flash_mmap.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <assert.h>
  16. #include <string.h>
  17. #include <stdio.h>
  18. #include <freertos/FreeRTOS.h>
  19. #include <freertos/task.h>
  20. #include <freertos/semphr.h>
  21. #include <soc/soc.h>
  22. #include <soc/dport_reg.h>
  23. #include <soc/soc_memory_layout.h>
  24. #include "sdkconfig.h"
  25. #include "esp_attr.h"
  26. #include "esp_spi_flash.h"
  27. #include "esp_flash_encrypt.h"
  28. #include "esp_log.h"
  29. #include "cache_utils.h"
  30. #if CONFIG_IDF_TARGET_ESP32
  31. #include "esp32/rom/spi_flash.h"
  32. #include "esp32/rom/cache.h"
  33. #include "esp32/spiram.h"
  34. #elif CONFIG_IDF_TARGET_ESP32S2
  35. #include "esp32s2/rom/spi_flash.h"
  36. #include "esp32s2/rom/cache.h"
  37. #include "esp32s2/spiram.h"
  38. #include "soc/extmem_reg.h"
  39. #include "soc/cache_memory.h"
  40. #endif
  41. #ifndef NDEBUG
  42. // Enable built-in checks in queue.h in debug builds
  43. #define INVARIANTS
  44. #endif
  45. #include "sys/queue.h"
  46. #ifdef CONFIG_IDF_TARGET_ESP32
  47. #define REGIONS_COUNT 4
  48. #define IROM0_PAGES_START 64
  49. #define IROM0_PAGES_END 256
  50. #define DROM0_PAGES_START 0
  51. #define DROM0_PAGES_END 64
  52. #define PAGE_IN_FLASH(page) (page)
  53. #define INVALID_ENTRY_VAL DPORT_FLASH_MMU_TABLE_INVALID_VAL
  54. #define MMU_ADDR_MASK DPORT_MMU_ADDRESS_MASK
  55. #elif CONFIG_IDF_TARGET_ESP32S2
  56. #define REGIONS_COUNT 6
  57. #define IROM0_PAGES_START (PRO_CACHE_IBUS0_MMU_START / sizeof(uint32_t))
  58. #define IROM0_PAGES_END (PRO_CACHE_IBUS1_MMU_END / sizeof(uint32_t))
  59. #define DROM0_PAGES_START (PRO_CACHE_IBUS2_MMU_START / sizeof(uint32_t))
  60. #define DROM0_PAGES_END (PRO_CACHE_IBUS2_MMU_END / sizeof(uint32_t))
  61. #define DPORT_PRO_FLASH_MMU_TABLE FLASH_MMU_TABLE
  62. #define INVALID_ENTRY_VAL MMU_TABLE_INVALID_VAL
  63. #define MMU_ADDR_MASK MMU_ADDRESS_MASK
  64. #define PAGE_IN_FLASH(page) ((page) | MMU_ACCESS_FLASH)
  65. #endif
  66. #define PAGES_PER_REGION 64
  67. #define IROM0_PAGES_NUM (IROM0_PAGES_END - IROM0_PAGES_START)
  68. #define DROM0_PAGES_NUM (DROM0_PAGES_END - DROM0_PAGES_START)
  69. #define PAGES_LIMIT (IROM0_PAGES_END > DROM0_PAGES_END ? IROM0_PAGES_END:DROM0_PAGES_END)
  70. #define VADDR0_START_ADDR SOC_DROM_LOW
  71. #define VADDR1_START_ADDR 0x40000000
  72. #define VADDR1_FIRST_USABLE_ADDR SOC_IROM_LOW
  73. #define PRO_IRAM0_FIRST_USABLE_PAGE ((VADDR1_FIRST_USABLE_ADDR - VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + IROM0_PAGES_START)
  74. typedef struct mmap_entry_{
  75. uint32_t handle;
  76. int page;
  77. int count;
  78. LIST_ENTRY(mmap_entry_) entries;
  79. } mmap_entry_t;
  80. static LIST_HEAD(mmap_entries_head, mmap_entry_) s_mmap_entries_head =
  81. LIST_HEAD_INITIALIZER(s_mmap_entries_head);
  82. static uint8_t s_mmap_page_refcnt[REGIONS_COUNT * PAGES_PER_REGION] = {0};
  83. static uint32_t s_mmap_last_handle = 0;
  84. static void IRAM_ATTR spi_flash_mmap_init(void)
  85. {
  86. if (s_mmap_page_refcnt[DROM0_PAGES_START] != 0) {
  87. return; /* mmap data already initialised */
  88. }
  89. DPORT_INTERRUPT_DISABLE();
  90. for (int i = 0; i < REGIONS_COUNT * PAGES_PER_REGION; ++i) {
  91. uint32_t entry_pro = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]);
