test_efuse.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879
  1. #include <stdio.h>
  2. #include <ctype.h>
  3. #include <errno.h>
  4. #include <stdlib.h>
  5. #include <stdio.h>
  6. #include "unity.h"
  7. #include "esp_log.h"
  8. #include <string.h>
  9. #include "esp_efuse.h"
  10. #include "esp_efuse_table.h"
  11. #include "esp_efuse_utility.h"
  12. #include "esp_efuse_test_table.h"
  13. #include "esp32/rom/efuse.h"
  14. #include "bootloader_random.h"
  15. #include "freertos/FreeRTOS.h"
  16. #include "freertos/task.h"
  17. #include "freertos/semphr.h"
  18. #include "test_utils.h"
  19. #include "sdkconfig.h"
  20. static const char* TAG = "efuse_test";
  21. static void test_read_blob(void)
  22. {
  23. esp_efuse_utility_update_virt_blocks();
  24. esp_efuse_utility_debug_dump_blocks();
  25. uint8_t mac[6];
  26. ESP_LOGI(TAG, "1. Read MAC address");
  27. memset(mac, 0, sizeof(mac));
  28. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  29. TEST_ASSERT_EQUAL_INT(sizeof(mac) * 8, esp_efuse_get_field_size(ESP_EFUSE_MAC_FACTORY));
  30. ESP_LOGI(TAG, "MAC: %02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  31. #ifdef CONFIG_IDF_TARGET_ESP32
  32. ESP_LOGI(TAG, "2. Check CRC by MAC");
  33. uint8_t crc;
  34. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY_CRC, &crc, 8));
  35. TEST_ASSERT_EQUAL_HEX8(crc, esp_crc8(mac, sizeof(mac)));
  36. #endif // CONFIG_IDF_TARGET_ESP32
  37. ESP_LOGI(TAG, "3. Test check args");
  38. uint32_t test_var;
  39. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, NULL, 1));
  40. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &test_var, 0));
  41. uint8_t half_byte;
  42. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &half_byte, 4));
  43. TEST_ASSERT_EQUAL_HEX8(mac[0]&0x0F, half_byte);
  44. uint8_t buff[7] = {0x59};
  45. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &buff, sizeof(buff) * 8));
  46. TEST_ASSERT_TRUE_MESSAGE(memcmp(mac, buff, sizeof(mac)) == 0, "Operation read blob is not success");
  47. TEST_ASSERT_EQUAL_HEX8(0, buff[6]);
  48. }
  49. TEST_CASE("efuse test read_field_blob", "[efuse]")
  50. {
  51. test_read_blob();
  52. }
  53. static void test_read_cnt(void)
  54. {
  55. esp_efuse_utility_update_virt_blocks();
  56. esp_efuse_utility_debug_dump_blocks();
  57. ESP_LOGI(TAG, "1. Test check args");
  58. size_t cnt;
  59. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_read_field_cnt(ESP_EFUSE_MAC_FACTORY, NULL));
  60. ESP_LOGI(TAG, "2. Read MAC address");
  61. uint8_t mac[6];
  62. memset(mac, 0, sizeof(mac));
  63. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, 48));
  64. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_MAC_FACTORY, &cnt));
  65. size_t cnt_summ = 0;
  66. for (int i = 0; i < sizeof(mac); ++i) {
  67. cnt_summ += __builtin_popcount(mac[i]);
  68. }
  69. TEST_ASSERT_EQUAL_INT(cnt_summ, cnt);
  70. }
  71. TEST_CASE("efuse test read_field_cnt", "[efuse]")
  72. {
  73. test_read_cnt();
  74. }
  75. // If using efuse is real, then turn off writing tests.
  76. #ifdef CONFIG_EFUSE_VIRTUAL
  77. static void test_write_blob(void)
  78. {
  79. esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(EFUSE_BLK1);
  80. esp_efuse_utility_erase_virt_blocks();
  81. esp_efuse_utility_debug_dump_blocks();
  82. ESP_LOGI(TAG, "1. Test check args");
  83. uint16_t test1_len_8 = 0x5FAA;
  84. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_blob(ESP_EFUSE_MAC_FACTORY, &test1_len_8, 0));
  85. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, NULL, 8));
  86. TEST_ASSERT_EQUAL_HEX16(0x5FAA, test1_len_8);
  87. ESP_LOGI(TAG, "2. Test write operation");
  88. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8, 7));
  89. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8, 9));
  90. uint16_t val_read1 = 0;
  91. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST1_LEN_8, &val_read1, 8));
  92. TEST_ASSERT_EQUAL_HEX16(test1_len_8&((1 << 7) - 1), val_read1);
  93. uint16_t test1_len_8_hi = test1_len_8 & ~((1 << 7) - 1);
  94. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  95. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8_hi, 8));
  96. } else {
  97. TEST_ESP_ERR(ESP_ERR_CODING, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8_hi, 8));
  98. }
  99. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST1_LEN_8, &test1_len_8, 8));
  100. val_read1 = 0;
  101. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST1_LEN_8, &val_read1, 16));
  102. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  103. TEST_ASSERT_EQUAL_HEX16(test1_len_8&0x00FF, val_read1);
  104. } else {
  105. TEST_ASSERT_EQUAL_HEX16(test1_len_8&0x007F, val_read1);
  106. }
  107. if (scheme != EFUSE_CODING_SCHEME_NONE) {
  108. esp_efuse_utility_erase_virt_blocks();
  109. ESP_LOGI(TAG, "erase virt blocks");
  110. }
  111. uint16_t test2_len_16 = 0xAA55;
  112. uint32_t val_32 = test2_len_16;
