spiram_psram.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092
  1. /*
  2. Driver bits for PSRAM chips (at the moment only the ESP-PSRAM32 chip).
  3. */
  4. // Copyright 2013-2017 Espressif Systems (Shanghai) PTE LTD
  5. //
  6. // Licensed under the Apache License, Version 2.0 (the "License");
  7. // you may not use this file except in compliance with the License.
  8. // You may obtain a copy of the License at
  9. //
  10. // http://www.apache.org/licenses/LICENSE-2.0
  11. //
  12. // Unless required by applicable law or agreed to in writing, software
  13. // distributed under the License is distributed on an "AS IS" BASIS,
  14. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. // See the License for the specific language governing permissions and
  16. // limitations under the License.
  17. #include "sdkconfig.h"
  18. #include "string.h"
  19. #include "esp_attr.h"
  20. #include "esp_err.h"
  21. #include "esp_types.h"
  22. #include "esp_log.h"
  23. #include "spiram_psram.h"
  24. #include "esp32/rom/ets_sys.h"
  25. #include "esp32/rom/spi_flash.h"
  26. #include "esp32/rom/gpio.h"
  27. #include "esp32/rom/cache.h"
  28. #include "esp32/rom/efuse.h"
  29. #include "soc/dport_reg.h"
  30. #include "soc/efuse_periph.h"
  31. #include "soc/spi_caps.h"
  32. #include "driver/gpio.h"
  33. #include "driver/spi_common_internal.h"
  34. #include "driver/periph_ctrl.h"
  35. #include "bootloader_common.h"
  36. #include "bootloader_flash_config.h"
  37. #if CONFIG_SPIRAM
  38. #include "soc/rtc.h"
  39. //Commands for PSRAM chip
  40. #define PSRAM_READ 0x03
  41. #define PSRAM_FAST_READ 0x0B
  42. #define PSRAM_FAST_READ_DUMMY 0x3
  43. #define PSRAM_FAST_READ_QUAD 0xEB
  44. #define PSRAM_FAST_READ_QUAD_DUMMY 0x5
  45. #define PSRAM_WRITE 0x02
  46. #define PSRAM_QUAD_WRITE 0x38
  47. #define PSRAM_ENTER_QMODE 0x35
  48. #define PSRAM_EXIT_QMODE 0xF5
  49. #define PSRAM_RESET_EN 0x66
  50. #define PSRAM_RESET 0x99
  51. #define PSRAM_SET_BURST_LEN 0xC0
  52. #define PSRAM_DEVICE_ID 0x9F
  53. typedef enum {
  54. PSRAM_CLK_MODE_NORM = 0, /*!< Normal SPI mode */
  55. PSRAM_CLK_MODE_DCLK = 1, /*!< Two extra clock cycles after CS is set high level */
  56. } psram_clk_mode_t;
  57. #define PSRAM_ID_KGD_M 0xff
  58. #define PSRAM_ID_KGD_S 8
  59. #define PSRAM_ID_KGD 0x5d
  60. #define PSRAM_ID_EID_M 0xff
  61. #define PSRAM_ID_EID_S 16
  62. // Use the [7:5](bit7~bit5) of EID to distinguish the psram size:
  63. //
  64. // BIT7 | BIT6 | BIT5 | SIZE(MBIT)
  65. // -------------------------------------
  66. // 0 | 0 | 0 | 16
  67. // 0 | 0 | 1 | 32
  68. // 0 | 1 | 0 | 64
  69. #define PSRAM_EID_SIZE_M 0x07
  70. #define PSRAM_EID_SIZE_S 5
  71. typedef enum {
  72. PSRAM_EID_SIZE_16MBITS = 0,
  73. PSRAM_EID_SIZE_32MBITS = 1,
  74. PSRAM_EID_SIZE_64MBITS = 2,
  75. } psram_eid_size_t;
  76. #define PSRAM_KGD(id) (((id) >> PSRAM_ID_KGD_S) & PSRAM_ID_KGD_M)
  77. #define PSRAM_EID(id) (((id) >> PSRAM_ID_EID_S) & PSRAM_ID_EID_M)
  78. #define PSRAM_SIZE_ID(id) ((PSRAM_EID(id) >> PSRAM_EID_SIZE_S) & PSRAM_EID_SIZE_M)
  79. #define PSRAM_IS_VALID(id) (PSRAM_KGD(id) == PSRAM_ID_KGD)
  80. // For the old version 32Mbit psram, using the spicial driver */
  81. #define PSRAM_IS_32MBIT_VER0(id) (PSRAM_EID(id) == 0x20)
  82. #define PSRAM_IS_64MBIT_TRIAL(id) (PSRAM_EID(id) == 0x26)
  83. // IO-pins for PSRAM.
  84. // WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines
  85. // hardcode the flash pins as well, making this code incompatible with either a setup
  86. // that has the flash on non-standard pins or ESP32s with built-in flash.
  87. #define PSRAM_SPIQ_SD0_IO 7
  88. #define PSRAM_SPID_SD1_IO 8
  89. #define PSRAM_SPIWP_SD3_IO 10
  90. #define PSRAM_SPIHD_SD2_IO 9
  91. #define FLASH_HSPI_CLK_IO 14
  92. #define FLASH_HSPI_CS_IO 15
  93. #define PSRAM_HSPI_SPIQ_SD0_IO 12
  94. #define PSRAM_HSPI_SPID_SD1_IO 13
  95. #define PSRAM_HSPI_SPIWP_SD3_IO 2
  96. #define PSRAM_HSPI_SPIHD_SD2_IO 4
  97. // PSRAM clock and cs IO should be configured based on hardware design.
  98. // For ESP32-WROVER or ESP32-WROVER-B module, the clock IO is IO17, the cs IO is IO16,
  99. // they are the default value for these two configs.
  100. #define D0WD_PSRAM_CLK_IO CONFIG_D0WD_PSRAM_CLK_IO // Default value is 17
  101. #define D0WD_PSRAM_CS_IO CONFIG_D0WD_PSRAM_CS_IO // Default value is 16
  102. #define D2WD_PSRAM_CLK_IO CONFIG_D2WD_PSRAM_CLK_IO // Default value is 9
  103. #define D2WD_PSRAM_CS_IO CONFIG_D2WD_PSRAM_CS_IO // Default value is 10
  104. // There is no reason to change the pin of an embedded psram.
  105. // So define the number of pin directly, instead of configurable.
  106. #define D0WDR2_V3_PSRAM_CLK_IO 6
  107. #define D0WDR2_V3_PSRAM_CS_IO 16
  108. // For ESP32-PICO chip, the psram share clock with flash. The flash clock pin is fixed, which is IO6.
