| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046 |
- // Copyright 2016-2018 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include <stdint.h>
- #include <stddef.h>
- #include <stdlib.h>
- #include "esp_err.h"
- #include "soc/soc.h"
- #include "ulp_common.h"
- #ifdef __cplusplus
- extern "C" {
- #endif
- #define ULP_FSM_PREPARE_SLEEP_CYCLES 2 /*!< Cycles spent by FSM preparing ULP for sleep */
- #define ULP_FSM_WAKEUP_SLEEP_CYCLES 2 /*!< Cycles spent by FSM waking up ULP from sleep */
- /**
- * @defgroup ulp_registers ULP coprocessor registers
- * @{
- */
- #define R0 0 /*!< general purpose register 0 */
- #define R1 1 /*!< general purpose register 1 */
- #define R2 2 /*!< general purpose register 2 */
- #define R3 3 /*!< general purpose register 3 */
- /**@}*/
- /** @defgroup ulp_opcodes ULP coprocessor opcodes, sub opcodes, and various modifiers/flags
- *
- * These definitions are not intended to be used directly.
- * They are used in definitions of instructions later on.
- *
- * @{
- */
- #define OPCODE_WR_REG 1 /*!< Instruction: write peripheral register (RTC_CNTL/RTC_IO/SARADC) */
- #define OPCODE_RD_REG 2 /*!< Instruction: read peripheral register (RTC_CNTL/RTC_IO/SARADC) */
- #define RD_REG_PERIPH_RTC_CNTL 0 /*!< Identifier of RTC_CNTL peripheral for RD_REG and WR_REG instructions */
- #define RD_REG_PERIPH_RTC_IO 1 /*!< Identifier of RTC_IO peripheral for RD_REG and WR_REG instructions */
- #define RD_REG_PERIPH_SENS 2 /*!< Identifier of SARADC peripheral for RD_REG and WR_REG instructions */
- #define RD_REG_PERIPH_RTC_I2C 3 /*!< Identifier of RTC_I2C peripheral for RD_REG and WR_REG instructions */
- #define OPCODE_I2C 3 /*!< Instruction: read/write I2C */
- #define SUB_OPCODE_I2C_RD 0 /*!< I2C read */
- #define SUB_OPCODE_I2C_WR 1 /*!< I2C write */
- #define OPCODE_DELAY 4 /*!< Instruction: delay (nop) for a given number of cycles */
- #define OPCODE_ADC 5 /*!< Instruction: SAR ADC measurement */
- #define OPCODE_ST 6 /*!< Instruction: store indirect to RTC memory */
- #define SUB_OPCODE_ST 4 /*!< Store 32 bits, 16 MSBs contain PC, 16 LSBs contain value from source register */
- #define OPCODE_ALU 7 /*!< Arithmetic instructions */
- #define SUB_OPCODE_ALU_REG 0 /*!< Arithmetic instruction, both source values are in register */
- #define SUB_OPCODE_ALU_IMM 1 /*!< Arithmetic instruction, one source value is an immediate */
- #define SUB_OPCODE_ALU_CNT 2 /*!< Arithmetic instruction, stage counter and an immediate */
- #define ALU_SEL_ADD 0 /*!< Addition */
- #define ALU_SEL_SUB 1 /*!< Subtraction */
- #define ALU_SEL_AND 2 /*!< Logical AND */
- #define ALU_SEL_OR 3 /*!< Logical OR */
- #define ALU_SEL_MOV 4 /*!< Copy value (immediate to destination register or source register to destination register */
- #define ALU_SEL_LSH 5 /*!< Shift left by given number of bits */
- #define ALU_SEL_RSH 6 /*!< Shift right by given number of bits */
- #define ALU_SEL_SINC 0 /*!< Increment the stage counter */
- #define ALU_SEL_SDEC 1 /*!< Decrement the stage counter */
- #define ALU_SEL_SRST 2 /*!< Reset the stage counter */
- #define OPCODE_BRANCH 8 /*!< Branch instructions */
- #define SUB_OPCODE_BX 0 /*!< Branch to absolute PC (immediate or in register) */
- #define SUB_OPCODE_BR 1 /*!< Branch to relative PC, conditional on R0 */
- #define SUB_OPCODE_BS 2 /*!< Branch to relative PC, conditional on the stage counter */
- #define BX_JUMP_TYPE_DIRECT 0 /*!< Unconditional jump */
- #define BX_JUMP_TYPE_ZERO 1 /*!< Branch if last ALU result is zero */
- #define BX_JUMP_TYPE_OVF 2 /*!< Branch if last ALU operation caused and overflow */
- #define SUB_OPCODE_B 1 /*!< Branch to a relative offset */
- #define B_CMP_L 0 /*!< Branch if R0 is less than an immediate */
- #define B_CMP_GE 1 /*!< Branch if R0 is greater than or equal to an immediate */
- #define JUMPS_LT 0 /*!< Branch if the stage counter < */
- #define JUMPS_GE 1 /*!< Branch if the stage counter >= */
- #define JUMPS_LE 2 /*!< Branch if the stage counter <= */
- #define OPCODE_END 9 /*!< Stop executing the program */
- #define SUB_OPCODE_END 0 /*!< Stop executing the program and optionally wake up the chip */
- #define SUB_OPCODE_SLEEP 1 /*!< Stop executing the program and run it again after selected interval */
