test_time.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635
  1. #include <stdio.h>
  2. #include <math.h>
  3. #include "unity.h"
  4. #include "driver/adc.h"
  5. #include <time.h>
  6. #include <sys/time.h>
  7. #include "freertos/FreeRTOS.h"
  8. #include "freertos/task.h"
  9. #include "freertos/semphr.h"
  10. #include "sdkconfig.h"
  11. #include "soc/rtc.h"
  12. #include "soc/rtc_cntl_reg.h"
  13. #include "esp_system.h"
  14. #include "test_utils.h"
  15. #include "esp_log.h"
  16. #include "esp_rom_sys.h"
  17. #include "esp_system.h"
  18. #include "esp_timer.h"
  19. #include "esp_private/system_internal.h"
  20. #include "esp_private/esp_timer_private.h"
  21. #include "../priv_include/esp_time_impl.h"
  22. #include "esp_private/system_internal.h"
  23. #if CONFIG_IDF_TARGET_ESP32
  24. #include "esp32/clk.h"
  25. #include "esp32/rtc.h"
  26. #define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ
  27. #elif CONFIG_IDF_TARGET_ESP32S2
  28. #include "esp32s2/clk.h"
  29. #include "esp32s2/rtc.h"
  30. #define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ
  31. #elif CONFIG_IDF_TARGET_ESP32S3
  32. #include "esp32s3/clk.h"
  33. #include "esp32s3/rtc.h"
  34. #define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ
  35. #elif CONFIG_IDF_TARGET_ESP32C3
  36. #include "esp32c3/clk.h"
  37. #include "esp32c3/rtc.h"
  38. #define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ
  39. #endif
  40. #if portNUM_PROCESSORS == 2
  41. // https://github.com/espressif/arduino-esp32/issues/120
  42. TEST_CASE("Reading RTC registers on APP CPU doesn't affect clock", "[newlib]")
  43. {
  44. // This runs on APP CPU:
  45. void time_adc_test_task(void* arg)
  46. {
  47. for (int i = 0; i < 200000; ++i) {
  48. // wait for 20us, reading one of RTC registers
  49. uint32_t ccount = xthal_get_ccount();
  50. while (xthal_get_ccount() - ccount < 20 * TARGET_DEFAULT_CPU_FREQ_MHZ) {
  51. volatile uint32_t val = REG_READ(RTC_CNTL_STATE0_REG);
  52. (void) val;
  53. }
  54. }
  55. SemaphoreHandle_t * p_done = (SemaphoreHandle_t *) arg;
  56. xSemaphoreGive(*p_done);
  57. vTaskDelay(1);
  58. vTaskDelete(NULL);
  59. }
  60. SemaphoreHandle_t done = xSemaphoreCreateBinary();
  61. xTaskCreatePinnedToCore(&time_adc_test_task, "time_adc", 4096, &done, 5, NULL, 1);
  62. // This runs on PRO CPU:
  63. for (int i = 0; i < 4; ++i) {
  64. struct timeval tv_start;
  65. gettimeofday(&tv_start, NULL);
  66. vTaskDelay(1000/portTICK_PERIOD_MS);
  67. struct timeval tv_stop;
  68. gettimeofday(&tv_stop, NULL);
  69. float time_sec = tv_stop.tv_sec - tv_start.tv_sec + 1e-6f * (tv_stop.tv_usec - tv_start.tv_usec);
  70. printf("(0) time taken: %f sec\n", time_sec);
  71. TEST_ASSERT_TRUE(fabs(time_sec - 1.0f) < 0.1);
  72. }
  73. TEST_ASSERT_TRUE(xSemaphoreTake(done, 5000 / portTICK_RATE_MS));
  74. }
  75. #endif // portNUM_PROCESSORS == 2
  76. TEST_CASE("test adjtime function", "[newlib]")
  77. {
  78. struct timeval tv_time;
  79. struct timeval tv_delta;
  80. struct timeval tv_outdelta;
  81. TEST_ASSERT_EQUAL(adjtime(NULL, NULL), 0);
  82. tv_time.tv_sec = 5000;
  83. tv_time.tv_usec = 5000;
  84. TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
  85. tv_outdelta.tv_sec = 5;
  86. tv_outdelta.tv_usec = 5;
  87. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  88. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  89. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  90. tv_delta.tv_sec = INT_MAX / 1000000L;
  91. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1);
  92. tv_delta.tv_sec = INT_MIN / 1000000L;
  93. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1);
  94. tv_delta.tv_sec = 0;
  95. tv_delta.tv_usec = -900000;