  109. #define PICO_PSRAM_CLK_IO 6
  110. #define PICO_PSRAM_CS_IO CONFIG_PICO_PSRAM_CS_IO // Default value is 10
  111. #define PICO_V3_02_PSRAM_CLK_IO 10
  112. #define PICO_V3_02_PSRAM_CS_IO 9
  113. typedef struct {
  114. uint8_t flash_clk_io;
  115. uint8_t flash_cs_io;
  116. uint8_t psram_clk_io;
  117. uint8_t psram_cs_io;
  118. uint8_t psram_spiq_sd0_io;
  119. uint8_t psram_spid_sd1_io;
  120. uint8_t psram_spiwp_sd3_io;
  121. uint8_t psram_spihd_sd2_io;
  122. } psram_io_t;
  123. #define PSRAM_INTERNAL_IO_28 28
  124. #define PSRAM_INTERNAL_IO_29 29
  125. #define PSRAM_IO_MATRIX_DUMMY_40M ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_40M
  126. #define PSRAM_IO_MATRIX_DUMMY_80M ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_80M
  127. #define _SPI_CACHE_PORT 0
  128. #define _SPI_FLASH_PORT 1
  129. #define _SPI_80M_CLK_DIV 1
  130. #define _SPI_40M_CLK_DIV 2
  131. //For 4MB PSRAM, we need one more SPI host, select which one to use by kconfig
  132. #ifdef CONFIG_SPIRAM_OCCUPY_HSPI_HOST
  133. #define PSRAM_SPI_MODULE PERIPH_HSPI_MODULE
  134. #define PSRAM_SPI_HOST HSPI_HOST
  135. #define PSRAM_CLK_SIGNAL HSPICLK_OUT_IDX
  136. #define PSRAM_SPI_NUM PSRAM_SPI_2
  137. #define PSRAM_SPICLKEN DPORT_SPI2_CLK_EN
  138. #elif defined CONFIG_SPIRAM_OCCUPY_VSPI_HOST
  139. #define PSRAM_SPI_MODULE PERIPH_VSPI_MODULE
  140. #define PSRAM_SPI_HOST VSPI_HOST
  141. #define PSRAM_CLK_SIGNAL VSPICLK_OUT_IDX
  142. #define PSRAM_SPI_NUM PSRAM_SPI_3
  143. #define PSRAM_SPICLKEN DPORT_SPI3_CLK_EN
  144. #else //set to SPI avoid HSPI and VSPI being used
  145. #define PSRAM_SPI_MODULE PERIPH_SPI_MODULE
  146. #define PSRAM_SPI_HOST SPI_HOST
  147. #define PSRAM_CLK_SIGNAL SPICLK_OUT_IDX
  148. #define PSRAM_SPI_NUM PSRAM_SPI_1
  149. #define PSRAM_SPICLKEN DPORT_SPI01_CLK_EN
  150. #endif
  151. static const char* TAG = "psram";
  152. typedef enum {
  153. PSRAM_SPI_1 = 0x1,
  154. PSRAM_SPI_2,
  155. PSRAM_SPI_3,
  156. PSRAM_SPI_MAX ,
  157. } psram_spi_num_t;
  158. static psram_cache_mode_t s_psram_mode = PSRAM_CACHE_MAX;
  159. static psram_clk_mode_t s_clk_mode = PSRAM_CLK_MODE_DCLK;
  160. static uint64_t s_psram_id = 0;
  161. static bool s_2t_mode_enabled = false;
  162. /* dummy_len_plus values defined in ROM for SPI flash configuration */
  163. extern uint8_t g_rom_spiflash_dummy_len_plus[];
  164. static int extra_dummy = 0;
  165. typedef enum {
  166. PSRAM_CMD_QPI,
  167. PSRAM_CMD_SPI,
  168. } psram_cmd_mode_t;
  169. typedef struct {
  170. uint16_t cmd; /*!< Command value */
  171. uint16_t cmdBitLen; /*!< Command byte length*/
  172. uint32_t *addr; /*!< Point to address value*/
  173. uint16_t addrBitLen; /*!< Address byte length*/
  174. uint32_t *txData; /*!< Point to send data buffer*/
  175. uint16_t txDataBitLen; /*!< Send data byte length.*/
  176. uint32_t *rxData; /*!< Point to recevie data buffer*/
  177. uint16_t rxDataBitLen; /*!< Recevie Data byte length.*/
  178. uint32_t dummyBitLen;
  179. } psram_cmd_t;
  180. static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode);
  181. static void psram_clear_spi_fifo(psram_spi_num_t spi_num)
  182. {
  183. int i;
  184. for (i = 0; i < 16; i++) {
  185. WRITE_PERI_REG(SPI_W0_REG(spi_num)+i*4, 0);
  186. }
  187. }
  188. //set basic SPI write mode
  189. static void psram_set_basic_write_mode(psram_spi_num_t spi_num)
  190. {
  191. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
  192. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
  193. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
  194. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
  195. }
  196. //set QPI write mode
  197. static void psram_set_qio_write_mode(psram_spi_num_t spi_num)
  198. {
  199. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
  200. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
  201. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
  202. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
  203. }
  204. //set QPI read mode
  205. static void psram_set_qio_read_mode(psram_spi_num_t spi_num)
  206. {
  207. SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
  208. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
  209. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
  210. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
  211. }
  212. //set SPI read mode
  213. static void psram_set_basic_read_mode(psram_spi_num_t spi_num)
  214. {
  215. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
  216. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
  217. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
  218. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
  219. }
  220. //start sending cmd/addr and optionally, receiving data
  221. static void IRAM_ATTR psram_cmd_recv_start(psram_spi_num_t spi_num, uint32_t* pRxData, uint16_t rxByteLen,
  222. psram_cmd_mode_t cmd_mode)
  223. {
  224. //get cs1
  225. CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
  226. SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
  227. uint32_t mode_backup = (READ_PERI_REG(SPI_USER_REG(spi_num)) >> SPI_FWRITE_DUAL_S) & 0xf;
  228. uint32_t rd_mode_backup = READ_PERI_REG(SPI_CTRL_REG(spi_num)) & (SPI_FREAD_DIO_M | SPI_FREAD_DUAL_M | SPI_FREAD_QUAD_M | SPI_FREAD_QIO_M);
  229. if (cmd_mode == PSRAM_CMD_SPI) {
  230. psram_set_basic_write_mode(spi_num);
  231. psram_set_basic_read_mode(spi_num);
  232. } else if (cmd_mode == PSRAM_CMD_QPI) {
  233. psram_set_qio_write_mode(spi_num);
  234. psram_set_qio_read_mode(spi_num);
  235. }
  236. //Wait for SPI0 to idle
  237. while ( READ_PERI_REG(SPI_EXT2_REG(0)) != 0);
  238. DPORT_SET_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
  239. // Start send data
  240. SET_PERI_REG_MASK(SPI_CMD_REG(spi_num), SPI_USR);
  241. while ((READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR));
  242. DPORT_CLEAR_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
  243. //recover spi mode
  244. SET_PERI_REG_BITS(SPI_USER_REG(spi_num), (pRxData?SPI_FWRITE_DUAL_M:0xf), mode_backup, SPI_FWRITE_DUAL_S);
  245. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), (SPI_FREAD_DIO_M|SPI_FREAD_DUAL_M|SPI_FREAD_QUAD_M|SPI_FREAD_QIO_M));
  246. SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), rd_mode_backup);
  247. //return cs to cs0
  248. SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
  249. CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
  250. if (pRxData) {
  251. int idx = 0;
  252. // Read data out
  253. do {
  254. *pRxData++ = READ_PERI_REG(SPI_W0_REG(spi_num) + (idx << 2));
  255. } while (++idx < ((rxByteLen / 4) + ((rxByteLen % 4) ? 1 : 0)));
  256. }
  257. }
  258. static uint32_t backup_usr[3];
  259. static uint32_t backup_usr1[3];
  260. static uint32_t backup_usr2[3];
  261. //setup spi command/addr/data/dummy in user mode
  262. static int psram_cmd_config(psram_spi_num_t spi_num, psram_cmd_t* pInData)
  263. {
  264. while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
  265. backup_usr[spi_num]=READ_PERI_REG(SPI_USER_REG(spi_num));
  266. backup_usr1[spi_num]=READ_PERI_REG(SPI_USER1_REG(spi_num));
  267. backup_usr2[spi_num]=READ_PERI_REG(SPI_USER2_REG(spi_num));
  268. // Set command by user.