- #define OPCODE_TSENS 10 /*!< Instruction: temperature sensor measurement */
- #define OPCODE_HALT 11 /*!< Halt the coprocessor */
- #define OPCODE_LD 13 /*!< Indirect load lower 16 bits from RTC memory */
- #define OPCODE_MACRO 15 /*!< Not a real opcode. Used to identify labels and branches in the program */
- #define SUB_OPCODE_MACRO_LABEL 0 /*!< Label macro */
- #define SUB_OPCODE_MACRO_BRANCH 1 /*!< Branch macro */
- #define SUB_OPCODE_MACRO_LABELPC 2 /*!< Label pointer macro */
- /**@}*/
- /**
- * @brief Instruction format structure
- *
- * All ULP instructions are 32 bit long.
- * This union contains field layouts used by all of the supported instructions.
- * This union also includes a special "macro" instruction layout.
- * This is not a real instruction which can be executed by the CPU. It acts
- * as a token which is removed from the program by the
- * ulp_process_macros_and_load function.
- *
- * These structures are not intended to be used directly.
- * Preprocessor definitions provided below fill the fields of these structure with
- * the right arguments.
- */
- union ulp_insn {
- struct {
- uint32_t cycles : 16; /*!< Number of cycles to sleep */
- uint32_t unused : 12; /*!< Unused */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_DELAY) */
- } delay; /*!< Format of DELAY instruction */
- struct {
- uint32_t dreg : 2; /*!< Register which contains data to store */
- uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
- uint32_t unused1 : 6; /*!< Unused */
- uint32_t offset : 11; /*!< Offset to add to sreg */
- uint32_t unused2 : 4; /*!< Unused */
- uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ST) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_ST) */
- } st; /*!< Format of ST instruction */
- struct {
- uint32_t dreg : 2; /*!< Register where the data should be loaded to */
- uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
- uint32_t unused1 : 6; /*!< Unused */
- uint32_t offset : 11; /*!< Offset to add to sreg */
- uint32_t unused2 : 7; /*!< Unused */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_LD) */
- } ld; /*!< Format of LD instruction */
- struct {
- uint32_t unused : 28; /*!< Unused */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_HALT) */
- } halt; /*!< Format of HALT instruction */
- struct {
- uint32_t dreg : 2; /*!< Register which contains target PC, expressed in words (used if .reg == 1) */
- uint32_t addr : 11; /*!< Target PC, expressed in words (used if .reg == 0) */
- uint32_t unused : 8; /*!< Unused */
- uint32_t reg : 1; /*!< Target PC in register (1) or immediate (0) */
- uint32_t type : 3; /*!< Jump condition (BX_JUMP_TYPE_xxx) */
- uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_BX) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
- } bx; /*!< Format of BRANCH instruction (absolute address) */
- struct {
- uint32_t imm : 16; /*!< Immediate value to compare against */
- uint32_t cmp : 1; /*!< Comparison to perform: B_CMP_L or B_CMP_GE */
- uint32_t offset : 7; /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */
- uint32_t sign : 1; /*!< Sign of target PC offset: 0: positive, 1: negative */
- uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_B) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
- } b; /*!< Format of BRANCH instruction (relative address, conditional on R0) */
- struct {
- uint32_t imm : 8; /*!< Immediate value to compare against */
- uint32_t unused : 7; /*!< Unused */
- uint32_t cmp : 2; /*!< Comparison to perform: JUMPS_LT, JUMPS_GE or JUMPS_LE */
- uint32_t offset : 7; /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */
- uint32_t sign : 1; /*!< Sign of target PC offset: 0: positive, 1: negative */
- uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_BS) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
- } bs; /*!< Format of BRANCH instruction (relative address, conditional on the stage counter) */
- struct {
- uint32_t dreg : 2; /*!< Destination register */
- uint32_t sreg : 2; /*!< Register with operand A */
- uint32_t treg : 2; /*!< Register with operand B */
- uint32_t unused : 15; /*!< Unused */
- uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
- uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_REG) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
- } alu_reg; /*!< Format of ALU instruction (both sources are registers) */