  92. #if !CONFIG_FREERTOS_UNICORE
  93. uint32_t entry_app = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[i]);
  94. if (entry_pro != entry_app) {
  95. // clean up entries used by boot loader
  96. entry_pro = INVALID_ENTRY_VAL;
  97. DPORT_PRO_FLASH_MMU_TABLE[i] = INVALID_ENTRY_VAL;
  98. }
  99. #endif
  100. if ((entry_pro & INVALID_ENTRY_VAL) == 0 && (i == DROM0_PAGES_START || i == PRO_IRAM0_FIRST_USABLE_PAGE || entry_pro != 0)) {
  101. s_mmap_page_refcnt[i] = 1;
  102. } else {
  103. DPORT_PRO_FLASH_MMU_TABLE[i] = INVALID_ENTRY_VAL;
  104. #if !CONFIG_FREERTOS_UNICORE
  105. DPORT_APP_FLASH_MMU_TABLE[i] = INVALID_ENTRY_VAL;
  106. #endif
  107. }
  108. }
  109. DPORT_INTERRUPT_RESTORE();
  110. }
  111. static void IRAM_ATTR get_mmu_region(spi_flash_mmap_memory_t memory, int* out_begin, int* out_size,uint32_t* region_addr)
  112. {
  113. if (memory == SPI_FLASH_MMAP_DATA) {
  114. // Vaddr0
  115. *out_begin = DROM0_PAGES_START;
  116. *out_size = DROM0_PAGES_NUM;
  117. *region_addr = VADDR0_START_ADDR;
  118. } else {
  119. // only part of VAddr1 is usable, so adjust for that
  120. *out_begin = PRO_IRAM0_FIRST_USABLE_PAGE;
  121. *out_size = IROM0_PAGES_END - *out_begin;
  122. *region_addr = VADDR1_FIRST_USABLE_ADDR;
  123. }
  124. }
  125. esp_err_t IRAM_ATTR spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
  126. const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
  127. {
  128. esp_err_t ret;
  129. if (src_addr & 0xffff) {
  130. return ESP_ERR_INVALID_ARG;
  131. }
  132. if (src_addr + size > g_rom_flashchip.chip_size) {
  133. return ESP_ERR_INVALID_ARG;
  134. }
  135. // region which should be mapped
  136. int phys_page = src_addr / SPI_FLASH_MMU_PAGE_SIZE;
  137. int page_count = (size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE;
  138. // prepare a linear pages array to feed into spi_flash_mmap_pages
  139. int *pages = heap_caps_malloc(sizeof(int)*page_count, MALLOC_CAP_INTERNAL);
  140. if (pages == NULL) {
  141. return ESP_ERR_NO_MEM;
  142. }
  143. for (int i = 0; i < page_count; i++) {
  144. pages[i] = (phys_page+i);
  145. }
  146. ret = spi_flash_mmap_pages(pages, page_count, memory, out_ptr, out_handle);
  147. free(pages);
  148. return ret;
  149. }
  150. esp_err_t IRAM_ATTR spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
  151. const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
  152. {
  153. esp_err_t ret;
  154. bool need_flush = false;
  155. if (!page_count) {
  156. return ESP_ERR_INVALID_ARG;
  157. }
  158. if (!esp_ptr_internal(pages)) {
  159. return ESP_ERR_INVALID_ARG;
  160. }
  161. for (int i = 0; i < page_count; i++) {
  162. if (pages[i] < 0 || pages[i]*SPI_FLASH_MMU_PAGE_SIZE >= g_rom_flashchip.chip_size) {
  163. return ESP_ERR_INVALID_ARG;
  164. }
  165. }
  166. mmap_entry_t* new_entry = (mmap_entry_t*) heap_caps_malloc(sizeof(mmap_entry_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  167. if (new_entry == 0) {
  168. return ESP_ERR_NO_MEM;
  169. }
  170. spi_flash_disable_interrupts_caches_and_other_cpu();
  171. spi_flash_mmap_init();
  172. // figure out the memory region where we should look for pages
  173. int region_begin; // first page to check
  174. int region_size; // number of pages to check