  96. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  97. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  98. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  99. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  100. TEST_ASSERT_LESS_THAN(-800000, tv_outdelta.tv_usec);
  101. tv_delta.tv_sec = -4;
  102. tv_delta.tv_usec = -900000;
  103. TEST_ASSERT_EQUAL(adjtime(&tv_delta, NULL), 0);
  104. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  105. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, -4);
  106. TEST_ASSERT_LESS_THAN(-800000, tv_outdelta.tv_usec);
  107. // after settimeofday() adjtime() is stopped
  108. tv_delta.tv_sec = 15;
  109. tv_delta.tv_usec = 900000;
  110. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  111. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, -4);
  112. TEST_ASSERT_LESS_THAN(-800000, tv_outdelta.tv_usec);
  113. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  114. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
  115. TEST_ASSERT_GREATER_OR_EQUAL(800000, tv_outdelta.tv_usec);
  116. TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0);
  117. TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
  118. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  119. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  120. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  121. // after gettimeofday() adjtime() is not stopped
  122. tv_delta.tv_sec = 15;
  123. tv_delta.tv_usec = 900000;
  124. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  125. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  126. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  127. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  128. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
  129. TEST_ASSERT_GREATER_OR_EQUAL(800000, tv_outdelta.tv_usec);
  130. TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0);
  131. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  132. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
  133. TEST_ASSERT_GREATER_OR_EQUAL(800000, tv_outdelta.tv_usec);
  134. tv_delta.tv_sec = 1;
  135. tv_delta.tv_usec = 0;
  136. TEST_ASSERT_EQUAL(adjtime(&tv_delta, NULL), 0);
  137. vTaskDelay(1000 / portTICK_PERIOD_MS);
  138. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  139. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  140. // the correction will be equal to (1_000_000us >> 6) = 15_625 us.
  141. TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec >= 15600);
  142. TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec <= 15650);
  143. }
  144. static volatile bool exit_flag;
  145. static void adjtimeTask2(void *pvParameters)
  146. {
  147. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  148. struct timeval delta = {.tv_sec = 0, .tv_usec = 0};
  149. struct timeval outdelta;
  150. // although exit flag is set in another task, checking (exit_flag == false) is safe
  151. while (exit_flag == false) {
  152. delta.tv_sec += 1;
  153. delta.tv_usec = 900000;
  154. if (delta.tv_sec >= 2146) delta.tv_sec = 1;
  155. adjtime(&delta, &outdelta);
  156. }
  157. xSemaphoreGive(*sema);
  158. vTaskDelete(NULL);
  159. }
  160. static void timeTask(void *pvParameters)
  161. {
  162. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  163. struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 };
  164. // although exit flag is set in another task, checking (exit_flag == false) is safe
  165. while (exit_flag == false) {
  166. tv_time.tv_sec += 1;
  167. settimeofday(&tv_time, NULL);
  168. gettimeofday(&tv_time, NULL);
  169. }
  170. xSemaphoreGive(*sema);
  171. vTaskDelete(NULL);
  172. }
  173. TEST_CASE("test for no interlocking adjtime, gettimeofday and settimeofday functions", "[newlib]")
