adc_hal.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399
  1. // Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "soc/soc_caps.h"
  15. #include "hal/adc_hal.h"
  16. #include "hal/adc_hal_conf.h"
  17. #include "sdkconfig.h"
  18. #include <sys/param.h>
  19. #if CONFIG_IDF_TARGET_ESP32C3
  20. #include "soc/gdma_channel.h"
  21. #include "soc/soc.h"
  22. #include "esp_rom_sys.h"
  23. typedef enum {
  24. ADC_EVENT_ADC1_DONE = BIT(0),
  25. ADC_EVENT_ADC2_DONE = BIT(1),
  26. } adc_hal_event_t;
  27. #endif
  28. void adc_hal_init(void)
  29. {
  30. // Set internal FSM wait time, fixed value.
  31. adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT,
  32. SOC_ADC_FSM_STANDBY_WAIT_DEFAULT);
  33. adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
  34. adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
  35. adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1));
  36. adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2));
  37. adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
  38. }
  39. /*---------------------------------------------------------------
  40. ADC calibration setting
  41. ---------------------------------------------------------------*/
  42. #if SOC_ADC_HW_CALIBRATION_V1
  43. // ESP32-S2 and C3 support HW offset calibration.
  44. void adc_hal_calibration_init(adc_ll_num_t adc_n)
  45. {
  46. adc_ll_calibration_init(adc_n);
  47. }
  48. static uint32_t s_previous_init_code[SOC_ADC_PERIPH_NUM] = {-1, -1};
  49. void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
  50. {
  51. if (param != s_previous_init_code[adc_n]) {
  52. adc_ll_set_calibration_param(adc_n, param);
  53. s_previous_init_code[adc_n] = param;
  54. }
  55. }
  56. #if CONFIG_IDF_TARGET_ESP32S2
  57. static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
  58. {
  59. adc_hal_set_controller(adc_n, ADC_CTRL_RTC); //Set controller
  60. /* Enable/disable internal connect GND (for calibration). */
  61. if (internal_gnd) {
  62. adc_ll_rtc_disable_channel(adc_n);
  63. adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param.
  64. } else {
  65. adc_ll_rtc_enable_channel(adc_n, channel);
  66. adc_ll_set_atten(adc_n, channel, atten);
  67. }
  68. }
  69. static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
  70. {
  71. adc_ll_rtc_start_convert(adc_n, channel);
  72. while (adc_ll_rtc_convert_is_done(adc_n) != true);
  73. return (uint32_t)adc_ll_rtc_get_convert_value(adc_n);
  74. }
  75. #elif CONFIG_IDF_TARGET_ESP32C3
  76. static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
  77. {
  78. adc_ll_onetime_sample_enable(ADC_NUM_1, false);
  79. adc_ll_onetime_sample_enable(ADC_NUM_2, false);
  80. /* Enable/disable internal connect GND (for calibration). */
  81. if (internal_gnd) {
  82. const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1)? 0xF: 0x1;
  83. adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan);
  84. } else {
  85. adc_ll_onetime_set_channel(adc_n, channel);
  86. }
  87. adc_ll_onetime_set_atten(atten);
  88. adc_ll_onetime_sample_enable(adc_n, true);
  89. }
  90. static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
  91. {
  92. adc_ll_intr_clear(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE);
  93. adc_ll_onetime_start(false);
  94. esp_rom_delay_us(5);
  95. adc_ll_onetime_start(true);
  96. while(!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE));
  97. uint32_t read_val = -1;
  98. if (adc_n == ADC_NUM_1) {
  99. read_val = adc_ll_adc1_read();
  100. } else if (adc_n == ADC_NUM_2) {
  101. read_val = adc_ll_adc2_read();
  102. if (adc_ll_analysis_raw_data(adc_n, read_val)) {
  103. return -1;
  104. }
  105. }
  106. return read_val;
  107. }
  108. #endif //CONFIG_IDF_TARGET_*
  109. #define ADC_HAL_CAL_TIMES (10)
  110. #define ADC_HAL_CAL_OFFSET_RANGE (4096)
  111. uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
  112. {
  113. if (adc_n == ADC_NUM_2) {
  114. adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
  115. adc_hal_arbiter_config(&config);
  116. }
  117. cal_setup(adc_n, channel, atten, internal_gnd);
  118. adc_ll_calibration_prepare(adc_n, channel, internal_gnd);