  175. uint32_t region_addr; // base address of memory region
  176. get_mmu_region(memory,&region_begin,&region_size,&region_addr);
  177. if (region_size < page_count) {
  178. spi_flash_enable_interrupts_caches_and_other_cpu();
  179. return ESP_ERR_NO_MEM;
  180. }
  181. // The following part searches for a range of MMU entries which can be used.
  182. // Algorithm is essentially naïve strstr algorithm, except that unused MMU
  183. // entries are treated as wildcards.
  184. int start;
  185. // the " + 1" is a fix when loop the MMU table pages, because the last MMU page
  186. // is valid as well if it have not been used
  187. int end = region_begin + region_size - page_count + 1;
  188. for (start = region_begin; start < end; ++start) {
  189. int pageno = 0;
  190. int pos;
  191. DPORT_INTERRUPT_DISABLE();
  192. for (pos = start; pos < start + page_count; ++pos, ++pageno) {
  193. int table_val = (int) DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[pos]);
  194. uint8_t refcnt = s_mmap_page_refcnt[pos];
  195. if (refcnt != 0 && table_val != PAGE_IN_FLASH(pages[pageno])) {
  196. break;
  197. }
  198. }
  199. DPORT_INTERRUPT_RESTORE();
  200. // whole mapping range matched, bail out
  201. if (pos - start == page_count) {
  202. break;
  203. }
  204. }
  205. // checked all the region(s) and haven't found anything?
  206. if (start == end) {
  207. *out_handle = 0;
  208. *out_ptr = NULL;
  209. ret = ESP_ERR_NO_MEM;
  210. } else {
  211. // set up mapping using pages
  212. uint32_t pageno = 0;
  213. DPORT_INTERRUPT_DISABLE();
  214. for (int i = start; i != start + page_count; ++i, ++pageno) {
  215. // sanity check: we won't reconfigure entries with non-zero reference count
  216. uint32_t entry_pro = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]);
  217. #if !CONFIG_FREERTOS_UNICORE
  218. uint32_t entry_app = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[i]);
  219. #endif
  220. assert(s_mmap_page_refcnt[i] == 0 ||
  221. (entry_pro == PAGE_IN_FLASH(pages[pageno])
  222. #if !CONFIG_FREERTOS_UNICORE
  223. && entry_app == PAGE_IN_FLASH(pages[pageno])
  224. #endif
  225. ));
  226. if (s_mmap_page_refcnt[i] == 0) {
  227. if (entry_pro != PAGE_IN_FLASH(pages[pageno])
  228. #if !CONFIG_FREERTOS_UNICORE
  229. || entry_app != PAGE_IN_FLASH(pages[pageno])
  230. #endif
  231. ) {
  232. DPORT_PRO_FLASH_MMU_TABLE[i] = PAGE_IN_FLASH(pages[pageno]);
  233. #if !CONFIG_FREERTOS_UNICORE
  234. DPORT_APP_FLASH_MMU_TABLE[i] = pages[pageno];
  235. #endif
  236. #if CONFIG_IDF_TARGET_ESP32S2
  237. Cache_Invalidate_Addr(region_addr + (i - region_begin) * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMU_PAGE_SIZE);
  238. #endif
  239. need_flush = true;
  240. }
  241. }
  242. ++s_mmap_page_refcnt[i];
  243. }
  244. DPORT_INTERRUPT_RESTORE();
  245. LIST_INSERT_HEAD(&s_mmap_entries_head, new_entry, entries);
  246. new_entry->page = start;
  247. new_entry->count = page_count;
  248. new_entry->handle = ++s_mmap_last_handle;
  249. *out_handle = new_entry->handle;
  250. *out_ptr = (void*) (region_addr + (start - region_begin) * SPI_FLASH_MMU_PAGE_SIZE);
  251. ret = ESP_OK;
  252. }
  253. /* This is a temporary fix for an issue where some
  254. cache reads may see stale data.