  269. if (pInData->cmdBitLen != 0) {
  270. // Max command length 16 bits.
  271. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, pInData->cmdBitLen - 1,
  272. SPI_USR_COMMAND_BITLEN_S);
  273. // Enable command
  274. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
  275. // Load command,bit15-0 is cmd value.
  276. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_VALUE, pInData->cmd, SPI_USR_COMMAND_VALUE_S);
  277. } else {
  278. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
  279. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, 0, SPI_USR_COMMAND_BITLEN_S);
  280. }
  281. // Set Address by user.
  282. if (pInData->addrBitLen != 0) {
  283. SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, (pInData->addrBitLen - 1), SPI_USR_ADDR_BITLEN_S);
  284. // Enable address
  285. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
  286. // Set address
  287. WRITE_PERI_REG(SPI_ADDR_REG(spi_num), *pInData->addr);
  288. } else {
  289. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
  290. SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, 0, SPI_USR_ADDR_BITLEN_S);
  291. }
  292. // Set data by user.
  293. uint32_t* p_tx_val = pInData->txData;
  294. if (pInData->txDataBitLen != 0) {
  295. // Enable MOSI
  296. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
  297. // Load send buffer
  298. int len = (pInData->txDataBitLen + 31) / 32;
  299. if (p_tx_val != NULL) {
  300. memcpy((void*)SPI_W0_REG(spi_num), p_tx_val, len * 4);
  301. }
  302. // Set data send buffer length.Max data length 64 bytes.
  303. SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, (pInData->txDataBitLen - 1),
  304. SPI_USR_MOSI_DBITLEN_S);
  305. } else {
  306. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
  307. SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, 0, SPI_USR_MOSI_DBITLEN_S);
  308. }
  309. // Set rx data by user.
  310. if (pInData->rxDataBitLen != 0) {
  311. // Enable MOSI
  312. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
  313. // Set data send buffer length.Max data length 64 bytes.
  314. SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, (pInData->rxDataBitLen - 1),
  315. SPI_USR_MISO_DBITLEN_S);
  316. } else {
  317. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
  318. SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, 0, SPI_USR_MISO_DBITLEN_S);
  319. }
  320. if (pInData->dummyBitLen != 0) {
  321. SET_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
  322. SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, pInData->dummyBitLen - 1,
  323. SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  324. } else {
  325. CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
  326. SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, 0, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  327. }
  328. return 0;
  329. }
  330. static void psram_cmd_end(int spi_num) {
  331. while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
  332. WRITE_PERI_REG(SPI_USER_REG(spi_num), backup_usr[spi_num]);
  333. WRITE_PERI_REG(SPI_USER1_REG(spi_num), backup_usr1[spi_num]);
  334. WRITE_PERI_REG(SPI_USER2_REG(spi_num), backup_usr2[spi_num]);
  335. }
  336. //exit QPI mode(set back to SPI mode)
  337. static void psram_disable_qio_mode(psram_spi_num_t spi_num)
  338. {
  339. psram_cmd_t ps_cmd;
  340. uint32_t cmd_exit_qpi;
  341. cmd_exit_qpi = PSRAM_EXIT_QMODE;
  342. ps_cmd.txDataBitLen = 8;
  343. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  344. switch (s_psram_mode) {
  345. case PSRAM_CACHE_F80M_S80M:
  346. break;
  347. case PSRAM_CACHE_F80M_S40M:
  348. case PSRAM_CACHE_F40M_S40M:
  349. default:
  350. cmd_exit_qpi = PSRAM_EXIT_QMODE << 8;
  351. ps_cmd.txDataBitLen = 16;
  352. break;
  353. }
  354. }
  355. ps_cmd.txData = &cmd_exit_qpi;
  356. ps_cmd.cmd = 0;
  357. ps_cmd.cmdBitLen = 0;
  358. ps_cmd.addr = 0;
  359. ps_cmd.addrBitLen = 0;
  360. ps_cmd.rxData = NULL;
  361. ps_cmd.rxDataBitLen = 0;
  362. ps_cmd.dummyBitLen = 0;
  363. psram_cmd_config(spi_num, &ps_cmd);
  364. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_QPI);
  365. psram_cmd_end(spi_num);
  366. }
  367. //read psram id, should issue `psram_disable_qio_mode` before calling this
  368. static void psram_read_id(psram_spi_num_t spi_num, uint64_t* dev_id)
  369. {
  370. uint32_t dummy_bits = 0 + extra_dummy;
  371. uint32_t psram_id[2] = {0};
  372. psram_cmd_t ps_cmd;
  373. uint32_t addr = 0;
  374. ps_cmd.addrBitLen = 3 * 8;
  375. ps_cmd.cmd = PSRAM_DEVICE_ID;
  376. ps_cmd.cmdBitLen = 8;
  377. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  378. switch (s_psram_mode) {
  379. case PSRAM_CACHE_F80M_S80M:
  380. break;
  381. case PSRAM_CACHE_F80M_S40M:
  382. case PSRAM_CACHE_F40M_S40M:
  383. default:
  384. ps_cmd.cmdBitLen = 2; //this two bits is used to delay 2 clock cycle
  385. ps_cmd.cmd = 0;
  386. addr = (PSRAM_DEVICE_ID << 24) | 0;
  387. ps_cmd.addrBitLen = 4 * 8;
  388. break;
  389. }
  390. }
  391. ps_cmd.addr = &addr;
  392. ps_cmd.txDataBitLen = 0;
  393. ps_cmd.txData = NULL;
  394. ps_cmd.rxDataBitLen = 8 * 8;
  395. ps_cmd.rxData = psram_id;
  396. ps_cmd.dummyBitLen = dummy_bits;
  397. psram_cmd_config(spi_num, &ps_cmd);
  398. psram_clear_spi_fifo(spi_num);
  399. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_SPI);
  400. psram_cmd_end(spi_num);
  401. *dev_id = (uint64_t)(((uint64_t)psram_id[1] << 32) | psram_id[0]);
  402. }
  403. //enter QPI mode
  404. static esp_err_t IRAM_ATTR psram_enable_qio_mode(psram_spi_num_t spi_num)
  405. {
  406. psram_cmd_t ps_cmd;