- struct {
- uint32_t unused1 : 4; /*!< Unused */
- uint32_t imm : 8; /*!< Immediate value of operand */
- uint32_t unused2 : 9; /*!< Unused */
- uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_Sxxx */
- uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_CNT) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
- } alu_reg_s; /*!< Format of ALU instruction (stage counter and an immediate) */
- struct {
- uint32_t dreg : 2; /*!< Destination register */
- uint32_t sreg : 2; /*!< Register with operand A */
- uint32_t imm : 16; /*!< Immediate value of operand B */
- uint32_t unused : 1; /*!< Unused */
- uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
- uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
- } alu_imm; /*!< Format of ALU instruction (one source is an immediate) */
- struct {
- uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
- uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
- uint32_t data : 8; /*!< 8 bits of data to write */
- uint32_t low : 5; /*!< Low bit */
- uint32_t high : 5; /*!< High bit */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */
- } wr_reg; /*!< Format of WR_REG instruction */
- struct {
- uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
- uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
- uint32_t unused : 8; /*!< Unused */
- uint32_t low : 5; /*!< Low bit */
- uint32_t high : 5; /*!< High bit */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */
- } rd_reg; /*!< Format of RD_REG instruction */
- struct {
- uint32_t dreg : 2; /*!< Register where to store ADC result */
- uint32_t mux : 4; /*!< Select SARADC pad (mux + 1) */
- uint32_t sar_sel : 1; /*!< Select SARADC0 (0) or SARADC1 (1) */
- uint32_t unused1 : 1; /*!< Unused */
- uint32_t cycles : 16; /*!< TBD, cycles used for measurement */
- uint32_t unused2 : 4; /*!< Unused */
- uint32_t opcode: 4; /*!< Opcode (OPCODE_ADC) */
- } adc; /*!< Format of ADC instruction */
- struct {
- uint32_t dreg : 2; /*!< Register where to store temperature measurement result */
- uint32_t wait_delay: 14; /*!< Cycles to wait after measurement is done */
- uint32_t reserved: 12; /*!< Reserved, set to 0 */
- uint32_t opcode: 4; /*!< Opcode (OPCODE_TSENS) */
- } tsens; /*!< Format of TSENS instruction */
- struct {
- uint32_t i2c_addr : 8; /*!< I2C slave address */
- uint32_t data : 8; /*!< 8 bits of data for write operation */
- uint32_t low_bits : 3; /*!< low bit of range for write operation (lower bits are masked) */
- uint32_t high_bits : 3; /*!< high bit of range for write operation (higher bits are masked) */
- uint32_t i2c_sel : 4; /*!< index of slave address register [7:0] */
- uint32_t unused : 1; /*!< Unused */
- uint32_t rw : 1; /*!< Write (1) or read (0) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_I2C) */
- } i2c; /*!< Format of I2C instruction */
- struct {
- uint32_t wakeup : 1; /*!< Set to 1 to wake up chip */
- uint32_t unused : 24; /*!< Unused */
- uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_WAKEUP) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
- } end; /*!< Format of END instruction with wakeup */
- struct {
- uint32_t cycle_sel : 4; /*!< Select which one of SARADC_ULP_CP_SLEEP_CYCx_REG to get the sleep duration from */
- uint32_t unused : 21; /*!< Unused */
- uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_SLEEP) */
- uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
- } sleep; /*!< Format of END instruction with sleep */
- struct {
- uint32_t dreg : 2; /*!< Destination register (for SUB_OPCODE_MACRO_LABELPC) > */
- uint32_t label : 16; /*!< Label number */
- uint32_t unused : 6; /*!< Unused */
- uint32_t sub_opcode : 4; /*!< SUB_OPCODE_MACRO_LABEL or SUB_OPCODE_MACRO_BRANCH or SUB_OPCODE_MACRO_LABELPC */
- uint32_t opcode: 4; /*!< Opcode (OPCODE_MACRO) */
- } macro; /*!< Format of tokens used by MACROs */
- uint32_t instruction; /*!< Encoded instruction for ULP coprocessor */
- };
- typedef union ulp_insn ulp_insn_t;
- _Static_assert(sizeof(ulp_insn_t) == 4, "ULP coprocessor instruction size should be 4 bytes");
- /**
- * Delay (nop) for a given number of cycles
- */
- #define I_DELAY(cycles_) { .delay = {\
- .cycles = cycles_, \
- .unused = 0, \
- .opcode = OPCODE_DELAY } }
- /**
- * Halt the coprocessor.