  255. Working on a long term fix that doesn't require invalidating
  256. entire cache.
  257. */
  258. if (need_flush) {
  259. #if CONFIG_IDF_TARGET_ESP32
  260. # if CONFIG_SPIRAM
  261. esp_spiram_writeback_cache();
  262. # endif
  263. Cache_Flush(0);
  264. # if !CONFIG_FREERTOS_UNICORE
  265. Cache_Flush(1);
  266. # endif
  267. #endif
  268. }
  269. spi_flash_enable_interrupts_caches_and_other_cpu();
  270. if (*out_ptr == NULL) {
  271. free(new_entry);
  272. }
  273. return ret;
  274. }
  275. void IRAM_ATTR spi_flash_munmap(spi_flash_mmap_handle_t handle)
  276. {
  277. spi_flash_disable_interrupts_caches_and_other_cpu();
  278. mmap_entry_t* it;
  279. // look for handle in linked list
  280. for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
  281. if (it->handle == handle) {
  282. // for each page, decrement reference counter
  283. // if reference count is zero, disable MMU table entry to
  284. // facilitate debugging of use-after-free conditions
  285. for (int i = it->page; i < it->page + it->count; ++i) {
  286. assert(s_mmap_page_refcnt[i] > 0);
  287. if (--s_mmap_page_refcnt[i] == 0) {
  288. DPORT_PRO_FLASH_MMU_TABLE[i] = INVALID_ENTRY_VAL;
  289. #if !CONFIG_FREERTOS_UNICORE
  290. DPORT_APP_FLASH_MMU_TABLE[i] = INVALID_ENTRY_VAL;
  291. #endif
  292. }
  293. }
  294. LIST_REMOVE(it, entries);
  295. break;
  296. }
  297. }
  298. spi_flash_enable_interrupts_caches_and_other_cpu();
  299. if (it == NULL) {
  300. assert(0 && "invalid handle, or handle already unmapped");
  301. }
  302. free(it);
  303. }
  304. static void IRAM_ATTR NOINLINE_ATTR spi_flash_protected_mmap_init(void)
  305. {
  306. spi_flash_disable_interrupts_caches_and_other_cpu();
  307. spi_flash_mmap_init();
  308. spi_flash_enable_interrupts_caches_and_other_cpu();
  309. }
  310. static uint32_t IRAM_ATTR NOINLINE_ATTR spi_flash_protected_read_mmu_entry(int index)
  311. {
  312. uint32_t value;
  313. spi_flash_disable_interrupts_caches_and_other_cpu();
  314. value = DPORT_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[index]);
  315. spi_flash_enable_interrupts_caches_and_other_cpu();
  316. return value;
  317. }
  318. void spi_flash_mmap_dump(void)
  319. {
  320. spi_flash_protected_mmap_init();
  321. mmap_entry_t* it;
  322. for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
  323. printf("handle=%d page=%d count=%d\n", it->handle, it->page, it->count);
  324. }
  325. for (int i = 0; i < REGIONS_COUNT * PAGES_PER_REGION; ++i) {
  326. if (s_mmap_page_refcnt[i] != 0) {
  327. uint32_t paddr = spi_flash_protected_read_mmu_entry(i);
  328. printf("page %d: refcnt=%d paddr=%d\n", i, (int) s_mmap_page_refcnt[i], paddr);
  329. }
  330. }
  331. }
  332. uint32_t IRAM_ATTR spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)
  333. {
  334. spi_flash_disable_interrupts_caches_and_other_cpu();
  335. spi_flash_mmap_init();
  336. int count = 0;
  337. int region_begin; // first page to check
  338. int region_size; // number of pages to check
  339. uint32_t region_addr; // base address of memory region
  340. get_mmu_region(memory,&region_begin,&region_size,&region_addr);