  407. uint32_t addr = (PSRAM_ENTER_QMODE << 24) | 0;
  408. ps_cmd.cmdBitLen = 0;
  409. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  410. switch (s_psram_mode) {
  411. case PSRAM_CACHE_F80M_S80M:
  412. break;
  413. case PSRAM_CACHE_F80M_S40M:
  414. case PSRAM_CACHE_F40M_S40M:
  415. default:
  416. ps_cmd.cmdBitLen = 2;
  417. break;
  418. }
  419. }
  420. ps_cmd.cmd = 0;
  421. ps_cmd.addr = &addr;
  422. ps_cmd.addrBitLen = 8;
  423. ps_cmd.txData = NULL;
  424. ps_cmd.txDataBitLen = 0;
  425. ps_cmd.rxData = NULL;
  426. ps_cmd.rxDataBitLen = 0;
  427. ps_cmd.dummyBitLen = 0;
  428. psram_cmd_config(spi_num, &ps_cmd);
  429. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  430. psram_cmd_end(spi_num);
  431. return ESP_OK;
  432. }
  433. #if CONFIG_SPIRAM_2T_MODE
  434. // use SPI user mode to write psram
  435. static void spi_user_psram_write(psram_spi_num_t spi_num, uint32_t address, uint32_t *data_buffer, uint32_t data_len)
  436. {
  437. uint32_t addr = (PSRAM_QUAD_WRITE << 24) | (address & 0x7fffff);
  438. psram_cmd_t ps_cmd;
  439. ps_cmd.cmdBitLen = 0;
  440. ps_cmd.cmd = 0;
  441. ps_cmd.addr = &addr;
  442. ps_cmd.addrBitLen = 4 * 8;
  443. ps_cmd.txDataBitLen = 32 * 8;
  444. ps_cmd.txData = NULL;
  445. ps_cmd.rxDataBitLen = 0;
  446. ps_cmd.rxData = NULL;
  447. ps_cmd.dummyBitLen = 0;
  448. for(uint32_t i=0; i<data_len; i+=32) {
  449. psram_clear_spi_fifo(spi_num);
  450. addr = (PSRAM_QUAD_WRITE << 24) | ((address & 0x7fffff) + i);
  451. ps_cmd.txData = data_buffer + (i / 4);
  452. psram_cmd_config(spi_num, &ps_cmd);
  453. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_QPI);
  454. }
  455. psram_cmd_end(spi_num);
  456. }
  457. // use SPI user mode to read psram
  458. static void spi_user_psram_read(psram_spi_num_t spi_num, uint32_t address, uint32_t *data_buffer, uint32_t data_len)
  459. {
  460. uint32_t addr = (PSRAM_FAST_READ_QUAD << 24) | (address & 0x7fffff);
  461. uint32_t dummy_bits = PSRAM_FAST_READ_QUAD_DUMMY + 1;
  462. psram_cmd_t ps_cmd;
  463. ps_cmd.cmdBitLen = 0;
  464. ps_cmd.cmd = 0;
  465. ps_cmd.addr = &addr;
  466. ps_cmd.addrBitLen = 4 * 8;
  467. ps_cmd.txDataBitLen = 0;
  468. ps_cmd.txData = NULL;
  469. ps_cmd.rxDataBitLen = 32 * 8;
  470. ps_cmd.dummyBitLen = dummy_bits + extra_dummy;
  471. for(uint32_t i=0; i<data_len; i+=32) {
  472. psram_clear_spi_fifo(spi_num);
  473. addr = (PSRAM_FAST_READ_QUAD << 24) | ((address & 0x7fffff) + i);
  474. ps_cmd.rxData = data_buffer + (i / 4);
  475. psram_cmd_config(spi_num, &ps_cmd);
  476. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_QPI);
  477. }
  478. psram_cmd_end(spi_num);
  479. }
  480. //enable psram 2T mode
  481. static esp_err_t IRAM_ATTR psram_2t_mode_enable(psram_spi_num_t spi_num)
  482. {
  483. psram_disable_qio_mode(spi_num);
  484. // configure psram clock as 5 MHz
  485. uint32_t div = rtc_clk_apb_freq_get() / 5000000;
  486. esp_rom_spiflash_config_clk(div, spi_num);
  487. psram_cmd_t ps_cmd;
  488. // setp1: send cmd 0x5e
  489. // send one more bit clock after send cmd
  490. ps_cmd.cmd = 0x5e;
  491. ps_cmd.cmdBitLen = 8;
  492. ps_cmd.addrBitLen = 0;
  493. ps_cmd.addr = 0;
  494. ps_cmd.txDataBitLen = 0;
  495. ps_cmd.txData = NULL;
  496. ps_cmd.rxDataBitLen =0;
  497. ps_cmd.rxData = NULL;
  498. ps_cmd.dummyBitLen = 1;
  499. psram_cmd_config(spi_num, &ps_cmd);
  500. psram_clear_spi_fifo(spi_num);
  501. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  502. psram_cmd_end(spi_num);
  503. // setp2: send cmd 0x5f
  504. // send one more bit clock after send cmd
  505. ps_cmd.cmd = 0x5f;
  506. psram_cmd_config(spi_num, &ps_cmd);
  507. psram_clear_spi_fifo(spi_num);
  508. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  509. psram_cmd_end(spi_num);
  510. // setp3: keep cs as high level
  511. // send 128 cycles clock
  512. // send 1 bit high levle in ninth clock from the back to PSRAM SIO1
  513. GPIO_OUTPUT_SET(D0WD_PSRAM_CS_IO, 1);
  514. gpio_matrix_out(D0WD_PSRAM_CS_IO, SIG_GPIO_OUT_IDX, 0, 0);
  515. gpio_matrix_out(PSRAM_SPID_SD1_IO, SPIQ_OUT_IDX, 0, 0);
  516. gpio_matrix_in(PSRAM_SPID_SD1_IO, SPIQ_IN_IDX, 0);
  517. gpio_matrix_out(PSRAM_SPIQ_SD0_IO, SPID_OUT_IDX, 0, 0);
  518. gpio_matrix_in(PSRAM_SPIQ_SD0_IO, SPID_IN_IDX, 0);
  519. uint32_t w_data_2t[4] = {0x0, 0x0, 0x0, 0x00010000};
  520. ps_cmd.cmd = 0;
  521. ps_cmd.cmdBitLen = 0;
  522. ps_cmd.txDataBitLen = 128;
  523. ps_cmd.txData = w_data_2t;
  524. ps_cmd.dummyBitLen = 0;
  525. psram_clear_spi_fifo(spi_num);
  526. psram_cmd_config(spi_num, &ps_cmd);
  527. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  528. psram_cmd_end(spi_num);
  529. gpio_matrix_out(PSRAM_SPIQ_SD0_IO, SPIQ_OUT_IDX, 0, 0);
  530. gpio_matrix_in(PSRAM_SPIQ_SD0_IO, SPIQ_IN_IDX, 0);
  531. gpio_matrix_out(PSRAM_SPID_SD1_IO, SPID_OUT_IDX, 0, 0);
  532. gpio_matrix_in(PSRAM_SPID_SD1_IO, SPID_IN_IDX, 0);
  533. gpio_matrix_out(D0WD_PSRAM_CS_IO, SPICS1_OUT_IDX, 0, 0);
  534. // setp4: send cmd 0x5f
  535. // send one more bit clock after send cmd
  536. ps_cmd.cmd = 0x5f;
  537. ps_cmd.cmdBitLen = 8;
  538. ps_cmd.txDataBitLen = 0;
  539. ps_cmd.txData = NULL;
  540. ps_cmd.dummyBitLen = 1;
  541. psram_cmd_config(spi_num, &ps_cmd);
  542. psram_clear_spi_fifo(spi_num);
  543. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  544. psram_cmd_end(spi_num);
  545. // configure psram clock back to the default value
  546. switch (s_psram_mode) {
  547. case PSRAM_CACHE_F80M_S40M:
  548. case PSRAM_CACHE_F40M_S40M:
  549. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, spi_num);
  550. break;
  551. case PSRAM_CACHE_F80M_S80M:
