mosi_io_num,
  337. bus_cfg->miso_io_num,
  338. bus_cfg->sclk_io_num,
  339. bus_cfg->quadwp_io_num,
  340. bus_cfg->quadhd_io_num,
  341. };
  342. for (int i = 0; i < sizeof(pin_array)/sizeof(int); i ++) {
  343. const int io = pin_array[i];
  344. if (io >= 0 && GPIO_IS_VALID_GPIO(io)) gpio_reset_pin(io);
  345. }
  346. return ESP_OK;
  347. }
  348. void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix)
  349. {
  350. if (!force_gpio_matrix && cs_io_num == spi_periph_signal[host].spics0_iomux_pin && cs_num == 0) {
  351. //The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define.
  352. gpio_iomux_in(cs_io_num, spi_periph_signal[host].spics_in);
  353. #if CONFIG_IDF_TARGET_ESP32
  354. gpio_iomux_out(cs_io_num, spi_periph_signal[host].func, false);
  355. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  356. gpio_iomux_out(cs_io_num, spi_periph_signal[host].func, false);
  357. #endif
  358. } else {
  359. //Use GPIO matrix
  360. if (GPIO_IS_VALID_OUTPUT_GPIO(cs_io_num)) {
  361. gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT);
  362. gpio_matrix_out(cs_io_num, spi_periph_signal[host].spics_out[cs_num], false, false);
  363. } else {
  364. gpio_set_direction(cs_io_num, GPIO_MODE_INPUT);
  365. }
  366. if (cs_num == 0) gpio_matrix_in(cs_io_num, spi_periph_signal[host].spics_in, false);
  367. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[cs_io_num]);
  368. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], FUNC_GPIO);
  369. }
  370. }
  371. void spicommon_cs_free_io(int cs_gpio_num)
  372. {
  373. assert(cs_gpio_num>=0 && GPIO_IS_VALID_GPIO(cs_gpio_num));
  374. gpio_reset_pin(cs_gpio_num);
  375. }
  376. bool spicommon_bus_using_iomux(spi_host_device_t host)
  377. {
  378. #define CHECK_IOMUX_PIN(HOST, PIN_NAME) if (GPIO.func_in_sel_cfg[spi_periph_signal[(HOST)].PIN_NAME##_in].sig_in_sel) return false
  379. CHECK_IOMUX_PIN(host, spid);
  380. CHECK_IOMUX_PIN(host, spiq);
  381. CHECK_IOMUX_PIN(host, spiwp);
  382. CHECK_IOMUX_PIN(host, spihd);
  383. return true;
  384. }
  385. /*
  386. Code for workaround for DMA issue in ESP32 v0/v1 silicon
  387. */
  388. #if CONFIG_IDF_TARGET_ESP32
  389. static volatile int dmaworkaround_channels_busy[2] = {0, 0};
  390. static dmaworkaround_cb_t dmaworkaround_cb;
  391. static void *dmaworkaround_cb_arg;
  392. static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED;
  393. static int dmaworkaround_waiting_for_chan = 0;
  394. #endif
  395. bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg)
  396. {
  397. #if CONFIG_IDF_TARGET_ESP32
  398. int otherchan = (dmachan == 1) ? 2 : 1;
  399. bool ret;
  400. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  401. if (dmaworkaround_channels_busy[otherchan-1]) {
  402. //Other channel is busy. Call back when it's done.
  403. dmaworkaround_cb = cb;
  404. dmaworkaround_cb_arg = arg;
  405. dmaworkaround_waiting_for_chan = otherchan;
  406. ret = false;
  407. } else {
  408. //Reset DMA
  409. periph_module_reset( PERIPH_SPI_DMA_MODULE );
  410. ret = true;
  411. }
  412. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  413. return ret;
  414. #else
  415. //no need to reset
  416. return true;
  417. #endif
  418. }
  419. bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress(void)
  420. {
  421. #if CONFIG_IDF_TARGET_ESP32
  422. return (dmaworkaround_waiting_for_chan != 0);
  423. #else
  424. return false;
  425. #endif
  426. }
  427. void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan)
  428. {
  429. #if CONFIG_IDF_TARGET_ESP32
  430. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  431. dmaworkaround_channels_busy[dmachan-1] = 0;
  432. if (dmaworkaround_waiting_for_chan == dmachan) {
  433. //Reset DMA
  434. periph_module_reset( PERIPH_SPI_DMA_MODULE );
  435. dmaworkaround_waiting_for_chan = 0;
  436. //Call callback
  437. dmaworkaround_cb(dmaworkaround_cb_arg);
  438. }
  439. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  440. #endif
  441. }
  442. void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan)
  443. {
  444. #if CONFIG_IDF_TARGET_ESP32
  445. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  446. dmaworkaround_channels_busy[dmachan-1] = 1;
  447. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  448. #endif
  449. }