- *
- * This instruction halts the coprocessor, but keeps ULP timer active.
- * As such, ULP program will be restarted again by timer.
- * To stop the program and prevent the timer from restarting the program,
- * use I_END(0) instruction.
- */
- #define I_HALT() { .halt = {\
- .unused = 0, \
- .opcode = OPCODE_HALT } }
- /**
- * Map SoC peripheral register to periph_sel field of RD_REG and WR_REG
- * instructions.
- *
- * @param reg peripheral register in RTC_CNTL_, RTC_IO_, SENS_, RTC_I2C peripherals.
- * @return periph_sel value for the peripheral to which this register belongs.
- */
- static inline uint32_t SOC_REG_TO_ULP_PERIPH_SEL(uint32_t reg) {
- uint32_t ret = 3;
- if (reg < DR_REG_RTCCNTL_BASE) {
- assert(0 && "invalid register base");
- } else if (reg < DR_REG_RTCIO_BASE) {
- ret = RD_REG_PERIPH_RTC_CNTL;
- } else if (reg < DR_REG_SENS_BASE) {
- ret = RD_REG_PERIPH_RTC_IO;
- } else if (reg < DR_REG_RTC_I2C_BASE){
- ret = RD_REG_PERIPH_SENS;
- } else if (reg < DR_REG_IO_MUX_BASE){
- ret = RD_REG_PERIPH_RTC_I2C;
- } else {
- assert(0 && "invalid register base");
- }
- return ret;
- }
- /**
- * Write literal value to a peripheral register
- *
- * reg[high_bit : low_bit] = val
- * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
- */
- #define I_WR_REG(reg, low_bit, high_bit, val) {.wr_reg = {\
- .addr = (reg & 0xff) / sizeof(uint32_t), \
- .periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
- .data = val, \
- .low = low_bit, \
- .high = high_bit, \
- .opcode = OPCODE_WR_REG } }
- /**
- * Read from peripheral register into R0
- *
- * R0 = reg[high_bit : low_bit]
- * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
- */
- #define I_RD_REG(reg, low_bit, high_bit) {.rd_reg = {\
- .addr = (reg & 0xff) / sizeof(uint32_t), \
- .periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
- .unused = 0, \
- .low = low_bit, \
- .high = high_bit, \
- .opcode = OPCODE_RD_REG } }
- /**
- * Set or clear a bit in the peripheral register.
- *
- * Sets bit (1 << shift) of register reg to value val.
- * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
- */
- #define I_WR_REG_BIT(reg, shift, val) I_WR_REG(reg, shift, shift, val)
- /**
- * Wake the SoC from deep sleep.
- *
- * This instruction initiates wake up from deep sleep.
- * Use esp_deep_sleep_enable_ulp_wakeup to enable deep sleep wakeup
- * triggered by the ULP before going into deep sleep.
- * Note that ULP program will still keep running until the I_HALT
- * instruction, and it will still be restarted by timer at regular
- * intervals, even when the SoC is woken up.
- *
- * To stop the ULP program, use I_HALT instruction.
- *
- * To disable the timer which start ULP program, use I_END()
- * instruction. I_END instruction clears the
- * RTC_CNTL_ULP_CP_SLP_TIMER_EN_S bit of RTC_CNTL_STATE0_REG
- * register, which controls the ULP timer.
- */
- #define I_WAKE() { .end = { \
- .wakeup = 1, \
- .unused = 0, \
- .sub_opcode = SUB_OPCODE_END, \
- .opcode = OPCODE_END } }
- /**
- * Stop ULP program timer.
- *
- * This is a convenience macro which disables the ULP program timer.
- * Once this instruction is used, ULP program will not be restarted
- * anymore until ulp_run function is called.
- *
- * ULP program will continue running after this instruction. To stop
- * the currently running program, use I_HALT().
- */
- #define I_END() \
- I_WR_REG_BIT(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN_S, 0)
- /**
- * Select the time interval used to run ULP program.
