test_spi_slave.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380
  1. /*
  2. Tests for the spi_slave device driver
  3. */
  4. #include <string.h>
  5. #include "sdkconfig.h"
  6. #include "unity.h"
  7. #include "test/test_common_spi.h"
  8. #include "driver/spi_master.h"
  9. #include "driver/spi_slave.h"
  10. #include "driver/gpio.h"
  11. #include "esp_log.h"
  12. #include "esp_rom_gpio.h"
  13. //There is only one GPSPI controller, so single-board test is disabled.
  14. #if !DISABLED_FOR_TARGETS(ESP32C3)
  15. #ifndef CONFIG_SPIRAM
  16. //This test should be removed once the timing test is merged.
  17. static spi_device_handle_t spi;
  18. static WORD_ALIGNED_ATTR uint8_t master_txbuf[320];
  19. static WORD_ALIGNED_ATTR uint8_t master_rxbuf[320];
  20. static WORD_ALIGNED_ATTR uint8_t slave_txbuf[320];
  21. static WORD_ALIGNED_ATTR uint8_t slave_rxbuf[320];
  22. static const uint8_t master_send[] = { 0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43 };
  23. static const uint8_t slave_send[] = { 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0 };
  24. static inline void int_connect( uint32_t gpio, uint32_t sigo, uint32_t sigi )
  25. {
  26. esp_rom_gpio_connect_out_signal( gpio, sigo, false, false );
  27. esp_rom_gpio_connect_in_signal( gpio, sigi, false );
  28. }
  29. static void master_init( spi_device_handle_t* spi)
  30. {
  31. esp_err_t ret;
  32. spi_bus_config_t buscfg={
  33. .miso_io_num=PIN_NUM_MISO,
  34. .mosi_io_num=PIN_NUM_MOSI,
  35. .sclk_io_num=PIN_NUM_CLK,
  36. .quadwp_io_num=UNCONNECTED_PIN,
  37. .quadhd_io_num=-1
  38. };
  39. spi_device_interface_config_t devcfg={
  40. .clock_speed_hz=4*1000*1000, //currently only up to 4MHz for internel connect
  41. .mode=0, //SPI mode 0
  42. .spics_io_num=PIN_NUM_CS, //CS pin
  43. .queue_size=7, //We want to be able to queue 7 transactions at a time
  44. .pre_cb=NULL,
  45. .cs_ena_posttrans=5,
  46. .cs_ena_pretrans=1,
  47. };
  48. //Initialize the SPI bus
  49. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO);
  50. TEST_ASSERT(ret==ESP_OK);
  51. //Attach the LCD to the SPI bus
  52. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi);
  53. TEST_ASSERT(ret==ESP_OK);
  54. }
  55. static void slave_init(void)
  56. {
  57. //Configuration for the SPI bus
  58. spi_bus_config_t buscfg={
  59. .mosi_io_num=PIN_NUM_MOSI,
  60. .miso_io_num=PIN_NUM_MISO,
  61. .sclk_io_num=PIN_NUM_CLK
  62. };
  63. //Configuration for the SPI slave interface
  64. spi_slave_interface_config_t slvcfg={
  65. .mode=0,
  66. .spics_io_num=PIN_NUM_CS,
  67. .queue_size=3,
  68. .flags=0,
  69. };
  70. //Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected.