  174. {
  175. TaskHandle_t th[4];
  176. exit_flag = false;
  177. struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 };
  178. TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
  179. const int max_tasks = 2;
  180. xSemaphoreHandle exit_sema[max_tasks];
  181. for (int i = 0; i < max_tasks; ++i) {
  182. exit_sema[i] = xSemaphoreCreateBinary();
  183. }
  184. #ifndef CONFIG_FREERTOS_UNICORE
  185. printf("CPU0 and CPU1. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask \n");
  186. xTaskCreatePinnedToCore(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0], 0);
  187. xTaskCreatePinnedToCore(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1], 1);
  188. #else
  189. printf("Only one CPU. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask\n");
  190. xTaskCreate(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0]);
  191. xTaskCreate(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1]);
  192. #endif
  193. printf("start wait for 5 seconds\n");
  194. vTaskDelay(5000 / portTICK_PERIOD_MS);
  195. // set exit flag to let thread exit
  196. exit_flag = true;
  197. for (int i = 0; i < max_tasks; ++i) {
  198. if (!xSemaphoreTake(exit_sema[i], 2000/portTICK_PERIOD_MS)) {
  199. TEST_FAIL_MESSAGE("exit_sema not released by test task");
  200. }
  201. vSemaphoreDelete(exit_sema[i]);
  202. }
  203. }
  204. #ifndef CONFIG_FREERTOS_UNICORE
  205. #define ADJTIME_CORRECTION_FACTOR 6
  206. static int64_t result_adjtime_correction_us[2];
  207. static void get_time_task(void *pvParameters)
  208. {
  209. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  210. struct timeval tv_time;
  211. // although exit flag is set in another task, checking (exit_flag == false) is safe
  212. while (exit_flag == false) {
  213. gettimeofday(&tv_time, NULL);
  214. }
  215. xSemaphoreGive(*sema);
  216. vTaskDelete(NULL);
  217. }
  218. static void start_measure(int64_t* sys_time, int64_t* real_time)
  219. {
  220. struct timeval tv_time;
  221. int64_t t1, t2;
  222. do {
  223. t1 = esp_timer_get_time();
  224. gettimeofday(&tv_time, NULL);
  225. t2 = esp_timer_get_time();
  226. } while (t2 - t1 > 40);
  227. *real_time = t2;
  228. *sys_time = (int64_t)tv_time.tv_sec * 1000000L + tv_time.tv_usec;
  229. }
  230. static int64_t calc_correction(const char* tag, int64_t* sys_time, int64_t* real_time)
  231. {
  232. int64_t dt_real_time_us = real_time[1] - real_time[0];
  233. int64_t dt_sys_time_us = sys_time[1] - sys_time[0];
  234. int64_t calc_correction_us = dt_real_time_us >> ADJTIME_CORRECTION_FACTOR;
  235. int64_t real_correction_us = dt_sys_time_us - dt_real_time_us;
  236. int64_t error_us = calc_correction_us - real_correction_us;
  237. printf("%s: dt_real_time = %lli us, dt_sys_time = %lli us, calc_correction = %lli us, error = %lli us\n",
  238. tag, dt_real_time_us, dt_sys_time_us, calc_correction_us, error_us);
  239. TEST_ASSERT_TRUE(dt_sys_time_us > 0 && dt_real_time_us > 0);
  240. TEST_ASSERT_INT_WITHIN(100, 0, error_us);
  241. return real_correction_us;
  242. }
  243. static void measure_time_task(void *pvParameters)
  244. {
  245. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  246. int64_t main_real_time_us[2];
  247. int64_t main_sys_time_us[2];
  248. struct timeval tv_time = {.tv_sec = 1550000000, .tv_usec = 0};
  249. TEST_ASSERT_EQUAL(0, settimeofday(&tv_time, NULL));
  250. struct timeval delta = {.tv_sec = 2000, .tv_usec = 900000};
  251. adjtime(&delta, NULL);
  252. gettimeofday(&tv_time, NULL);
  253. start_measure(&main_sys_time_us[0], &main_real_time_us[0]);
  254. {
  255. int64_t real_time_us[2] = { main_real_time_us[0], 0};
  256. int64_t sys_time_us[2] = { main_sys_time_us[0], 0};