- *
- * This instructions selects which of the SENS_SLEEP_CYCLES_Sx
- * registers' value is used by the ULP program timer.
- * When the ULP program stops at I_HALT instruction, ULP program
- * timer start counting. When the counter reaches the value of
- * the selected SENS_SLEEP_CYCLES_Sx register, ULP program
- * start running again from the start address (passed to the ulp_run
- * function).
- * There are 5 SENS_SLEEP_CYCLES_Sx registers, so 0 <= timer_idx < 5.
- *
- * By default, SENS_SLEEP_CYCLES_S0 register is used by the ULP
- * program timer.
- */
- #define I_SLEEP_CYCLE_SEL(timer_idx) { .sleep = { \
- .cycle_sel = timer_idx, \
- .unused = 0, \
- .sub_opcode = SUB_OPCODE_SLEEP, \
- .opcode = OPCODE_END } }
- /**
- * Perform temperature sensor measurement and store it into reg_dest.
- *
- * Delay can be set between 1 and ((1 << 14) - 1). Higher values give
- * higher measurement resolution.
- */
- #define I_TSENS(reg_dest, delay) { .tsens = { \
- .dreg = reg_dest, \
- .wait_delay = delay, \
- .reserved = 0, \
- .opcode = OPCODE_TSENS } }
- /**
- * Perform ADC measurement and store result in reg_dest.
- *
- * adc_idx selects ADC (0 or 1).
- * pad_idx selects ADC pad (0 - 7).
- */
- #define I_ADC(reg_dest, adc_idx, pad_idx) { .adc = {\
- .dreg = reg_dest, \
- .mux = pad_idx + 1, \
- .sar_sel = adc_idx, \
- .unused1 = 0, \
- .cycles = 0, \
- .unused2 = 0, \
- .opcode = OPCODE_ADC } }
- /**
- * Store value from register reg_val into RTC memory.
- *
- * The value is written to an offset calculated by adding value of
- * reg_addr register and offset_ field (this offset is expressed in 32-bit words).
- * 32 bits written to RTC memory are built as follows:
- * - bits [31:21] hold the PC of current instruction, expressed in 32-bit words
- * - bits [20:16] = 5'b1
- * - bits [15:0] are assigned the contents of reg_val
- *
- * RTC_SLOW_MEM[addr + offset_] = { 5'b0, insn_PC[10:0], val[15:0] }
- */
- #define I_ST(reg_val, reg_addr, offset_) { .st = { \
- .dreg = reg_val, \
- .sreg = reg_addr, \
- .unused1 = 0, \
- .offset = offset_, \
- .unused2 = 0, \
- .sub_opcode = SUB_OPCODE_ST, \
- .opcode = OPCODE_ST } }
- /**
- * Load value from RTC memory into reg_dest register.
- *
- * Loads 16 LSBs from RTC memory word given by the sum of value in reg_addr and
- * value of offset_.
- */
- #define I_LD(reg_dest, reg_addr, offset_) { .ld = { \
- .dreg = reg_dest, \
- .sreg = reg_addr, \
- .unused1 = 0, \
- .offset = offset_, \
- .unused2 = 0, \
- .opcode = OPCODE_LD } }
- /**
- * Branch relative if R0 less than immediate value.
- *
- * pc_offset is expressed in words, and can be from -127 to 127
- * imm_value is a 16-bit value to compare R0 against
- */
- #define I_BL(pc_offset, imm_value) { .b = { \
- .imm = imm_value, \
- .cmp = B_CMP_L, \
- .offset = abs(pc_offset), \
- .sign = (pc_offset >= 0) ? 0 : 1, \
- .sub_opcode = SUB_OPCODE_B, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch relative if R0 greater or equal than immediate value.
- *
- * pc_offset is expressed in words, and can be from -127 to 127
- * imm_value is a 16-bit value to compare R0 against
- */
- #define I_BGE(pc_offset, imm_value) { .b = { \
- .imm = imm_value, \
- .cmp = B_CMP_GE, \
- .offset = abs(pc_offset), \
- .sign = (pc_offset >= 0) ? 0 : 1, \
- .sub_opcode = SUB_OPCODE_B, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Unconditional branch to absolute PC, address in register.
- *
- * reg_pc is the register which contains address to jump to.
- * Address is expressed in 32-bit words.