  71. gpio_set_pull_mode(PIN_NUM_MOSI, GPIO_PULLUP_ONLY);
  72. gpio_set_pull_mode(PIN_NUM_CLK, GPIO_PULLUP_ONLY);
  73. gpio_set_pull_mode(PIN_NUM_CS, GPIO_PULLUP_ONLY);
  74. //Initialize SPI slave interface
  75. TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
  76. }
  77. static void custom_setup(void) {
  78. //Initialize buffers
  79. memset(master_txbuf, 0, sizeof(master_txbuf));
  80. memset(master_rxbuf, 0, sizeof(master_rxbuf));
  81. memset(slave_txbuf, 0, sizeof(slave_txbuf));
  82. memset(slave_rxbuf, 0, sizeof(slave_rxbuf));
  83. //Initialize SPI Master
  84. master_init( &spi );
  85. //Initialize SPI Slave
  86. slave_init();
  87. //Do internal connections
  88. int_connect( PIN_NUM_MOSI, spi_periph_signal[TEST_SPI_HOST].spid_out, spi_periph_signal[TEST_SLAVE_HOST].spiq_in );
  89. int_connect( PIN_NUM_MISO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out, spi_periph_signal[TEST_SPI_HOST].spid_in );
  90. int_connect( PIN_NUM_CS, spi_periph_signal[TEST_SPI_HOST].spics_out[0], spi_periph_signal[TEST_SLAVE_HOST].spics_in );
  91. int_connect( PIN_NUM_CLK, spi_periph_signal[TEST_SPI_HOST].spiclk_out, spi_periph_signal[TEST_SLAVE_HOST].spiclk_in );
  92. }
  93. static void custom_teardown(void) {
  94. TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
  95. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  96. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  97. }
  98. TEST_CASE("test fullduplex slave with only RX direction","[spi]")
  99. {
  100. custom_setup();
  101. memcpy(master_txbuf, master_send, sizeof(master_send));
  102. for ( int i = 0; i < 4; i ++ ) {
  103. //slave send
  104. spi_slave_transaction_t slave_t;
  105. spi_slave_transaction_t* out;
  106. memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
  107. slave_t.length=8*32;
  108. slave_t.tx_buffer=NULL;
  109. slave_t.rx_buffer=slave_rxbuf;
  110. // Colorize RX buffer with known pattern
  111. memset( slave_rxbuf, 0x66, sizeof(slave_rxbuf));
  112. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
  113. //send
  114. spi_transaction_t t = {};
  115. t.length = 32*(i+1);
  116. if ( t.length != 0 ) {
  117. t.tx_buffer = master_txbuf;
  118. t.rx_buffer = NULL;
  119. }
  120. spi_device_transmit( spi, (spi_transaction_t*)&t );
  121. //wait for end
  122. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
  123. //show result
  124. ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
  125. ESP_LOG_BUFFER_HEX( "master tx", t.tx_buffer, t.length/8 );
  126. ESP_LOG_BUFFER_HEX( "slave rx", slave_t.rx_buffer, (slave_t.trans_len+7)/8);
  127. TEST_ASSERT_EQUAL_HEX8_ARRAY( t.tx_buffer, slave_t.rx_buffer, t.length/8 );
  128. TEST_ASSERT_EQUAL( t.length, slave_t.trans_len );
  129. }
  130. custom_teardown();
  131. ESP_LOGI(SLAVE_TAG, "test passed.");
  132. }
  133. TEST_CASE("test fullduplex slave with only TX direction","[spi]")
  134. {
  135. custom_setup();
  136. memcpy(slave_txbuf, slave_send, sizeof(slave_send));
  137. for ( int i = 0; i < 4; i ++ ) {
  138. //slave send
  139. spi_slave_transaction_t slave_t;
  140. spi_slave_transaction_t* out;
  141. memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
  142. slave_t.length=8*32;
  143. slave_t.tx_buffer=slave_txbuf;
  144. slave_t.rx_buffer=NULL;
  145. // Colorize RX buffer with known pattern
  146. memset( master_rxbuf, 0x66, sizeof(master_rxbuf));
  147. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
  148. //send
  149. spi_transaction_t t = {};
  150. t.length = 32*(i+1);
  151. if ( t.length != 0 ) {
  152. t.tx_buffer = NULL;
  153. t.rx_buffer = master_rxbuf;
  154. }
  155. spi_device_transmit( spi, (spi_transaction_t*)&t );
  156. //wait for end