  113. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST2_LEN_16, &val_32, 17));
  114. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST2_LEN_16, &test2_len_16, 16));
  115. uint16_t test_16 = 0;
  116. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST2_LEN_16, &test_16, 16));
  117. TEST_ASSERT_EQUAL_HEX16(test2_len_16, test_16);
  118. ESP_LOGI(TAG, "3. Test field with one bit");
  119. uint8_t test5_len_1;
  120. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  121. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  122. test5_len_1 = 0;
  123. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  124. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  125. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  126. test5_len_1 = 1;
  127. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  128. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  129. TEST_ASSERT_EQUAL_HEX8(1, test5_len_1);
  130. test5_len_1 = 1;
  131. TEST_ESP_ERR(ESP_ERR_EFUSE_REPEATED_PROG, esp_efuse_write_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  132. esp_efuse_utility_debug_dump_blocks();
  133. }
  134. TEST_CASE("efuse test write_field_blob", "[efuse]")
  135. {
  136. test_write_blob();
  137. }
  138. static void test_write_cnt(void)
  139. {
  140. esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(EFUSE_BLK1);
  141. esp_efuse_utility_erase_virt_blocks();
  142. esp_efuse_utility_debug_dump_blocks();
  143. ESP_LOGI(TAG, "1. Test check args");
  144. size_t test3_len_6 = 5;
  145. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_cnt(ESP_EFUSE_MAC_FACTORY, 0));
  146. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_cnt(NULL, 5));
  147. TEST_ESP_ERR(ESP_ERR_INVALID_ARG, esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 0));
  148. ESP_LOGI(TAG, "2. Test write operation");
  149. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  150. TEST_ASSERT_EQUAL_INT(0, test3_len_6);
  151. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 1));
  152. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  153. TEST_ASSERT_EQUAL_INT(1, test3_len_6);
  154. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  155. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 1));
  156. } else {
  157. esp_efuse_utility_erase_virt_blocks();
  158. ESP_LOGI(TAG, "erase virt blocks");
  159. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 2));
  160. }
  161. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  162. TEST_ASSERT_EQUAL_INT(2, test3_len_6);
  163. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  164. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 3));
  165. } else {
  166. esp_efuse_utility_erase_virt_blocks();
  167. ESP_LOGI(TAG, "erase virt blocks");
  168. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, 5));
  169. }
  170. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  171. TEST_ASSERT_EQUAL_INT(5, test3_len_6);
  172. esp_efuse_utility_debug_dump_blocks();
  173. ESP_LOGI(TAG, "3. Test field is full set");
  174. int max_bits = esp_efuse_get_field_size(ESP_EFUSE_TEST4_LEN_182);
  175. size_t test4_len_182;
  176. esp_efuse_utility_debug_dump_blocks();
  177. for (int i = 0; i < max_bits / 26; ++i) {
  178. ESP_LOGD(TAG, "# %d", i);
  179. if (scheme == EFUSE_CODING_SCHEME_NONE) {
  180. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST4_LEN_182, 26));
  181. } else {
  182. esp_efuse_utility_erase_virt_blocks();
  183. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST4_LEN_182, (i + 1) * 26));
  184. }
  185. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST4_LEN_182, &test4_len_182));
  186. esp_efuse_utility_debug_dump_blocks();
  187. TEST_ASSERT_EQUAL_INT((i + 1) * 26, test4_len_182);
  188. }
  189. esp_efuse_utility_debug_dump_blocks();
  190. ESP_LOGI(TAG, "4. Test field ESP_EFUSE_TEST4_LEN_182 is full");
  191. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_write_field_cnt(ESP_EFUSE_TEST4_LEN_182, 1));
  192. ESP_LOGI(TAG, "3. Test field with one bit");
  193. size_t test5_len_1;
  194. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST5_LEN_1, &test5_len_1));
  195. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  196. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  197. TEST_ASSERT_EQUAL_HEX8(0, test5_len_1);
  198. if (scheme != EFUSE_CODING_SCHEME_NONE) {
  199. esp_efuse_utility_erase_virt_blocks();
  200. ESP_LOGI(TAG, "erase virt blocks");
  201. }
  202. test5_len_1 = 1;
  203. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST5_LEN_1, test5_len_1));
  204. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST5_LEN_1, &test5_len_1));
  205. TEST_ASSERT_EQUAL_HEX8(1, test5_len_1);
  206. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test5_len_1, 1));
  207. TEST_ASSERT_EQUAL_HEX8(1, test5_len_1);
  208. test5_len_1 = 1;
  209. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_write_field_cnt(ESP_EFUSE_TEST5_LEN_1, test5_len_1));