  119. uint32_t code_list[ADC_HAL_CAL_TIMES] = {0};
  120. uint32_t code_sum = 0;
  121. uint32_t code_h = 0;
  122. uint32_t code_l = 0;
  123. uint32_t chk_code = 0;
  124. for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) {
  125. code_h = ADC_HAL_CAL_OFFSET_RANGE;
  126. code_l = 0;
  127. chk_code = (code_h + code_l) / 2;
  128. adc_ll_set_calibration_param(adc_n, chk_code);
  129. uint32_t self_cal = read_cal_channel(adc_n, channel);
  130. while (code_h - code_l > 1) {
  131. if (self_cal == 0) {
  132. code_h = chk_code;
  133. } else {
  134. code_l = chk_code;
  135. }
  136. chk_code = (code_h + code_l) / 2;
  137. adc_ll_set_calibration_param(adc_n, chk_code);
  138. self_cal = read_cal_channel(adc_n, channel);
  139. if ((code_h - code_l == 1)) {
  140. chk_code += 1;
  141. adc_ll_set_calibration_param(adc_n, chk_code);
  142. self_cal = read_cal_channel(adc_n, channel);
  143. }
  144. }
  145. code_list[rpt] = chk_code;
  146. code_sum += chk_code;
  147. }
  148. code_l = code_list[0];
  149. code_h = code_list[0];
  150. for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) {
  151. code_l = MIN(code_l, code_list[i]);
  152. code_h = MAX(code_h, code_list[i]);
  153. }
  154. chk_code = code_h + code_l;
  155. uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
  156. ? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
  157. : (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
  158. adc_ll_calibration_finish(adc_n);
  159. return ret;
  160. }
  161. #endif //SOC_ADC_HW_CALIBRATION_V1
  162. #if CONFIG_IDF_TARGET_ESP32C3
  163. //This feature is currently supported on ESP32C3, will be supported on other chips soon
  164. /*---------------------------------------------------------------
  165. DMA setting
  166. ---------------------------------------------------------------*/
  167. void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config)
  168. {
  169. hal->dev = &GDMA;
  170. hal->desc_dummy_head.next = hal->rx_desc;
  171. hal->desc_max_num = config->desc_max_num;
  172. hal->dma_chan = config->dma_chan;
  173. hal->eof_num = config->eof_num;
  174. }
  175. void adc_hal_digi_init(adc_hal_context_t *hal)
  176. {
  177. gdma_ll_clear_interrupt_status(hal->dev, hal->dma_chan, UINT32_MAX);
  178. gdma_ll_enable_interrupt(hal->dev, hal->dma_chan, GDMA_LL_EVENT_RX_SUC_EOF, true);
  179. adc_ll_digi_dma_set_eof_num(hal->eof_num);
  180. adc_ll_onetime_sample_enable(ADC_NUM_1, false);
  181. adc_ll_onetime_sample_enable(ADC_NUM_2, false);
  182. }
  183. void adc_hal_fifo_reset(adc_hal_context_t *hal)
  184. {
  185. adc_ll_digi_reset();
  186. gdma_ll_rx_reset_channel(hal->dev, hal->dma_chan);
  187. }
  188. static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num)
  189. {
  190. assert(((uint32_t)data_buf % 4) == 0);
  191. assert((size % 4) == 0);
  192. uint32_t n = 0;
  193. while (num--) {
  194. desc[n].dw0.size = size;
  195. desc[n].dw0.suc_eof = 0;
  196. desc[n].dw0.owner = 1;
  197. desc[n].buffer = data_buf;
  198. desc[n].next = &desc[n+1];
  199. data_buf += size;
  200. n++;
  201. }
  202. desc[n-1].next = NULL;
  203. }
  204. void adc_hal_digi_rxdma_start(adc_hal_context_t *hal, uint8_t *data_buf)
  205. {
  206. //reset the current descriptor address
  207. hal->cur_desc_ptr = &hal->desc_dummy_head;
  208. adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * ADC_HAL_DATA_LEN_PER_CONV, hal->desc_max_num);
  209. gdma_ll_rx_set_desc_addr(hal->dev, hal->dma_chan, (uint32_t)hal->rx_desc);
  210. gdma_ll_rx_start(hal->dev, hal->dma_chan);
  211. }
  212. void adc_hal_digi_start(adc_hal_context_t *hal)
  213. {
  214. //the ADC data will be sent to the DMA
  215. adc_ll_digi_dma_enable();
  216. //enable sar adc timer
  217. adc_ll_digi_trigger_enable();
  218. }
  219. adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
  220. {
  221. assert(hal->cur_desc_ptr);
  222. if (!hal->cur_desc_ptr->next) {
  223. return ADC_HAL_DMA_DESC_NULL;
  224. }
  225. if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) {
  226. return ADC_HAL_DMA_DESC_WAITING;
  227. }
  228. hal->cur_desc_ptr = hal->cur_desc_ptr->next;
  229. *cur_desc = hal->cur_desc_ptr;