- */
- #define I_BXR(reg_pc) { .bx = { \
- .dreg = reg_pc, \
- .addr = 0, \
- .unused = 0, \
- .reg = 1, \
- .type = BX_JUMP_TYPE_DIRECT, \
- .sub_opcode = SUB_OPCODE_BX, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Unconditional branch to absolute PC, immediate address.
- *
- * Address imm_pc is expressed in 32-bit words.
- */
- #define I_BXI(imm_pc) { .bx = { \
- .dreg = 0, \
- .addr = imm_pc, \
- .unused = 0, \
- .reg = 0, \
- .type = BX_JUMP_TYPE_DIRECT, \
- .sub_opcode = SUB_OPCODE_BX, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch to absolute PC if ALU result is zero, address in register.
- *
- * reg_pc is the register which contains address to jump to.
- * Address is expressed in 32-bit words.
- */
- #define I_BXZR(reg_pc) { .bx = { \
- .dreg = reg_pc, \
- .addr = 0, \
- .unused = 0, \
- .reg = 1, \
- .type = BX_JUMP_TYPE_ZERO, \
- .sub_opcode = SUB_OPCODE_BX, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch to absolute PC if ALU result is zero, immediate address.
- *
- * Address imm_pc is expressed in 32-bit words.
- */
- #define I_BXZI(imm_pc) { .bx = { \
- .dreg = 0, \
- .addr = imm_pc, \
- .unused = 0, \
- .reg = 0, \
- .type = BX_JUMP_TYPE_ZERO, \
- .sub_opcode = SUB_OPCODE_BX, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch to absolute PC if ALU overflow, address in register
- *
- * reg_pc is the register which contains address to jump to.
- * Address is expressed in 32-bit words.
- */
- #define I_BXFR(reg_pc) { .bx = { \
- .dreg = reg_pc, \
- .addr = 0, \
- .unused = 0, \
- .reg = 1, \
- .type = BX_JUMP_TYPE_OVF, \
- .sub_opcode = SUB_OPCODE_BX, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Branch to absolute PC if ALU overflow, immediate address
- *
- * Address imm_pc is expressed in 32-bit words.
- */
- #define I_BXFI(imm_pc) { .bx = { \
- .dreg = 0, \
- .addr = imm_pc, \
- .unused = 0, \
- .reg = 0, \
- .type = BX_JUMP_TYPE_OVF, \
- .sub_opcode = SUB_OPCODE_BX, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Addition: dest = src1 + src2
- */
- #define I_ADDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src1, \
- .treg = reg_src2, \
- .unused = 0, \
- .sel = ALU_SEL_ADD, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Subtraction: dest = src1 - src2
- */
- #define I_SUBR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src1, \
- .treg = reg_src2, \
- .unused = 0, \
- .sel = ALU_SEL_SUB, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical AND: dest = src1 & src2
- */
- #define I_ANDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src1, \
- .treg = reg_src2, \
- .unused = 0, \
- .sel = ALU_SEL_AND, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical OR: dest = src1 | src2
- */
- #define I_ORR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src1, \
- .treg = reg_src2, \
- .unused = 0, \
- .sel = ALU_SEL_OR, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Copy: dest = src
- */
- #define I_MOVR(reg_dest, reg_src) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .treg = 0, \
- .unused = 0, \
- .sel = ALU_SEL_MOV, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical shift left: dest = src << shift
- */
- #define I_LSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .treg = reg_shift, \
- .unused = 0, \
- .sel = ALU_SEL_LSH, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical shift right: dest = src >> shift
- */
- #define I_RSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .treg = reg_shift, \
- .unused = 0, \
- .sel = ALU_SEL_RSH, \
- .sub_opcode = SUB_OPCODE_ALU_REG, \
- .opcode = OPCODE_ALU } }
- /**
- * Add register and an immediate value: dest = src1 + imm
- */
- #define I_ADDI(reg_dest, reg_src, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .imm = imm_, \
- .unused = 0, \
- .sel = ALU_SEL_ADD, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Subtract register and an immediate value: dest = src - imm
- */
- #define I_SUBI(reg_dest, reg_src, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .imm = imm_, \
- .unused = 0, \
- .sel = ALU_SEL_SUB, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical AND register and an immediate value: dest = src & imm
- */
- #define I_ANDI(reg_dest, reg_src, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .imm = imm_, \
- .unused = 0, \
- .sel = ALU_SEL_AND, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical OR register and an immediate value: dest = src | imm
- */
- #define I_ORI(reg_dest, reg_src, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .imm = imm_, \
- .unused = 0, \
- .sel = ALU_SEL_OR, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Copy an immediate value into register: dest = imm
- */
- #define I_MOVI(reg_dest, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = 0, \
- .imm = imm_, \
- .unused = 0, \
- .sel = ALU_SEL_MOV, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical shift left register value by an immediate: dest = src << imm
- */
- #define I_LSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .imm = imm_, \
- .unused = 0, \
- .sel = ALU_SEL_LSH, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Logical shift right register value by an immediate: dest = val >> imm
- */
- #define I_RSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
- .dreg = reg_dest, \
- .sreg = reg_src, \
- .imm = imm_, \
- .unused = 0, \
- .sel = ALU_SEL_RSH, \
- .sub_opcode = SUB_OPCODE_ALU_IMM, \
- .opcode = OPCODE_ALU } }
- /**
- * Define a label with number label_num.