  210. esp_efuse_utility_debug_dump_blocks();
  211. ESP_LOGI(TAG, "4. Test field test2_len_16");
  212. size_t test2_len_16 = 11;
  213. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST2_LEN_16, test2_len_16));
  214. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST2_LEN_16, &test2_len_16));
  215. TEST_ASSERT_EQUAL_HEX16(11, test2_len_16);
  216. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST2_LEN_16, &test2_len_16, 16));
  217. TEST_ASSERT_EQUAL_HEX16(0x07FF, test2_len_16);
  218. esp_efuse_utility_debug_dump_blocks();
  219. }
  220. TEST_CASE("efuse test write_field_cnt", "[efuse]")
  221. {
  222. test_write_cnt();
  223. }
  224. TEST_CASE("efuse test single bit functions", "[efuse]")
  225. {
  226. esp_efuse_utility_erase_virt_blocks();
  227. esp_efuse_utility_debug_dump_blocks();
  228. uint8_t test_bit;
  229. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test_bit, 1));
  230. TEST_ASSERT_EQUAL_HEX8(0, test_bit);
  231. test_bit = esp_efuse_read_field_bit(ESP_EFUSE_TEST5_LEN_1);
  232. TEST_ASSERT_EQUAL_HEX8(0, test_bit);
  233. TEST_ESP_OK(esp_efuse_write_field_bit(ESP_EFUSE_TEST5_LEN_1));
  234. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_TEST5_LEN_1, &test_bit, 1));
  235. TEST_ASSERT_EQUAL_HEX8(1, test_bit);
  236. test_bit = esp_efuse_read_field_bit(ESP_EFUSE_TEST5_LEN_1);
  237. TEST_ASSERT_EQUAL_HEX8(1, test_bit);
  238. // Can write the bit again and it's a no-op
  239. TEST_ESP_OK(esp_efuse_write_field_bit(ESP_EFUSE_TEST5_LEN_1));
  240. TEST_ASSERT_EQUAL_HEX8(1, esp_efuse_read_field_bit(ESP_EFUSE_TEST5_LEN_1));
  241. esp_efuse_utility_debug_dump_blocks();
  242. }
  243. void cut_tail_arr(uint8_t *arr, int num_used_bits, size_t count_bits)
  244. {
  245. if ((num_used_bits + count_bits) % 8) {
  246. int start_used_item = (num_used_bits - 1) / 8;
  247. int last_used_item = ((num_used_bits + count_bits) - 1) / 8;
  248. int shift = 0;
  249. int mask = num_used_bits + count_bits;
  250. if (last_used_item == start_used_item) {
  251. shift = (num_used_bits) % 8;
  252. mask = count_bits;
  253. }
  254. arr[last_used_item] &= ((1 << (mask % 8)) - 1) << shift;
  255. }
  256. }
  257. void cut_start_arr(uint8_t *arr, size_t num_used_bits)
  258. {
  259. if (num_used_bits % 8) {
  260. int start_used_item = (num_used_bits - 1) / 8;
  261. arr[start_used_item] &= ~((1 << (num_used_bits % 8)) - 1);
  262. }
  263. }
  264. void get_part_arr(uint8_t *arr_in, uint8_t *arr_out, int num_used_bits, int count_bits)
  265. {
  266. int num_items = esp_efuse_utility_get_number_of_items(num_used_bits + count_bits, 8);
  267. memcpy(arr_out, arr_in, num_items);
  268. memset(arr_out, 0, num_used_bits / 8);
  269. cut_start_arr(arr_out, num_used_bits);
  270. cut_tail_arr(arr_out, num_used_bits, count_bits);
  271. }
  272. void fill_part_arr(uint8_t *arr_in, uint8_t *arr_out, int count_bits)
  273. {
  274. int num_items = esp_efuse_utility_get_number_of_items(count_bits, 8);
  275. memcpy(arr_out, arr_in, num_items);
  276. cut_tail_arr(arr_out, 0, count_bits);
  277. }
  278. // Writes a random array to efuse, then reads and compares it.
  279. void test_blob(const esp_efuse_desc_t* field[], uint8_t *arr_w, uint8_t *arr_r, uint8_t *arr_temp, int arr_size, size_t field_size)
  280. {
  281. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_w, arr_size, ESP_LOG_INFO);
  282. TEST_ESP_OK(esp_efuse_write_field_blob(field, arr_w, field_size));
  283. memset(arr_r, 0, arr_size);
  284. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  285. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_r, arr_size, ESP_LOG_INFO);
  286. esp_efuse_utility_debug_dump_blocks();
  287. TEST_ASSERT_TRUE_MESSAGE(memcmp(arr_w, arr_r, arr_size) == 0, "Operation write/read blob is not success");
  288. int count_once = 0;
  289. for (int i = 0; i < arr_size; ++i) {
  290. count_once += __builtin_popcount(arr_w[i]);
  291. }
  292. size_t num_bits_r = 0;
  293. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  294. TEST_ASSERT_EQUAL_INT(count_once, num_bits_r);
  295. size_t num_bits_w = field_size - count_once;
  296. if (num_bits_w == 0) {
  297. esp_efuse_utility_erase_virt_blocks();
  298. num_bits_w = field_size;
  299. }
  300. TEST_ESP_OK(esp_efuse_write_field_cnt(field, num_bits_w));
  301. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  302. esp_efuse_utility_debug_dump_blocks();
  303. TEST_ASSERT_EQUAL_INT(field_size, num_bits_r);
  304. memset(arr_r, 0, arr_size);
  305. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  306. memset(arr_temp, 0xFF, arr_size);
  307. cut_tail_arr(arr_temp, 0, field_size);
  308. esp_efuse_utility_debug_dump_blocks();
  309. TEST_ASSERT_TRUE_MESSAGE(memcmp(arr_temp, arr_r, arr_size) == 0, "Operation write/read blob is not success");
  310. }
  311. // Records a random number of bits (as "1") in the efuse field, then reads and compares.