  157. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
  158. //show result
  159. ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
  160. ESP_LOG_BUFFER_HEX( "master rx", t.rx_buffer, t.length/8 );
  161. ESP_LOG_BUFFER_HEX( "slave tx", slave_t.tx_buffer, (slave_t.trans_len+7)/8);
  162. TEST_ASSERT_EQUAL_HEX8_ARRAY( slave_t.tx_buffer, t.rx_buffer, t.length/8 );
  163. TEST_ASSERT_EQUAL( t.length, slave_t.trans_len );
  164. }
  165. custom_teardown();
  166. ESP_LOGI(SLAVE_TAG, "test passed.");
  167. }
  168. TEST_CASE("test slave send unaligned","[spi]")
  169. {
  170. custom_setup();
  171. memcpy(master_txbuf, master_send, sizeof(master_send));
  172. memcpy(slave_txbuf, slave_send, sizeof(slave_send));
  173. for ( int i = 0; i < 4; i ++ ) {
  174. //slave send
  175. spi_slave_transaction_t slave_t;
  176. spi_slave_transaction_t* out;
  177. memset(&slave_t, 0, sizeof(spi_slave_transaction_t));
  178. slave_t.length=8*32;
  179. slave_t.tx_buffer=slave_txbuf+i;
  180. slave_t.rx_buffer=slave_rxbuf;
  181. // Colorize RX buffers with known pattern
  182. memset( master_rxbuf, 0x66, sizeof(master_rxbuf));
  183. memset( slave_rxbuf, 0x66, sizeof(slave_rxbuf));
  184. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
  185. //send
  186. spi_transaction_t t = {};
  187. t.length = 32*(i+1);
  188. if ( t.length != 0 ) {
  189. t.tx_buffer = master_txbuf+i;
  190. t.rx_buffer = master_rxbuf+i;
  191. }
  192. spi_device_transmit( spi, (spi_transaction_t*)&t );
  193. //wait for end
  194. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &out, portMAX_DELAY));
  195. //show result
  196. ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
  197. ESP_LOG_BUFFER_HEX( "master tx", t.tx_buffer, t.length/8 );
  198. ESP_LOG_BUFFER_HEX( "master rx", t.rx_buffer, t.length/8 );
  199. ESP_LOG_BUFFER_HEX( "slave tx", slave_t.tx_buffer, (slave_t.trans_len+7)/8);
  200. ESP_LOG_BUFFER_HEX( "slave rx", slave_t.rx_buffer, (slave_t.trans_len+7)/8);
  201. TEST_ASSERT_EQUAL_HEX8_ARRAY( t.tx_buffer, slave_t.rx_buffer, t.length/8 );
  202. TEST_ASSERT_EQUAL_HEX8_ARRAY( slave_t.tx_buffer, t.rx_buffer, t.length/8 );
  203. TEST_ASSERT_EQUAL( t.length, slave_t.trans_len );
  204. }
  205. custom_teardown();
  206. ESP_LOGI(SLAVE_TAG, "test passed.");
  207. }
  208. #endif // !CONFIG_SPIRAM
  209. #endif // !TEMPORARY_DISABLED_FOR_TARGETS
  210. #if !DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3)
  211. //These tests are for chips which only have 1 SPI controller
  212. /********************************************************************************
  213. * Test By Master & Slave (2 boards)
  214. *
  215. * PIN | Master(C3) | Slave (C3) |
  216. * ----| --------- | --------- |
  217. * CS | 10 | 10 |
  218. * CLK | 6 | 6 |
  219. * MOSI| 7 | 7 |
  220. * MISO| 2 | 2 |
  221. * GND | GND | GND |
  222. *
  223. ********************************************************************************/
  224. #define BUF_SIZE 320
  225. static void unaligned_test_master(void)
  226. {
  227. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  228. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 0));
  229. spi_device_handle_t spi;
  230. spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  231. devcfg.clock_speed_hz = 4 * 1000 * 1000;
  232. devcfg.queue_size = 7;
  233. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  234. unity_send_signal("Master ready");
  235. uint8_t *master_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
  236. uint8_t *master_recv_buf = heap_caps_calloc(BUF_SIZE, 1, MALLOC_CAP_DMA);
  237. //This buffer is used for 2-board test and should be assigned totally the same as the ``test_slave_loop`` does.