- *
- * This is a macro which doesn't generate a real instruction.
- * The token generated by this macro is removed by ulp_process_macros_and_load
- * function. Label defined using this macro can be used in branch macros defined
- * below.
- */
- #define M_LABEL(label_num) { .macro = { \
- .dreg = 0, \
- .label = label_num, \
- .unused = 0, \
- .sub_opcode = SUB_OPCODE_MACRO_LABEL, \
- .opcode = OPCODE_MACRO } }
- /**
- * Token macro used by M_B and M_BX macros. Not to be used directly.
- */
- #define M_BRANCH(label_num) { .macro = { \
- .dreg = 0, \
- .label = label_num, \
- .unused = 0, \
- .sub_opcode = SUB_OPCODE_MACRO_BRANCH, \
- .opcode = OPCODE_MACRO } }
- /**
- * Token macro used by M_MOVL macro. Not to be used directly.
- */
- #define M_LABELPC(label_num) { .macro = { \
- .dreg = 0, \
- .label = label_num, \
- .unused = 0, \
- .sub_opcode = SUB_OPCODE_MACRO_LABELPC, \
- .opcode = OPCODE_MACRO } }
- /**
- * Macro: Move the program counter at the given label into the register.
- * This address can then be used with I_BXR, I_BXZR, I_BXFR, etc.
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_MOVL(reg_dest, label_num) \
- M_LABELPC(label_num), \
- I_MOVI(reg_dest, 0)
- /**
- * Macro: branch to label label_num if R0 is less than immediate value.
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BL(label_num, imm_value) \
- M_BRANCH(label_num), \
- I_BL(0, imm_value)
- /**
- * Macro: branch to label label_num if R0 is greater or equal than immediate value
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BGE(label_num, imm_value) \
- M_BRANCH(label_num), \
- I_BGE(0, imm_value)
- /**
- * Macro: unconditional branch to label
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BX(label_num) \
- M_BRANCH(label_num), \
- I_BXI(0)
- /**
- * Macro: branch to label if ALU result is zero
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BXZ(label_num) \
- M_BRANCH(label_num), \
- I_BXZI(0)
- /**
- * Macro: branch to label if ALU overflow
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BXF(label_num) \
- M_BRANCH(label_num), \
- I_BXFI(0)
- /**
- * Increment the stage counter by immediate value
- */
- #define I_STAGE_INC(imm_) { .alu_reg_s = { \
- .unused1 = 0, \
- .imm = imm_, \
- .unused2 = 0, \
- .sel = ALU_SEL_SINC, \
- .sub_opcode = SUB_OPCODE_ALU_CNT, \
- .opcode = OPCODE_ALU } }
- /**
- * Decrement the stage counter by immediate value
- */
- #define I_STAGE_DEC(imm_) { .alu_reg_s = { \
- .unused1 = 0, \
- .imm = imm_, \
- .unused2 = 0, \
- .sel = ALU_SEL_SDEC, \
- .sub_opcode = SUB_OPCODE_ALU_CNT, \
- .opcode = OPCODE_ALU } }
- /**
- * Reset the stage counter
- */
- #define I_STAGE_RST() { .alu_reg_s = { \
- .unused1 = 0, \
- .imm = 0, \
- .unused2 = 0, \
- .sel = ALU_SEL_SRST, \
- .sub_opcode = SUB_OPCODE_ALU_CNT, \
- .opcode = OPCODE_ALU } }
- /**
- * Macro: branch to label if the stage counter is less than immediate value
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BSLT(label_num, imm_value) \
- M_BRANCH(label_num), \
- I_JUMPS(0, imm_value, JUMPS_LT)
- /**
- * Macro: branch to label if the stage counter is greater than or equal to immediate value
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BSGE(label_num, imm_value) \
- M_BRANCH(label_num), \
- I_JUMPS(0, imm_value, JUMPS_GE)
- /**
- * Macro: branch to label if the stage counter is less than or equal to immediate value
- *
- * This macro generates two ulp_insn_t values separated by a comma, and should
- * be used when defining contents of ulp_insn_t arrays. First value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BSLE(label_num, imm_value) \
- M_BRANCH(label_num), \
- I_JUMPS(0, imm_value, JUMPS_LE)
- /**
- * Macro: branch to label if the stage counter is equal to immediate value.