  312. void test_cnt_part(const esp_efuse_desc_t* field[], uint8_t *arr_r, int arr_size, size_t field_size)
  313. {
  314. size_t num_bits_r = 0;
  315. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  316. TEST_ASSERT_EQUAL_INT(0, num_bits_r);
  317. TEST_ESP_OK(esp_efuse_write_field_cnt(field, field_size));
  318. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  319. TEST_ASSERT_EQUAL_INT(field_size, num_bits_r);
  320. esp_efuse_utility_erase_virt_blocks();
  321. int num_bits_summ_r = 0;
  322. int num_bits_w = 0;
  323. while(field_size > num_bits_summ_r) {
  324. num_bits_w = 0;
  325. while(num_bits_w == 0 || (num_bits_summ_r + num_bits_w) > field_size) {
  326. bootloader_random_enable();
  327. bootloader_fill_random(&num_bits_w, 1);
  328. bootloader_random_disable();
  329. num_bits_w = num_bits_w * field_size / 255;
  330. if (num_bits_w != 0 && (num_bits_summ_r + num_bits_w) <= field_size) {
  331. break;
  332. }
  333. }
  334. TEST_ESP_OK(esp_efuse_write_field_cnt(field, num_bits_w));
  335. TEST_ESP_OK(esp_efuse_read_field_cnt(field, &num_bits_r));
  336. num_bits_summ_r += num_bits_w;
  337. TEST_ASSERT_EQUAL_INT(num_bits_summ_r, num_bits_r);
  338. memset(arr_r, 0, arr_size);
  339. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  340. int count_once = 0;
  341. for (int i = 0; i < arr_size; ++i) {
  342. count_once += __builtin_popcount(arr_r[i]);
  343. }
  344. TEST_ASSERT_EQUAL_INT(num_bits_summ_r, count_once);
  345. ESP_LOGI(TAG, "Once bits=%d, step=%d", num_bits_summ_r, num_bits_w);
  346. }
  347. esp_efuse_utility_debug_dump_blocks();
  348. }
  349. // From a random array takes a random number of bits and write to efuse, it repeats until the entire length of the field is written down.
  350. void test_blob_part(const esp_efuse_desc_t* field[], uint8_t *arr_w, uint8_t *arr_r, uint8_t *arr_temp, int arr_size, size_t field_size)
  351. {
  352. esp_efuse_utility_debug_dump_blocks();
  353. int num_bits_summ_r = 0;
  354. int num_bits_w = 0;
  355. memset(arr_w, 0, arr_size);
  356. bootloader_random_enable();
  357. bootloader_fill_random(arr_w, arr_size);
  358. bootloader_random_disable();
  359. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_w, arr_size, ESP_LOG_INFO);
  360. while(field_size > num_bits_summ_r) {
  361. num_bits_w = 0;
  362. while(num_bits_w == 0 || (num_bits_summ_r + num_bits_w) > field_size) {
  363. bootloader_random_enable();
  364. bootloader_fill_random(&num_bits_w, 1);
  365. bootloader_random_disable();
  366. num_bits_w = num_bits_w * field_size / 255;
  367. if (num_bits_w != 0 && (num_bits_summ_r + num_bits_w) <= field_size) {
  368. break;
  369. }
  370. }
  371. ESP_LOGI(TAG, "Summ bits=%d, step=%d", num_bits_summ_r, num_bits_w);
  372. memset(arr_temp, 0, arr_size);
  373. get_part_arr(arr_w, arr_temp, num_bits_summ_r, num_bits_w);
  374. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_temp, arr_size, ESP_LOG_INFO);
  375. TEST_ESP_OK(esp_efuse_write_field_blob(field, arr_temp, field_size));
  376. memset(arr_r, 0, arr_size);
  377. TEST_ESP_OK(esp_efuse_read_field_blob(field, arr_r, field_size));
  378. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_r, arr_size, ESP_LOG_INFO);
  379. esp_efuse_utility_debug_dump_blocks();
  380. num_bits_summ_r += num_bits_w;
  381. memset(arr_temp, 0, arr_size);
  382. fill_part_arr(arr_w, arr_temp, num_bits_summ_r);
  383. ESP_LOG_BUFFER_HEX_LEVEL(TAG, arr_temp, arr_size, ESP_LOG_INFO);
  384. TEST_ASSERT_TRUE_MESSAGE(memcmp(arr_temp, arr_r, arr_size) == 0, "Operation write/read blob is not success");
  385. }
  386. }
  387. void check_efuse_table_test(int cycle)
  388. {
  389. int num_test = 0;
  390. while(1) {
  391. const esp_efuse_desc_t** field;
  392. switch (num_test++) {
  393. case 0: field = ESP_EFUSE_TEST1_LEN_8; break;
  394. case 1: field = ESP_EFUSE_TEST2_LEN_16; break;
  395. case 2: field = ESP_EFUSE_TEST3_LEN_6; break;
