rtc_time.c 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174
  1. // Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdint.h>
  15. #include "esp32s2beta/rom/ets_sys.h"
  16. #include "soc/rtc.h"
  17. #include "soc/rtc_cntl_reg.h"
  18. #include "soc/timer_group_reg.h"
  19. #define MHZ (1000000)
  20. /* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
  21. * This feature counts the number of XTAL clock cycles within a given number of
  22. * RTC_SLOW_CLK cycles.
  23. *
  24. * Slow clock calibration feature has two modes of operation: one-off and cycling.
  25. * In cycling mode (which is enabled by default on SoC reset), counting of XTAL
  26. * cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
  27. * using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
  28. * once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
  29. * enabled using TIMG_RTC_CALI_START bit.
  30. */
  31. /**
  32. * @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio
  33. * @param cal_clk which clock to calibrate
  34. * @param slowclk_cycles number of slow clock cycles to count
  35. * @return number of XTAL clock cycles within the given number of slow clock cycles
  36. */
  37. uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  38. {
  39. /* Enable requested clock (150k clock is always on) */
  40. int dig_32k_xtal_state = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
  41. if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_state) {
  42. REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, 1);
  43. }
  44. if (cal_clk == RTC_CAL_8MD256) {
  45. SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
  46. }
  47. /* Prepare calibration */
  48. REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk);
  49. /* There may be another calibration process already running during we call this function,
  50. * so we should wait the last process is done.
  51. */
  52. if (!GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
  53. if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING)) {
  54. while(!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY));
  55. }
  56. }
  57. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
  58. REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
  59. /* Figure out how long to wait for calibration to finish */
  60. /* Set timeout reg and expect time delay*/
  61. uint32_t expected_freq;
  62. if (cal_clk == RTC_CAL_32K_XTAL) {
  63. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, (slowclk_cycles << 13));
  64. expected_freq = 32768;
  65. } else if (cal_clk == RTC_CAL_8MD256) {
  66. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, (slowclk_cycles << 13));
  67. expected_freq = RTC_FAST_CLK_FREQ_APPROX / 256;
  68. } else {
  69. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, (slowclk_cycles << 11));
  70. expected_freq = 90000;
  71. }
  72. uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq);
  73. /* Start calibration */
  74. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  75. SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  76. /* Wait for calibration to finish up to another us_time_estimate */
  77. ets_delay_us(us_time_estimate);
  78. uint32_t cal_val;
  79. while (true) {
  80. if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) {
  81. cal_val = REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
  82. break;
  83. }
  84. if (GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
  85. cal_val = 0;
  86. break;
  87. }
  88. }
  89. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  90. REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, dig_32k_xtal_state);
  91. if (cal_clk == RTC_CAL_8MD256) {
  92. CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
  93. }
  94. return cal_val;
  95. }
  96. uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  97. {
  98. uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
  99. uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles;
  100. uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX);
  101. return ratio;
  102. }
  103. uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  104. {
  105. rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
  106. uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
  107. uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
  108. uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
  109. uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
  110. return period;
  111. }
  112. uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
  113. {
  114. /* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
  115. * TODO: fix overflow.
  116. */
  117. return (time_in_us << RTC_CLK_CAL_FRACT) / period;
  118. }
  119. uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
  120. {
  121. return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
  122. }
  123. uint64_t rtc_time_get(void)
  124. {
  125. SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE);
  126. while (GET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_VALID) == 0) {
  127. ets_delay_us(1); // might take 1 RTC slowclk period, don't flood RTC bus
  128. }
  129. SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_TIME_VALID_INT_CLR);
  130. uint64_t t = READ_PERI_REG(RTC_CNTL_TIME0_REG);
  131. t |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32;
  132. return t;
  133. }
  134. uint64_t rtc_light_slp_time_get(void)
  135. {
  136. uint64_t t_wake = READ_PERI_REG(RTC_CNTL_TIME_LOW0_REG);
  137. t_wake |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH0_REG)) << 32;
  138. uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
  139. t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
  140. return (t_wake - t_slp);
  141. }
  142. uint64_t rtc_deep_slp_time_get(void)
  143. {
  144. uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
  145. t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
  146. uint64_t t_wake = rtc_time_get();
  147. return (t_wake - t_slp);
  148. }
  149. void rtc_clk_wait_for_slow_cycle(void) //This function may not by useful any more
  150. {
  151. SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE);
  152. while (GET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE)) {
  153. ets_delay_us(1);
  154. }
  155. }