  238. uint8_t *slave_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
  239. srand(199);
  240. for (int i = 0; i < BUF_SIZE; i++) {
  241. master_send_buf[i] = rand();
  242. }
  243. srand(299);
  244. for (int i = 0; i < BUF_SIZE; i++) {
  245. slave_send_buf[i] = rand();
  246. }
  247. for (int i = 0; i < 4; i++) {
  248. uint32_t length_in_bytes = 4 * (i + 1);
  249. spi_transaction_t t = {
  250. .tx_buffer = master_send_buf + i,
  251. .rx_buffer = master_recv_buf,
  252. .length = length_in_bytes * 8,
  253. };
  254. vTaskDelay(50);
  255. unity_wait_for_signal("Slave ready");
  256. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&t));
  257. //show result
  258. ESP_LOG_BUFFER_HEX("master tx:", master_send_buf+i, length_in_bytes);
  259. ESP_LOG_BUFFER_HEX("master rx:", master_recv_buf, length_in_bytes);
  260. TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_send_buf+i, master_recv_buf, length_in_bytes);
  261. //clean
  262. memset(master_recv_buf, 0x00, BUF_SIZE);
  263. }
  264. free(master_send_buf);
  265. free(master_recv_buf);
  266. free(slave_send_buf);
  267. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  268. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  269. }
  270. static void unaligned_test_slave(void)
  271. {
  272. unity_wait_for_signal("Master ready");
  273. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  274. spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  275. TEST_ESP_OK(spi_slave_initialize(TEST_SPI_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
  276. uint8_t *slave_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
  277. uint8_t *slave_recv_buf = heap_caps_calloc(BUF_SIZE, 1, MALLOC_CAP_DMA);
  278. //This buffer is used for 2-board test and should be assigned totally the same as the ``test_slave_loop`` does.
  279. uint8_t *master_send_buf = heap_caps_malloc(BUF_SIZE, MALLOC_CAP_DMA);
  280. srand(199);
  281. for (int i = 0; i < BUF_SIZE; i++) {
  282. master_send_buf[i] = rand();
  283. }
  284. srand(299);
  285. for (int i = 0; i < BUF_SIZE; i++) {
  286. slave_send_buf[i] = rand();
  287. }
  288. for (int i = 0; i < 4; i++) {
  289. uint32_t mst_length_in_bytes = 4 * (i + 1);
  290. spi_slave_transaction_t slave_t = {
  291. .tx_buffer = slave_send_buf + i,
  292. .rx_buffer = slave_recv_buf,
  293. .length = 32 * 8,
  294. };
  295. unity_send_signal("Slave ready");
  296. TEST_ESP_OK(spi_slave_transmit(TEST_SPI_HOST, &slave_t, portMAX_DELAY));
  297. //show result
  298. ESP_LOGI(SLAVE_TAG, "trans_len: %d", slave_t.trans_len);
  299. ESP_LOG_BUFFER_HEX("slave tx:", slave_send_buf + i, mst_length_in_bytes);
  300. ESP_LOG_BUFFER_HEX("slave rx:", slave_recv_buf, mst_length_in_bytes);
  301. TEST_ASSERT_EQUAL(mst_length_in_bytes * 8, slave_t.trans_len);
  302. TEST_ASSERT_EQUAL_HEX8_ARRAY(master_send_buf + i, slave_recv_buf, mst_length_in_bytes);
  303. //clean
  304. memset(slave_recv_buf, 0x00, BUF_SIZE);
  305. }
  306. free(slave_send_buf);
  307. free(slave_recv_buf);
  308. free(master_send_buf);
  309. TEST_ASSERT(spi_slave_free(TEST_SPI_HOST) == ESP_OK);
  310. }
  311. TEST_CASE_MULTIPLE_DEVICES("SPI_Slave_Unaligned_Test", "[spi_ms][test_env=Example_SPI_Multi_device][timeout=120]", unaligned_test_master, unaligned_test_slave);
  312. #endif //#if !DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3)