  396. case 3: field = ESP_EFUSE_TEST4_LEN_182; break;
  397. case 4: field = ESP_EFUSE_TEST5_LEN_1; break;
  398. case 5: field = ESP_EFUSE_TEST6_LEN_17; break;
  399. default:
  400. return;
  401. break;
  402. }
  403. size_t field_size = esp_efuse_get_field_size(field);
  404. int arr_size = esp_efuse_utility_get_number_of_items(field_size, 8);
  405. uint8_t *arr_w = (uint8_t *) malloc(arr_size);
  406. uint8_t *arr_r = (uint8_t *) malloc(arr_size);
  407. uint8_t *arr_temp = (uint8_t *) malloc(arr_size);
  408. ESP_LOGI(TAG, "Test#%d", num_test);
  409. for (int c = 1; c <= cycle; ++c) {
  410. ESP_LOGI(TAG, "Cycle#%d/%d", c, cycle);
  411. memset(arr_w, 0, arr_size);
  412. bootloader_random_enable();
  413. bootloader_fill_random(arr_w, arr_size);
  414. bootloader_random_disable();
  415. cut_tail_arr(arr_w, 0, field_size);
  416. esp_efuse_utility_erase_virt_blocks();
  417. ESP_LOGI(TAG, "1) blob write/read");
  418. test_blob(field, arr_w, arr_r, arr_temp, arr_size, field_size);
  419. esp_efuse_utility_erase_virt_blocks();
  420. ESP_LOGI(TAG, "2) cnt part write/read");
  421. test_cnt_part(field, arr_r, arr_size, field_size);
  422. esp_efuse_utility_erase_virt_blocks();
  423. ESP_LOGI(TAG, "3) blob part write/read");
  424. test_blob_part(field, arr_w, arr_r, arr_temp, arr_size, field_size);
  425. }
  426. free(arr_temp);
  427. free(arr_r);
  428. free(arr_w);
  429. }
  430. }
  431. TEST_CASE("efuse esp_efuse_table_test", "[efuse]")
  432. {
  433. esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(EFUSE_BLK2);
  434. if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {
  435. check_efuse_table_test(2);
  436. } else {
  437. ESP_LOGI(TAG, "This test is applicable only to the EFUSE_CODING_SCHEME_NONE. Skip this test.");
  438. }
  439. }
  440. TEST_CASE("Test esp_efuse_read_block esp_efuse_write_block functions", "[efuse]")
  441. {
  442. int count_useful_reg = 0;
  443. esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(EFUSE_BLK2);
  444. if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {
  445. printf("EFUSE_CODING_SCHEME_NONE\n");
  446. count_useful_reg = 8;
  447. }
  448. #if CONFIG_IDF_TARGET_ESP32
  449. if (coding_scheme == EFUSE_CODING_SCHEME_3_4) {
  450. printf("EFUSE_CODING_SCHEME_3_4\n");
  451. count_useful_reg = 6;
  452. } else if (coding_scheme == EFUSE_CODING_SCHEME_REPEAT) {
  453. printf("EFUSE_CODING_SCHEME_REPEAT\n");
  454. count_useful_reg = 4;
  455. }
  456. #elif CONFIG_IDF_TARGET_ESP32S2
  457. if (coding_scheme == EFUSE_CODING_SCHEME_RS) {
  458. printf("EFUSE_CODING_SCHEME_RS\n");
  459. count_useful_reg = 8;
  460. }
  461. #endif
  462. esp_efuse_utility_reset();
  463. esp_efuse_utility_erase_virt_blocks();
  464. uint8_t src_key[32] = { 0 };
  465. uint8_t dst_key[32] = { 0 };
  466. int offset_in_bits = 0;
  467. for (int i = 0; i < count_useful_reg * 4; ++i) {
  468. src_key[i] = 0xAB + i;
  469. }
  470. TEST_ESP_OK(esp_efuse_write_block(EFUSE_BLK2, src_key, offset_in_bits, count_useful_reg * 32));
  471. TEST_ESP_OK(esp_efuse_read_block(EFUSE_BLK2, dst_key, offset_in_bits, count_useful_reg * 32));
  472. esp_efuse_utility_debug_dump_blocks();
  473. TEST_ASSERT_EQUAL_HEX8_ARRAY(src_key, dst_key, sizeof(src_key));
  474. esp_efuse_utility_erase_virt_blocks();
  475. memset(src_key, 0, sizeof(src_key));
  476. memset(dst_key, 0, sizeof(dst_key));
  477. offset_in_bits = count_useful_reg * 32 / 2;
  478. for (int i = 0; i < count_useful_reg * 4 / 2; ++i) {
  479. src_key[i] = 0xCD + i;
  480. }
  481. TEST_ESP_OK(esp_efuse_write_block(EFUSE_BLK2, src_key, offset_in_bits, count_useful_reg * 32 / 2));
  482. TEST_ESP_OK(esp_efuse_read_block(EFUSE_BLK2, dst_key, offset_in_bits, count_useful_reg * 32 / 2));
  483. esp_efuse_utility_debug_dump_blocks();
  484. TEST_ASSERT_EQUAL_HEX8_ARRAY(src_key, dst_key, count_useful_reg * 4 / 2);
  485. esp_efuse_utility_erase_virt_blocks();