- * Implemented using two JUMPS instructions:
- * JUMPS next, imm_value, LT
- * JUMPS label_num, imm_value, LE
- *
- * This macro generates three ulp_insn_t values separated by commas, and should
- * be used when defining contents of ulp_insn_t arrays. Second value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BSEQ(label_num, imm_value) \
- I_JUMPS(2, imm_value, JUMPS_LT), \
- M_BRANCH(label_num), \
- I_JUMPS(0, imm_value, JUMPS_LE)
- /**
- * Macro: branch to label if the stage counter is greater than immediate value.
- * Implemented using two instructions:
- * JUMPS next, imm_value, LE
- * JUMPS label_num, imm_value, GE
- *
- * This macro generates three ulp_insn_t values separated by commas, and should
- * be used when defining contents of ulp_insn_t arrays. Second value is not a
- * real instruction; it is a token which is removed by ulp_process_macros_and_load
- * function.
- */
- #define M_BSGT(label_num, imm_value) \
- I_JUMPS(2, imm_value, JUMPS_LE), \
- M_BRANCH(label_num), \
- I_JUMPS(0, imm_value, JUMPS_GE)
- /**
- * Branch relative if (stage counter [comp_type] [imm_value]) evaluates to true.
- *
- * pc_offset is expressed in words, and can be from -127 to 127
- * imm_value is an 8-bit value to compare the stage counter against
- * comp_type is the type of comparison to perform: JUMPS_LT (<), JUMPS_GE (>=) or JUMPS_LE (<=)
- */
- #define I_JUMPS(pc_offset, imm_value, comp_type) { .bs = { \
- .imm = imm_value, \
- .unused = 0, \
- .cmp = comp_type, \
- .offset = abs(pc_offset), \
- .sign = (pc_offset >= 0) ? 0 : 1, \
- .sub_opcode = SUB_OPCODE_BS, \
- .opcode = OPCODE_BRANCH } }
- /**
- * Perform an I2C transaction with a slave device.
- * I_I2C_READ and I_I2C_WRITE are provided for convenience, instead of using this directly.
- *
- * Slave address (in 7-bit format) has to be set in advance into SENS_I2C_SLAVE_ADDRx register field, where x == slave_sel.
- * For read operations, 8 bits of read result is stored into R0 register.
- * For write operations, val will be written to sub_addr at [high_bit:low_bit]. Bits outside of this range are masked.
- */
- #define I_I2C_RW(sub_addr, val, low_bit, high_bit, slave_sel, rw_bit) { .i2c = {\
- .i2c_addr = sub_addr, \
- .data = val, \
- .low_bits = low_bit, \
- .high_bits = high_bit, \
- .i2c_sel = slave_sel, \
- .unused = 0, \
- .rw = rw_bit, \
- .opcode = OPCODE_I2C } }
- /**
- * Read a byte from the sub address of an I2C slave, and store the result in R0.
- *
- * Slave address (in 7-bit format) has to be set in advance into SENS_I2C_SLAVE_ADDRx register field, where x == slave_sel.
- */
- #define I_I2C_READ(slave_sel, sub_addr) I_I2C_RW(sub_addr, 0, 0, 0, slave_sel, SUB_OPCODE_I2C_RD)
- /**
- * Write a byte to the sub address of an I2C slave.
- *
- * Slave address (in 7-bit format) has to be set in advance into SENS_I2C_SLAVE_ADDRx register field, where x == slave_sel.
- */
- #define I_I2C_WRITE(slave_sel, sub_addr, val) I_I2C_RW(sub_addr, val, 0, 7, slave_sel, SUB_OPCODE_I2C_WR)
- #define RTC_SLOW_MEM ((uint32_t*) 0x50000000) /*!< RTC slow memory, 8k size */
- #ifdef __cplusplus
- }
- #endif
|