  230. return ADC_HAL_DMA_DESC_VALID;
  231. }
  232. void adc_hal_digi_rxdma_stop(adc_hal_context_t *hal)
  233. {
  234. gdma_ll_rx_stop(hal->dev, hal->dma_chan);
  235. }
  236. void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask)
  237. {
  238. gdma_ll_clear_interrupt_status(hal->dev, hal->dma_chan, mask);
  239. }
  240. void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask)
  241. {
  242. gdma_ll_enable_interrupt(hal->dev, hal->dma_chan, mask, false);
  243. }
  244. void adc_hal_digi_stop(adc_hal_context_t *hal)
  245. {
  246. //Set to 0: the ADC data won't be sent to the DMA
  247. adc_ll_digi_dma_disable();
  248. //disable sar adc timer
  249. adc_ll_digi_trigger_disable();
  250. }
  251. /*---------------------------------------------------------------
  252. Single Read
  253. ---------------------------------------------------------------*/
  254. //--------------------INTR-------------------------------//
  255. static adc_ll_intr_t get_event_intr(adc_hal_event_t event)
  256. {
  257. adc_ll_intr_t intr_mask = 0;
  258. if (event & ADC_EVENT_ADC1_DONE) {
  259. intr_mask |= ADC_LL_INTR_ADC1_DONE;
  260. }
  261. if (event & ADC_EVENT_ADC2_DONE) {
  262. intr_mask |= ADC_LL_INTR_ADC2_DONE;
  263. }
  264. return intr_mask;
  265. }
  266. static void adc_hal_intr_clear(adc_hal_event_t event)
  267. {
  268. adc_ll_intr_clear(get_event_intr(event));
  269. }
  270. static bool adc_hal_intr_get_raw(adc_hal_event_t event)
  271. {
  272. return adc_ll_intr_get_raw(get_event_intr(event));
  273. }
  274. //--------------------Single Read-------------------------------//
  275. static void adc_hal_onetime_start(void)
  276. {
  277. /**
  278. * There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
  279. * ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
  280. * clock cycle.
  281. *
  282. * This limitation will be removed in hardware future versions.
  283. *
  284. */
  285. uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
  286. //Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
  287. uint32_t delay = (1000 * 1000) / digi_clk + 1;
  288. //3 ADC digital controller clock cycle
  289. delay = delay * 3;
  290. //This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
  291. if (digi_clk >= APB_CLK_FREQ/8) {
  292. delay = 0;
  293. }
  294. adc_ll_onetime_start(false);
  295. esp_rom_delay_us(delay);
  296. adc_ll_onetime_start(true);
  297. //No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
  298. }
  299. static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw)
  300. {
  301. if (adc_n == ADC_NUM_1) {
  302. *out_raw = adc_ll_adc1_read();
  303. } else if (adc_n == ADC_NUM_2) {
  304. *out_raw = adc_ll_adc2_read();
  305. if (adc_ll_analysis_raw_data(adc_n, *out_raw)) {
  306. return ESP_ERR_INVALID_STATE;
  307. }
  308. }
  309. return ESP_OK;
  310. }
  311. esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
  312. {
  313. esp_err_t ret;
  314. adc_hal_event_t event;
  315. if (adc_n == ADC_NUM_1) {
  316. event = ADC_EVENT_ADC1_DONE;
  317. } else {
  318. event = ADC_EVENT_ADC2_DONE;
  319. }
  320. adc_hal_intr_clear(event);
  321. adc_ll_onetime_sample_enable(ADC_NUM_1, false);
  322. adc_ll_onetime_sample_enable(ADC_NUM_2, false);
  323. adc_ll_onetime_sample_enable(adc_n, true);
  324. adc_ll_onetime_set_channel(adc_n, channel);
  325. //Trigger single read.
  326. adc_hal_onetime_start();
  327. while (!adc_hal_intr_get_raw(event));
  328. ret = adc_hal_single_read(adc_n, out_raw);
  329. //HW workaround: when enabling periph clock, this should be false
  330. adc_ll_onetime_sample_enable(adc_n, false);
  331. return ret;
  332. }
  333. #else // !CONFIG_IDF_TARGET_ESP32C3
  334. esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
  335. {
  336. adc_ll_rtc_enable_channel(adc_n, channel);
  337. adc_ll_rtc_start_convert(adc_n, channel);
  338. while (adc_ll_rtc_convert_is_done(adc_n) != true);
  339. *out_raw = adc_ll_rtc_get_convert_value(adc_n);
  340. if ((int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*out_raw))) {
  341. return ESP_ERR_INVALID_STATE;
  342. }
  343. return ESP_OK;
  344. }
  345. #endif //#if !CONFIG_IDF_TARGET_ESP32C3