  486. }
  487. TEST_CASE("Test Bits are not empty. Write operation is forbidden", "[efuse]")
  488. {
  489. esp_efuse_utility_update_virt_blocks();
  490. esp_efuse_utility_debug_dump_blocks();
  491. int count_useful_reg = 0;
  492. uint8_t r_buff[32];
  493. int st_offset = -1;
  494. int num_block;
  495. for (num_block = EFUSE_BLK1; num_block < 4; ++num_block) {
  496. memset(r_buff, 0, sizeof(r_buff));
  497. esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(num_block);
  498. if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {
  499. printf("EFUSE_CODING_SCHEME_NONE. The test is not applicable.\n");
  500. count_useful_reg = 8;
  501. return;
  502. }
  503. #if CONFIG_IDF_TARGET_ESP32
  504. if (coding_scheme == EFUSE_CODING_SCHEME_3_4) {
  505. printf("EFUSE_CODING_SCHEME_3_4\n");
  506. count_useful_reg = 6;
  507. } else if (coding_scheme == EFUSE_CODING_SCHEME_REPEAT) {
  508. printf("EFUSE_CODING_SCHEME_REPEAT\n");
  509. count_useful_reg = 4;
  510. }
  511. #elif CONFIG_IDF_TARGET_ESP32S2
  512. if (coding_scheme == EFUSE_CODING_SCHEME_RS) {
  513. printf("EFUSE_CODING_SCHEME_RS\n");
  514. if (num_block == EFUSE_BLK1) {
  515. count_useful_reg = 6;
  516. } else {
  517. count_useful_reg = 8;
  518. }
  519. }
  520. #endif
  521. TEST_ESP_OK(esp_efuse_read_block(num_block, r_buff, 0, count_useful_reg * 32));
  522. for (int i = 0; i < count_useful_reg * 4; ++i) {
  523. if (r_buff[i] != 0) {
  524. // found used byte
  525. for (int j = 0; j < 8; ++j) {
  526. if ((r_buff[i] & (1 << j)) == 0) {
  527. // found empty bit into this byte
  528. st_offset = i * 8 + j;
  529. printf("Byte = 0x%02x. offset is = %d\n", r_buff[i], st_offset);
  530. break;
  531. }
  532. }
  533. if (st_offset != -1) {
  534. break;
  535. }
  536. }
  537. }
  538. if (st_offset != -1) {
  539. break;
  540. }
  541. }
  542. if (st_offset != -1) {
  543. // write 1 bit to empty place.
  544. uint8_t val = 1;
  545. TEST_ESP_ERR(ESP_ERR_CODING, esp_efuse_write_block(num_block, &val, st_offset, 1));
  546. } else {
  547. printf("Test skipped. It is not applicable, the device has no written bits.");
  548. }
  549. }
  550. #ifndef CONFIG_FREERTOS_UNICORE
  551. static const int delay_ms = 2000;
  552. static xSemaphoreHandle sema;
  553. static void task1(void* arg)
  554. {
  555. TEST_ESP_OK(esp_efuse_batch_write_begin());
  556. ESP_LOGI(TAG, "Start work in batch mode");
  557. xSemaphoreGive(sema);
  558. vTaskDelay((delay_ms + 100) / portTICK_PERIOD_MS);
  559. ESP_LOGI(TAG, "Finish work in batch mode");
  560. TEST_ESP_OK(esp_efuse_batch_write_cancel());
  561. vTaskDelete(NULL);
  562. }
  563. static void task2(void* arg)
  564. {
  565. xSemaphoreTake(sema, portMAX_DELAY);
  566. uint8_t mac[6];
  567. int64_t t1 = esp_timer_get_time();
  568. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  569. int64_t t2 = esp_timer_get_time();
  570. int diff_ms = (t2 - t1) / 1000;
  571. TEST_ASSERT_GREATER_THAN(delay_ms, diff_ms);
  572. ESP_LOGI(TAG, "read MAC address: %02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  573. xSemaphoreGive(sema);
  574. vTaskDelete(NULL);
  575. }
  576. static void task3(void* arg)
  577. {
  578. xSemaphoreTake(sema, portMAX_DELAY);
  579. size_t test3_len_6 = 2;
  580. int64_t t1 = esp_timer_get_time();
  581. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_TEST3_LEN_6, test3_len_6));
  582. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_TEST3_LEN_6, &test3_len_6));
  583. int64_t t2 = esp_timer_get_time();
  584. ESP_LOGI(TAG, "write&read test3_len_6: %d", test3_len_6);
  585. int diff_ms = (t2 - t1) / 1000;
  586. TEST_ASSERT_GREATER_THAN(delay_ms, diff_ms);
  587. TEST_ASSERT_EQUAL_INT(2, test3_len_6);
  588. xSemaphoreGive(sema);
  589. vTaskDelete(NULL);
  590. }
  591. TEST_CASE("Batch mode is thread-safe", "[efuse]")
  592. {
  593. // Batch mode blocks work with efuse on other tasks.