  341. DPORT_INTERRUPT_DISABLE();
  342. for (int i = region_begin; i < region_begin + region_size; ++i) {
  343. if (s_mmap_page_refcnt[i] == 0 && DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]) == INVALID_ENTRY_VAL) {
  344. count++;
  345. }
  346. }
  347. DPORT_INTERRUPT_RESTORE();
  348. spi_flash_enable_interrupts_caches_and_other_cpu();
  349. return count;
  350. }
  351. uint32_t spi_flash_cache2phys(const void *cached)
  352. {
  353. intptr_t c = (intptr_t)cached;
  354. size_t cache_page;
  355. int offset = 0;
  356. if (c >= VADDR1_START_ADDR && c < VADDR1_FIRST_USABLE_ADDR) {
  357. /* IRAM address, doesn't map to flash */
  358. return SPI_FLASH_CACHE2PHYS_FAIL;
  359. } else if (c < VADDR1_FIRST_USABLE_ADDR) {
  360. /* expect cache is in DROM */
  361. cache_page = (c - VADDR0_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + DROM0_PAGES_START;
  362. #if CONFIG_SPIRAM_RODATA
  363. if (c >= (uint32_t)&_rodata_reserved_start && c <= (uint32_t)&_rodata_reserved_end) {
  364. offset = rodata_flash2spiram_offset();
  365. }
  366. #endif
  367. } else {
  368. /* expect cache is in IROM */
  369. cache_page = (c - VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + IROM0_PAGES_START;
  370. #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
  371. if (c >= (uint32_t)&_instruction_reserved_start && c <= (uint32_t)&_instruction_reserved_end) {
  372. offset = instruction_flash2spiram_offset();
  373. }
  374. #endif
  375. }
  376. if (cache_page >= PAGES_LIMIT) {
  377. /* cached address was not in IROM or DROM */
  378. return SPI_FLASH_CACHE2PHYS_FAIL;
  379. }
  380. uint32_t phys_page = spi_flash_protected_read_mmu_entry(cache_page);
  381. if (phys_page == INVALID_ENTRY_VAL) {
  382. /* page is not mapped */
  383. return SPI_FLASH_CACHE2PHYS_FAIL;
  384. }
  385. uint32_t phys_offs = ((phys_page & MMU_ADDR_MASK) + offset) * SPI_FLASH_MMU_PAGE_SIZE;
  386. return phys_offs | (c & (SPI_FLASH_MMU_PAGE_SIZE-1));
  387. }
  388. const void *IRAM_ATTR spi_flash_phys2cache(uint32_t phys_offs, spi_flash_mmap_memory_t memory)
  389. {
  390. uint32_t phys_page = phys_offs / SPI_FLASH_MMU_PAGE_SIZE;
  391. int start, end, page_delta;
  392. intptr_t base;
  393. if (memory == SPI_FLASH_MMAP_DATA) {
  394. start = DROM0_PAGES_START;
  395. end = DROM0_PAGES_END;
  396. base = VADDR0_START_ADDR;
  397. page_delta = DROM0_PAGES_START > IROM0_PAGES_START ? DROM0_PAGES_START : 0;
  398. } else {
  399. start = PRO_IRAM0_FIRST_USABLE_PAGE;
  400. end = IROM0_PAGES_END;
  401. base = VADDR1_START_ADDR;
  402. page_delta = DROM0_PAGES_START > IROM0_PAGES_START ? 0: IROM0_PAGES_START;
  403. }
  404. spi_flash_disable_interrupts_caches_and_other_cpu();
  405. DPORT_INTERRUPT_DISABLE();
  406. for (int i = start; i < end; i++) {
  407. uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]);
  408. #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
  409. if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) {
  410. if (mmu_value & MMU_ACCESS_SPIRAM) {
  411. mmu_value += instruction_flash2spiram_offset();
  412. mmu_value = (mmu_value & MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