  552. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, spi_num);
  553. break;
  554. default:
  555. break;
  556. }
  557. psram_enable_qio_mode(spi_num);
  558. return ESP_OK;
  559. }
  560. #define CHECK_DATA_LEN (1024)
  561. #define CHECK_ADDR_STEP (0x100000)
  562. #define SIZE_32MBIT (0x400000)
  563. #define SIZE_64MBIT (0x800000)
  564. static esp_err_t psram_2t_mode_check(psram_spi_num_t spi_num)
  565. {
  566. uint8_t w_check_data[CHECK_DATA_LEN] = {0};
  567. uint8_t r_check_data[CHECK_DATA_LEN] = {0};
  568. for (uint32_t addr=0; addr<SIZE_32MBIT; addr+=CHECK_ADDR_STEP) {
  569. spi_user_psram_write(spi_num, addr, (uint32_t *)w_check_data, CHECK_DATA_LEN);
  570. }
  571. memset(w_check_data, 0xff, sizeof(w_check_data));
  572. for (uint32_t addr=SIZE_32MBIT; addr<SIZE_64MBIT; addr+=CHECK_ADDR_STEP) {
  573. spi_user_psram_write(spi_num, addr, (uint32_t *)w_check_data, CHECK_DATA_LEN);
  574. }
  575. for (uint32_t addr=0; addr<SIZE_32MBIT; addr+=CHECK_ADDR_STEP) {
  576. spi_user_psram_read(spi_num, addr, (uint32_t *)r_check_data, CHECK_DATA_LEN);
  577. for (uint32_t j=0; j<CHECK_DATA_LEN; j++) {
  578. if (r_check_data[j] != 0xff) {
  579. return ESP_FAIL;
  580. }
  581. }
  582. }
  583. return ESP_OK;
  584. }
  585. #endif
  586. void psram_set_cs_timing(psram_spi_num_t spi_num, psram_clk_mode_t clk_mode)
  587. {
  588. if (clk_mode == PSRAM_CLK_MODE_NORM) {
  589. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
  590. // Set cs time.
  591. SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_HOLD_TIME_V, 1, SPI_HOLD_TIME_S);
  592. SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_SETUP_TIME_V, 0, SPI_SETUP_TIME_S);
  593. } else {
  594. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
  595. }
  596. }
  597. //spi param init for psram
  598. void IRAM_ATTR psram_spi_init(psram_spi_num_t spi_num, psram_cache_mode_t mode)
  599. {
  600. CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_TRANS_DONE << 5);
  601. // SPI_CPOL & SPI_CPHA
  602. CLEAR_PERI_REG_MASK(SPI_PIN_REG(spi_num), SPI_CK_IDLE_EDGE);
  603. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CK_OUT_EDGE);
  604. // SPI bit order
  605. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_WR_BIT_ORDER);
  606. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_RD_BIT_ORDER);
  607. // SPI bit order
  608. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_DOUTDIN);
  609. // May be not must to do.
  610. WRITE_PERI_REG(SPI_USER1_REG(spi_num), 0);
  611. // SPI mode type
  612. CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_SLAVE_MODE);
  613. memset((void*)SPI_W0_REG(spi_num), 0, 16 * 4);
  614. psram_set_cs_timing(spi_num, s_clk_mode);
  615. }
  616. //psram gpio init , different working frequency we have different solutions
  617. static void IRAM_ATTR psram_gpio_config(psram_io_t *psram_io, psram_cache_mode_t mode)
  618. {
  619. int spi_cache_dummy = 0;
  620. uint32_t rd_mode_reg = READ_PERI_REG(SPI_CTRL_REG(0));
  621. if (rd_mode_reg & SPI_FREAD_QIO_M) {
  622. spi_cache_dummy = SPI0_R_QIO_DUMMY_CYCLELEN;
  623. } else if (rd_mode_reg & SPI_FREAD_DIO_M) {
  624. spi_cache_dummy = SPI0_R_DIO_DUMMY_CYCLELEN;
  625. SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_ADDR_BITLEN_V, SPI0_R_DIO_ADDR_BITSLEN, SPI_USR_ADDR_BITLEN_S);
  626. } else if (rd_mode_reg & (SPI_FREAD_QUAD_M | SPI_FREAD_DUAL_M)) {
  627. spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
  628. } else {
  629. spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
  630. }
  631. switch (mode) {
  632. case PSRAM_CACHE_F80M_S40M:
  633. extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
  634. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  635. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  636. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  637. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
  638. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
  639. //set drive ability for clock
  640. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
  641. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
  642. break;
  643. case PSRAM_CACHE_F80M_S80M:
  644. extra_dummy = PSRAM_IO_MATRIX_DUMMY_80M;
  645. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  646. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  647. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  648. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
  649. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_FLASH_PORT);
  650. //set drive ability for clock
  651. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
  652. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 3, FUN_DRV_S);
  653. break;
  654. case PSRAM_CACHE_F40M_S40M:
  655. extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
  656. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  657. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  658. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_40M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  659. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_CACHE_PORT);
  660. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
  661. //set drive ability for clock
  662. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 2, FUN_DRV_S);
  663. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
  664. break;
  665. default:
  666. break;
  667. }
  668. SET_PERI_REG_MASK(SPI_USER_REG(0), SPI_USR_DUMMY); // dummy enable
  669. // In bootloader, all the signals are already configured,
  670. // We keep the following code in case the bootloader is some older version.