  594. esp_efuse_utility_update_virt_blocks();
  595. esp_efuse_utility_debug_dump_blocks();
  596. sema = xSemaphoreCreateBinary();
  597. printf("\n");
  598. xTaskCreatePinnedToCore(task1, "task1", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 0);
  599. xTaskCreatePinnedToCore(task2, "task2", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
  600. vTaskDelay(3000 / portTICK_PERIOD_MS);
  601. xSemaphoreTake(sema, portMAX_DELAY);
  602. esp_efuse_utility_reset();
  603. esp_efuse_utility_erase_virt_blocks();
  604. printf("\n");
  605. xTaskCreatePinnedToCore(task1, "task1", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 0);
  606. xTaskCreatePinnedToCore(task3, "task3", 3072, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
  607. vTaskDelay(3000 / portTICK_PERIOD_MS);
  608. xSemaphoreTake(sema, portMAX_DELAY);
  609. printf("\n");
  610. vSemaphoreDelete(sema);
  611. esp_efuse_utility_reset();
  612. esp_efuse_utility_erase_virt_blocks();
  613. }
  614. #endif // #ifndef CONFIG_FREERTOS_UNICORE
  615. static void test_wp(esp_efuse_block_t blk, const esp_efuse_desc_t* field[])
  616. {
  617. size_t out_cnt;
  618. TEST_ESP_OK(esp_efuse_set_write_protect(blk));
  619. esp_efuse_read_field_cnt(field, &out_cnt);
  620. TEST_ASSERT_EQUAL_INT(1, out_cnt);
  621. }
  622. static void test_rp(esp_efuse_block_t blk, const esp_efuse_desc_t* field[], bool read_first)
  623. {
  624. size_t out_cnt;
  625. if (read_first) {
  626. esp_efuse_read_field_cnt(field, &out_cnt);
  627. TEST_ASSERT_EQUAL_INT(0, out_cnt);
  628. }
  629. TEST_ESP_OK(esp_efuse_set_read_protect(blk));
  630. esp_efuse_read_field_cnt(field, &out_cnt);
  631. TEST_ASSERT_EQUAL_INT(1, out_cnt);
  632. if (read_first) {
  633. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_set_read_protect(blk));
  634. }
  635. }
  636. TEST_CASE("Test a write/read protection", "[efuse]")
  637. {
  638. esp_efuse_utility_reset();
  639. esp_efuse_utility_erase_virt_blocks();
  640. esp_efuse_utility_debug_dump_blocks();
  641. TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, esp_efuse_set_write_protect(EFUSE_BLK0));
  642. TEST_ESP_ERR(ESP_ERR_NOT_SUPPORTED, esp_efuse_set_read_protect(EFUSE_BLK0));
  643. size_t out_cnt;
  644. esp_efuse_read_field_cnt(ESP_EFUSE_WR_DIS_BLK1, &out_cnt);
  645. TEST_ASSERT_EQUAL_INT(0, out_cnt);
  646. TEST_ESP_OK(esp_efuse_set_write_protect(EFUSE_BLK1));
  647. esp_efuse_read_field_cnt(ESP_EFUSE_WR_DIS_BLK1, &out_cnt);
  648. TEST_ASSERT_EQUAL_INT(1, out_cnt);
  649. TEST_ESP_ERR(ESP_ERR_EFUSE_CNT_IS_FULL, esp_efuse_set_write_protect(EFUSE_BLK1));
  650. #ifdef CONFIG_IDF_TARGET_ESP32
  651. test_wp(EFUSE_BLK2, ESP_EFUSE_WR_DIS_BLK2);
  652. test_wp(EFUSE_BLK3, ESP_EFUSE_WR_DIS_BLK3);
  653. esp_efuse_utility_debug_dump_blocks();
  654. test_rp(EFUSE_BLK1, ESP_EFUSE_RD_DIS_BLK1, true);
  655. test_rp(EFUSE_BLK2, ESP_EFUSE_RD_DIS_BLK2, false);
  656. test_rp(EFUSE_BLK3, ESP_EFUSE_RD_DIS_BLK3, false);
  657. #elif defined(CONFIG_IDF_TARGET_ESP32S2)
  658. test_wp(EFUSE_BLK2, ESP_EFUSE_WR_DIS_SYS_DATA_PART1);
  659. test_wp(EFUSE_BLK3, ESP_EFUSE_WR_DIS_USER_DATA);
  660. esp_efuse_utility_debug_dump_blocks();
  661. test_rp(EFUSE_BLK4, ESP_EFUSE_RD_DIS_KEY0, true);
  662. test_rp(EFUSE_BLK5, ESP_EFUSE_RD_DIS_KEY1, false);
  663. test_rp(EFUSE_BLK6, ESP_EFUSE_RD_DIS_KEY2, false);
  664. #else
  665. #error New chip not supported!