  413. }
  414. }
  415. #endif
  416. #if CONFIG_SPIRAM_RODATA
  417. if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) {
  418. if (mmu_value & MMU_ACCESS_SPIRAM) {
  419. mmu_value += rodata_flash2spiram_offset();
  420. mmu_value = (mmu_value & MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
  421. }
  422. }
  423. #endif
  424. if (mmu_value == PAGE_IN_FLASH(phys_page)) {
  425. i -= page_delta;
  426. intptr_t cache_page = base + (SPI_FLASH_MMU_PAGE_SIZE * i);
  427. DPORT_INTERRUPT_RESTORE();
  428. spi_flash_enable_interrupts_caches_and_other_cpu();
  429. return (const void *) (cache_page | (phys_offs & (SPI_FLASH_MMU_PAGE_SIZE-1)));
  430. }
  431. }
  432. DPORT_INTERRUPT_RESTORE();
  433. spi_flash_enable_interrupts_caches_and_other_cpu();
  434. return NULL;
  435. }
  436. static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_page, const void **out_ptr)
  437. {
  438. int start[2], end[2];
  439. *out_ptr = NULL;
  440. /* SPI_FLASH_MMAP_DATA */
  441. start[0] = DROM0_PAGES_START;
  442. end[0] = DROM0_PAGES_END;
  443. /* SPI_FLASH_MMAP_INST */
  444. start[1] = PRO_IRAM0_FIRST_USABLE_PAGE;
  445. end[1] = IROM0_PAGES_END;
  446. DPORT_INTERRUPT_DISABLE();
  447. for (int j = 0; j < 2; j++) {
  448. for (int i = start[j]; i < end[j]; i++) {
  449. if (DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]) == PAGE_IN_FLASH(phys_page)) {
  450. #if CONFIG_IDF_TARGET_ESP32S2
  451. if (j == 0) { /* SPI_FLASH_MMAP_DATA */
  452. *out_ptr = (const void *)(VADDR0_START_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[0]));
  453. } else { /* SPI_FLASH_MMAP_INST */
  454. *out_ptr = (const void *)(VADDR1_FIRST_USABLE_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[1]));
  455. }
  456. #endif
  457. DPORT_INTERRUPT_RESTORE();
  458. return true;
  459. }
  460. }
  461. }
  462. DPORT_INTERRUPT_RESTORE();
  463. return false;
  464. }
  465. /* Validates if given flash address has corresponding cache mapping, if yes, flushes cache memories */
  466. IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length)
  467. {
  468. bool ret = false;
  469. /* align start_addr & length to full MMU pages */
  470. uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
  471. length += (start_addr - page_start_addr);
  472. length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
  473. for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) {
  474. uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE;
  475. if (page >= 256) {
  476. return false; /* invalid address */
  477. }
  478. const void *vaddr = NULL;
  479. if (is_page_mapped_in_cache(page, &vaddr)) {
  480. #if CONFIG_IDF_TARGET_ESP32
  481. #if CONFIG_SPIRAM
  482. esp_spiram_writeback_cache();
  483. #endif
  484. Cache_Flush(0);
  485. #ifndef CONFIG_FREERTOS_UNICORE
  486. Cache_Flush(1);
  487. #endif
  488. return true;
  489. #elif CONFIG_IDF_TARGET_ESP32S2
  490. if (vaddr != NULL) {
  491. Cache_Invalidate_Addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);
  492. ret = true;
  493. }
  494. #endif
  495. }
  496. }
  497. return ret;
  498. }