  671. gpio_matrix_out(psram_io->flash_cs_io, SPICS0_OUT_IDX, 0, 0);
  672. gpio_matrix_out(psram_io->psram_cs_io, SPICS1_OUT_IDX, 0, 0);
  673. gpio_matrix_out(psram_io->psram_spiq_sd0_io, SPIQ_OUT_IDX, 0, 0);
  674. gpio_matrix_in(psram_io->psram_spiq_sd0_io, SPIQ_IN_IDX, 0);
  675. gpio_matrix_out(psram_io->psram_spid_sd1_io, SPID_OUT_IDX, 0, 0);
  676. gpio_matrix_in(psram_io->psram_spid_sd1_io, SPID_IN_IDX, 0);
  677. gpio_matrix_out(psram_io->psram_spiwp_sd3_io, SPIWP_OUT_IDX, 0, 0);
  678. gpio_matrix_in(psram_io->psram_spiwp_sd3_io, SPIWP_IN_IDX, 0);
  679. gpio_matrix_out(psram_io->psram_spihd_sd2_io, SPIHD_OUT_IDX, 0, 0);
  680. gpio_matrix_in(psram_io->psram_spihd_sd2_io, SPIHD_IN_IDX, 0);
  681. //select pin function gpio
  682. if ((psram_io->flash_clk_io == SPI_IOMUX_PIN_NUM_CLK) && (psram_io->flash_clk_io != psram_io->psram_clk_io)) {
  683. //flash clock signal should come from IO MUX.
  684. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUNC_SD_CLK_SPICLK);
  685. } else {
  686. //flash clock signal should come from GPIO matrix.
  687. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], PIN_FUNC_GPIO);
  688. }
  689. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_cs_io], PIN_FUNC_GPIO);
  690. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_cs_io], PIN_FUNC_GPIO);
  691. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], PIN_FUNC_GPIO);
  692. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io], PIN_FUNC_GPIO);
  693. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io], PIN_FUNC_GPIO);
  694. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], PIN_FUNC_GPIO);
  695. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], PIN_FUNC_GPIO);
  696. uint32_t flash_id = g_rom_flashchip.device_id;
  697. if (flash_id == FLASH_ID_GD25LQ32C) {
  698. // Set drive ability for 1.8v flash in 80Mhz.
  699. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_cs_io], FUN_DRV_V, 3, FUN_DRV_S);
  700. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
  701. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_cs_io], FUN_DRV_V, 3, FUN_DRV_S);
  702. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
  703. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io], FUN_DRV_V, 3, FUN_DRV_S);
  704. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io], FUN_DRV_V, 3, FUN_DRV_S);
  705. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], FUN_DRV_V, 3, FUN_DRV_S);
  706. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], FUN_DRV_V, 3, FUN_DRV_S);
  707. }
  708. }
  709. psram_size_t psram_get_size(void)
  710. {
  711. if ((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id)) {
  712. return s_2t_mode_enabled ? PSRAM_SIZE_32MBITS : PSRAM_SIZE_64MBITS;
  713. } else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_32MBITS) {
  714. return PSRAM_SIZE_32MBITS;
  715. } else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_16MBITS) {
  716. return PSRAM_SIZE_16MBITS;
  717. } else {
  718. return PSRAM_SIZE_MAX;
  719. }
  720. }
  721. //used in UT only
  722. bool psram_is_32mbit_ver0(void)
  723. {
  724. return PSRAM_IS_32MBIT_VER0(s_psram_id);
  725. }
  726. /*
  727. * Psram mode init will overwrite original flash speed mode, so that it is possible to change psram and flash speed after OTA.
  728. * Flash read mode(QIO/QOUT/DIO/DOUT) will not be changed in app bin. It is decided by bootloader, OTA can not change this mode.