  666. #endif
  667. esp_efuse_utility_debug_dump_blocks();
  668. esp_efuse_utility_reset();
  669. esp_efuse_utility_erase_virt_blocks();
  670. }
  671. #endif // #ifdef CONFIG_EFUSE_VIRTUAL
  672. #ifdef CONFIG_IDF_ENV_FPGA
  673. TEST_CASE("Test a real write (FPGA)", "[efuse]")
  674. {
  675. ESP_LOGI(TAG, "1. Write MAC address");
  676. esp_efuse_utility_debug_dump_blocks();
  677. uint8_t mac[6];
  678. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  679. ESP_LOGI(TAG, "MAC: %02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  680. uint8_t new_mac[6];
  681. if (mac[0] == 0) {
  682. new_mac[0] = 0x71;
  683. new_mac[1] = 0x62;
  684. new_mac[2] = 0x53;
  685. new_mac[3] = 0x44;
  686. new_mac[4] = 0x35;
  687. new_mac[5] = 0x26;
  688. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_MAC_FACTORY, &new_mac, sizeof(new_mac) * 8));
  689. ESP_LOGI(TAG, "new MAC: %02x:%02x:%02x:%02x:%02x:%02x", new_mac[0], new_mac[1], new_mac[2], new_mac[3], new_mac[4], new_mac[5]);
  690. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, &mac, sizeof(mac) * 8));
  691. TEST_ASSERT_EQUAL_HEX8_ARRAY(new_mac, mac, sizeof(new_mac));
  692. esp_efuse_utility_debug_dump_blocks();
  693. }
  694. #ifdef CONFIG_IDF_TARGET_ESP32S2
  695. ESP_LOGI(TAG, "2. Write KEY3");
  696. uint8_t key[32] = {0};
  697. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY3, &key, 256));
  698. for (int i = 0; i < sizeof(key); ++i) {
  699. TEST_ASSERT_EQUAL_INT(0, key[i]);
  700. }
  701. uint8_t new_key[32] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
  702. 10, 11, 12, 12, 14, 15, 16, 17, 18, 19,
  703. 20, 21, 22, 22, 24, 25, 26, 27, 28, 29,
  704. 30, 31};
  705. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_KEY3, &new_key, 256));
  706. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY3, &key, 256));
  707. TEST_ASSERT_EQUAL_HEX8_ARRAY(new_key, key, sizeof(key));
  708. esp_efuse_utility_debug_dump_blocks();
  709. ESP_LOGI(TAG, "3. Set a read protection for KEY3");
  710. TEST_ESP_OK(esp_efuse_set_read_protect(EFUSE_BLK7));
  711. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY3, &key, 256));
  712. #ifndef CONFIG_EFUSE_VIRTUAL
  713. TEST_ASSERT_EACH_EQUAL_HEX8(0, key, sizeof(key));
  714. #else
  715. TEST_ASSERT_EQUAL_HEX8_ARRAY(new_key, key, sizeof(key));
  716. #endif // CONFIG_EFUSE_VIRTUAL
  717. esp_efuse_utility_debug_dump_blocks();
  718. #endif // CONFIG_IDF_TARGET_ESP32S2
  719. ESP_LOGI(TAG, "4. Write SECURE_VERSION");
  720. int max_bits = esp_efuse_get_field_size(ESP_EFUSE_SECURE_VERSION);
  721. size_t read_sec_version;
  722. esp_efuse_utility_debug_dump_blocks();
  723. for (int i = 0; i < max_bits; ++i) {
  724. ESP_LOGI(TAG, "# %d", i);
  725. TEST_ESP_OK(esp_efuse_write_field_cnt(ESP_EFUSE_SECURE_VERSION, 1));
  726. TEST_ESP_OK(esp_efuse_read_field_cnt(ESP_EFUSE_SECURE_VERSION, &read_sec_version));
  727. esp_efuse_utility_debug_dump_blocks();
  728. TEST_ASSERT_EQUAL_INT(i + 1, read_sec_version);
  729. }
  730. }
  731. #endif // CONFIG_IDF_ENV_FPGA
  732. #ifndef CONFIG_IDF_TARGET_ESP32
  733. #if CONFIG_IDF_ENV_FPGA || CONFIG_EFUSE_VIRTUAL
  734. TEST_CASE("Test writing order is BLK_MAX->BLK0", "[efuse]")
  735. {
  736. uint8_t new_key[32] = {33, 1, 2, 3, 4, 5, 6, 7, 8, 9,
  737. 10, 11, 12, 12, 14, 15, 16, 17, 18, 19,
  738. 20, 21, 22, 22, 24, 25, 26, 27, 28, 29,
  739. 30, 31};
  740. esp_efuse_utility_erase_virt_blocks();
  741. esp_efuse_utility_debug_dump_blocks();
  742. TEST_ESP_OK(esp_efuse_batch_write_begin());
  743. TEST_ESP_OK(esp_efuse_write_field_blob(ESP_EFUSE_KEY4, &new_key, 256));
  744. // If the order of writing blocks is wrong (ex. BLK0 -> BLK_MAX)
  745. // then the write protection bit will be set early and the key was left un-updated.
  746. TEST_ESP_OK(esp_efuse_set_write_protect(EFUSE_BLK_KEY4));
  747. TEST_ESP_OK(esp_efuse_batch_write_commit());
  748. esp_efuse_utility_debug_dump_blocks();
  749. uint8_t key[32] = { 0xEE };
  750. TEST_ESP_OK(esp_efuse_read_field_blob(ESP_EFUSE_KEY4, &key, 256));
  751. TEST_ASSERT_EQUAL_HEX8_ARRAY(new_key, key, sizeof(key));
  752. }
  753. #endif // CONFIG_IDF_ENV_FPGA || CONFIG_EFUSE_VIRTUAL
  754. #endif // not CONFIG_IDF_TARGET_ESP32