  729. */
  730. esp_err_t IRAM_ATTR psram_enable(psram_cache_mode_t mode, psram_vaddr_mode_t vaddrmode) //psram init
  731. {
  732. psram_io_t psram_io={0};
  733. uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
  734. uint32_t pkg_ver = chip_ver & 0x7;
  735. if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
  736. ESP_EARLY_LOGI(TAG, "This chip is ESP32-D2WD");
  737. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  738. if (cfg.tieh != RTC_VDDSDIO_TIEH_1_8V) {
  739. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 1.8V");
  740. return ESP_FAIL;
  741. }
  742. psram_io.psram_clk_io = D2WD_PSRAM_CLK_IO;
  743. psram_io.psram_cs_io = D2WD_PSRAM_CS_IO;
  744. } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4)) {
  745. ESP_EARLY_LOGI(TAG, "This chip is ESP32-PICO");
  746. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  747. if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
  748. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
  749. return ESP_FAIL;
  750. }
  751. s_clk_mode = PSRAM_CLK_MODE_NORM;
  752. psram_io.psram_clk_io = PICO_PSRAM_CLK_IO;
  753. psram_io.psram_cs_io = PICO_PSRAM_CS_IO;
  754. } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOV302) {
  755. ESP_EARLY_LOGI(TAG, "This chip is ESP32-PICO-V3-02");
  756. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  757. if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
  758. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
  759. return ESP_FAIL;
  760. }
  761. s_clk_mode = PSRAM_CLK_MODE_NORM;
  762. psram_io.psram_clk_io = PICO_V3_02_PSRAM_CLK_IO;
  763. psram_io.psram_cs_io = PICO_V3_02_PSRAM_CS_IO;
  764. } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5)){
  765. ESP_EARLY_LOGI(TAG, "This chip is ESP32-D0WD");
  766. psram_io.psram_clk_io = D0WD_PSRAM_CLK_IO;
  767. psram_io.psram_cs_io = D0WD_PSRAM_CS_IO;
  768. } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDR2V3) {
  769. ESP_EARLY_LOGI(TAG, "This chip is ESP32-D0WDR2-V3");
  770. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  771. if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
  772. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
  773. return ESP_FAIL;
  774. }
  775. s_clk_mode = PSRAM_CLK_MODE_NORM;
  776. psram_io.psram_clk_io = D0WDR2_V3_PSRAM_CLK_IO;
  777. psram_io.psram_cs_io = D0WDR2_V3_PSRAM_CS_IO;
  778. } else {
  779. ESP_EARLY_LOGE(TAG, "Not a valid or known package id: %d", pkg_ver);
  780. abort();
  781. }
  782. const uint32_t spiconfig = ets_efuse_get_spiconfig();
  783. if (spiconfig == EFUSE_SPICONFIG_SPI_DEFAULTS) {
  784. psram_io.flash_clk_io = SPI_IOMUX_PIN_NUM_CLK;
  785. psram_io.flash_cs_io = SPI_IOMUX_PIN_NUM_CS;
  786. psram_io.psram_spiq_sd0_io = PSRAM_SPIQ_SD0_IO;
  787. psram_io.psram_spid_sd1_io = PSRAM_SPID_SD1_IO;
  788. psram_io.psram_spiwp_sd3_io = PSRAM_SPIWP_SD3_IO;
  789. psram_io.psram_spihd_sd2_io = PSRAM_SPIHD_SD2_IO;
  790. } else if (spiconfig == EFUSE_SPICONFIG_HSPI_DEFAULTS) {
  791. psram_io.flash_clk_io = FLASH_HSPI_CLK_IO;
  792. psram_io.flash_cs_io = FLASH_HSPI_CS_IO;
  793. psram_io.psram_spiq_sd0_io = PSRAM_HSPI_SPIQ_SD0_IO;
  794. psram_io.psram_spid_sd1_io = PSRAM_HSPI_SPID_SD1_IO;
  795. psram_io.psram_spiwp_sd3_io = PSRAM_HSPI_SPIWP_SD3_IO;
  796. psram_io.psram_spihd_sd2_io = PSRAM_HSPI_SPIHD_SD2_IO;
  797. } else {
  798. psram_io.flash_clk_io = EFUSE_SPICONFIG_RET_SPICLK(spiconfig);
  799. psram_io.flash_cs_io = EFUSE_SPICONFIG_RET_SPICS0(spiconfig);
  800. psram_io.psram_spiq_sd0_io = EFUSE_SPICONFIG_RET_SPIQ(spiconfig);
  801. psram_io.psram_spid_sd1_io = EFUSE_SPICONFIG_RET_SPID(spiconfig);
  802. psram_io.psram_spihd_sd2_io = EFUSE_SPICONFIG_RET_SPIHD(spiconfig);
  803. psram_io.psram_spiwp_sd3_io = bootloader_flash_get_wp_pin();
  804. }
  805. assert(mode < PSRAM_CACHE_MAX && "we don't support any other mode for now.");
  806. s_psram_mode = mode;
  807. WRITE_PERI_REG(SPI_EXT3_REG(0), 0x1);
  808. CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_PREP_HOLD_M);
  809. psram_spi_init(PSRAM_SPI_1, mode);
  810. switch (mode) {
  811. case PSRAM_CACHE_F80M_S80M:
  812. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  813. break;
  814. case PSRAM_CACHE_F80M_S40M:
  815. case PSRAM_CACHE_F40M_S40M:
  816. default:
  817. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  818. /* We need to delay CLK to the PSRAM with respect to the clock signal as output by the SPI peripheral.
  819. We do this by routing it signal to signal 224/225, which are used as a loopback; the extra run through
  820. the GPIO matrix causes the delay. We use GPIO20 (which is not in any package but has pad logic in
  821. silicon) as a temporary pad for this. So the signal path is:
  822. SPI CLK --> GPIO28 --> signal224(in then out) --> internal GPIO29 --> signal225(in then out) --> GPIO17(PSRAM CLK)
  823. */
  824. gpio_matrix_out(PSRAM_INTERNAL_IO_28, SPICLK_OUT_IDX, 0, 0);
  825. gpio_matrix_in(PSRAM_INTERNAL_IO_28, SIG_IN_FUNC224_IDX, 0);
  826. gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC224_IDX, 0, 0);
  827. gpio_matrix_in(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC225_IDX, 0);
  828. gpio_matrix_out(psram_io.psram_clk_io, SIG_IN_FUNC225_IDX, 0, 0);
  829. } else {
  830. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  831. }
  832. break;
  833. }
  834. // Rise VDDSIO for 1.8V psram.
  835. bootloader_common_vddsdio_configure();
  836. // GPIO related settings
  837. psram_gpio_config(&psram_io, mode);
  838. psram_spi_num_t spi_num = PSRAM_SPI_1;
  839. psram_disable_qio_mode(spi_num);
  840. psram_read_id(spi_num, &s_psram_id);
  841. if (!PSRAM_IS_VALID(s_psram_id)) {
  842. /* 16Mbit psram ID read error workaround:
  843. * treat the first read id as a dummy one as the pre-condition,
  844. * Send Read ID command again
  845. */
  846. psram_read_id(spi_num, &s_psram_id);
  847. if (!PSRAM_IS_VALID(s_psram_id)) {
  848. ESP_EARLY_LOGE(TAG, "PSRAM ID read error: 0x%08x", (uint32_t)s_psram_id);
  849. return ESP_FAIL;
  850. }
  851. }
  852. if (psram_is_32mbit_ver0()) {
  853. s_clk_mode = PSRAM_CLK_MODE_DCLK;
  854. if (mode == PSRAM_CACHE_F80M_S80M) {
  855. #ifdef CONFIG_SPIRAM_OCCUPY_NO_HOST
  856. ESP_EARLY_LOGE(TAG, "This version of PSRAM needs to claim an extra SPI peripheral at 80MHz. Please either: choose lower frequency by SPIRAM_SPEED_, or select one SPI peripheral it by SPIRAM_OCCUPY_*SPI_HOST in the menuconfig.");
  857. abort();
  858. #else
  859. /* note: If the third mode(80Mhz+80Mhz) is enabled for 32MBit 1V8 psram, one of HSPI/VSPI port will be
  860. occupied by the system (according to kconfig).
  861. Application code should never touch HSPI/VSPI hardware in this case. We try to stop applications
  862. from doing this using the drivers by claiming the port for ourselves */
  863. periph_module_enable(PSRAM_SPI_MODULE);
  864. bool r=spicommon_periph_claim(PSRAM_SPI_HOST, "psram");
  865. if (!r) {
  866. return ESP_ERR_INVALID_STATE;
  867. }
  868. gpio_matrix_out(psram_io.psram_clk_io, PSRAM_CLK_SIGNAL, 0, 0);
  869. //use spi3 clock,but use spi1 data/cs wires
  870. //We get a solid 80MHz clock from SPI3 by setting it up, starting a transaction, waiting until it
  871. //is in progress, then cutting the clock (but not the reset!) to that peripheral.
  872. WRITE_PERI_REG(SPI_ADDR_REG(PSRAM_SPI_NUM), 32 << 24);
  873. SET_PERI_REG_MASK(SPI_CMD_REG(PSRAM_SPI_NUM), SPI_FLASH_READ_M);
  874. uint32_t spi_status;
  875. while (1) {
  876. spi_status = READ_PERI_REG(SPI_EXT2_REG(PSRAM_SPI_NUM));
  877. if (spi_status != 0 && spi_status != 1) {
  878. DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, PSRAM_SPICLKEN);
  879. break;
  880. }
  881. }
  882. #endif
  883. }
  884. } else {
  885. // For other psram, we don't need any extra clock cycles after cs get back to high level
  886. s_clk_mode = PSRAM_CLK_MODE_NORM;
  887. gpio_matrix_out(PSRAM_INTERNAL_IO_28, SIG_GPIO_OUT_IDX, 0, 0);
  888. gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_GPIO_OUT_IDX, 0, 0);
  889. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  890. }
  891. // Update cs timing according to psram driving method.
  892. psram_set_cs_timing(PSRAM_SPI_1, s_clk_mode);
  893. psram_set_cs_timing(_SPI_CACHE_PORT, s_clk_mode);
  894. psram_enable_qio_mode(PSRAM_SPI_1);
  895. if(((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id))) {
  896. #if CONFIG_SPIRAM_2T_MODE
  897. #if CONFIG_SPIRAM_BANKSWITCH_ENABLE
  898. ESP_EARLY_LOGE(TAG, "PSRAM 2T mode and SPIRAM bank switching can not enabled meanwhile. Please read the help text for SPIRAM_2T_MODE in the project configuration menu.");
  899. abort();
  900. #endif
  901. /* Note: 2T mode command should not be sent twice,
  902. otherwise psram would get back to normal mode. */
  903. if (psram_2t_mode_check(PSRAM_SPI_1) != ESP_OK) {
  904. psram_2t_mode_enable(PSRAM_SPI_1);
  905. if (psram_2t_mode_check(PSRAM_SPI_1) != ESP_OK) {
  906. ESP_EARLY_LOGE(TAG, "PSRAM 2T mode enable fail!");
  907. return ESP_FAIL;
  908. }
  909. }
  910. s_2t_mode_enabled = true;
  911. ESP_EARLY_LOGI(TAG, "PSRAM is in 2T mode");
  912. #endif
  913. }
  914. psram_cache_init(mode, vaddrmode);
  915. return ESP_OK;
  916. }
  917. //register initialization for sram cache params and r/w commands
  918. static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode)
  919. {
  920. switch (psram_cache_mode) {
  921. case PSRAM_CACHE_F80M_S80M:
  922. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk,80+40;
  923. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0. FLASH DIV 2+SRAM DIV4
  924. break;
  925. case PSRAM_CACHE_F80M_S40M:
  926. CLEAR_PERI_REG_MASK(SPI_CLOCK_REG(0), SPI_CLK_EQU_SYSCLK_M);
  927. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKDIV_PRE_V, 0, SPI_CLKDIV_PRE_S);
  928. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_N, 1, SPI_CLKCNT_N_S);
  929. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_H, 0, SPI_CLKCNT_H_S);
  930. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_L, 1, SPI_CLKCNT_L_S);
  931. SET_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
  932. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0.
  933. break;
  934. case PSRAM_CACHE_F40M_S40M:
  935. default:
  936. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
  937. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div
  938. break;
  939. }
  940. CLEAR_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_DIO_M); //disable dio mode for cache command
  941. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_QIO_M); //enable qio mode for cache command
  942. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_RCMD_M); //enable cache read command
  943. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_WCMD_M); //enable cache write command
  944. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_ADDR_BITLEN_V, 23, SPI_SRAM_ADDR_BITLEN_S); //write address for cache command.
  945. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_RD_SRAM_DUMMY_M); //enable cache read dummy
  946. //config sram cache r/w command
  947. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 7,
  948. SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S);
  949. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, PSRAM_FAST_READ_QUAD,
  950. SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB
  951. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 7,
  952. SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S);
  953. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, PSRAM_QUAD_WRITE,
  954. SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38
  955. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
  956. SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
  957. switch (psram_cache_mode) {
  958. case PSRAM_CACHE_F80M_S80M: //in this mode , no delay is needed
  959. break;
  960. case PSRAM_CACHE_F80M_S40M: //if sram is @40M, need 2 cycles of delay
  961. case PSRAM_CACHE_F40M_S40M:
  962. default:
  963. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  964. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 15,
  965. SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S); //read command length, 2 bytes(1byte for delay),sending in qio mode in cache
  966. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, ((PSRAM_FAST_READ_QUAD) << 8),
  967. SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB, read command value,(0x00 for delay,0xeb for cmd)
  968. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 15,
  969. SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S); //write command length,2 bytes(1byte for delay,send in qio mode in cache)
  970. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, ((PSRAM_QUAD_WRITE) << 8),
  971. SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38, write command value,(0x00 for delay)
  972. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
  973. SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
  974. }
  975. break;
  976. }
  977. DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL|DPORT_PRO_DRAM_SPLIT);
  978. DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL|DPORT_APP_DRAM_SPLIT);
  979. if (vaddrmode == PSRAM_VADDR_MODE_LOWHIGH) {
  980. DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL);
  981. DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL);
  982. } else if (vaddrmode == PSRAM_VADDR_MODE_EVENODD) {
  983. DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_SPLIT);
  984. DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_SPLIT);
  985. }
  986. DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DRAM1|DPORT_PRO_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
  987. //cache page mode : 1 -->16k 4 -->2k 0-->32k,(accord with the settings in cache_sram_mmu_set)
  988. DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CMMU_SRAM_PAGE_MODE, 0, DPORT_PRO_CMMU_SRAM_PAGE_MODE_S);
  989. DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DRAM1|DPORT_APP_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
  990. //cache page mode : 1 -->16k 4 -->2k 0-->32k,(accord with the settings in cache_sram_mmu_set)
  991. DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CMMU_SRAM_PAGE_MODE, 0, DPORT_APP_CMMU_SRAM_PAGE_MODE_S);
  992. CLEAR_PERI_REG_MASK(SPI_PIN_REG(0), SPI_CS1_DIS_M); //ENABLE SPI0 CS1 TO PSRAM(CS0--FLASH; CS1--SRAM)
  993. }
  994. #endif // CONFIG_SPIRAM