  257. // although exit flag is set in another task, checking (exit_flag == false) is safe
  258. while (exit_flag == false) {
  259. esp_rom_delay_us(2 * 1000000); // 2 sec
  260. start_measure(&sys_time_us[1], &real_time_us[1]);
  261. result_adjtime_correction_us[1] += calc_correction("measure", sys_time_us, real_time_us);
  262. sys_time_us[0] = sys_time_us[1];
  263. real_time_us[0] = real_time_us[1];
  264. }
  265. main_sys_time_us[1] = sys_time_us[1];
  266. main_real_time_us[1] = real_time_us[1];
  267. }
  268. result_adjtime_correction_us[0] = calc_correction("main", main_sys_time_us, main_real_time_us);
  269. int64_t delta_us = result_adjtime_correction_us[0] - result_adjtime_correction_us[1];
  270. printf("\nresult of adjtime correction: %lli us, %lli us. delta = %lli us\n", result_adjtime_correction_us[0], result_adjtime_correction_us[1], delta_us);
  271. TEST_ASSERT_INT_WITHIN(100, 0, delta_us);
  272. xSemaphoreGive(*sema);
  273. vTaskDelete(NULL);
  274. }
  275. TEST_CASE("test time adjustment happens linearly", "[newlib][timeout=35]")
  276. {
  277. exit_flag = false;
  278. xSemaphoreHandle exit_sema[2];
  279. for (int i = 0; i < 2; ++i) {
  280. exit_sema[i] = xSemaphoreCreateBinary();
  281. result_adjtime_correction_us[i] = 0;
  282. }
  283. xTaskCreatePinnedToCore(get_time_task, "get_time_task", 4096, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, NULL, 0);
  284. xTaskCreatePinnedToCore(measure_time_task, "measure_time_task", 4096, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
  285. printf("start waiting for 30 seconds\n");
  286. vTaskDelay(30000 / portTICK_PERIOD_MS);
  287. // set exit flag to let thread exit
  288. exit_flag = true;
  289. for (int i = 0; i < 2; ++i) {
  290. if (!xSemaphoreTake(exit_sema[i], 2100/portTICK_PERIOD_MS)) {
  291. TEST_FAIL_MESSAGE("exit_sema not released by test task");
  292. }
  293. }
  294. for (int i = 0; i < 2; ++i) {
  295. vSemaphoreDelete(exit_sema[i]);
  296. }
  297. }
  298. #endif
  299. void test_posix_timers_clock (void)
  300. {
  301. #ifndef _POSIX_TIMERS
  302. TEST_ASSERT_MESSAGE(false, "_POSIX_TIMERS - is not defined");
  303. #endif
  304. #if defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER )
  305. printf("CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER ");
  306. #endif
  307. #if defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
  308. printf("CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER ");
  309. #endif
  310. #ifdef CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS
  311. printf("External (crystal) Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz());
  312. #else
  313. printf("Internal Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz());
  314. #endif
  315. TEST_ASSERT(clock_settime(CLOCK_REALTIME, NULL) == -1);
  316. TEST_ASSERT(clock_gettime(CLOCK_REALTIME, NULL) == -1);
  317. TEST_ASSERT(clock_getres(CLOCK_REALTIME, NULL) == -1);
  318. TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, NULL) == -1);
  319. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, NULL) == -1);
  320. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, NULL) == -1);
  321. #if defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER ) || defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
  322. struct timeval now = {0};
  323. now.tv_sec = 10L;
  324. now.tv_usec = 100000L;
  325. TEST_ASSERT(settimeofday(&now, NULL) == 0);
  326. TEST_ASSERT(gettimeofday(&now, NULL) == 0);
  327. struct timespec ts = {0};
  328. TEST_ASSERT(clock_settime(0xFFFFFFFF, &ts) == -1);
  329. TEST_ASSERT(clock_gettime(0xFFFFFFFF, &ts) == -1);
  330. TEST_ASSERT(clock_getres(0xFFFFFFFF, &ts) == 0);
  331. TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == 0);
  332. TEST_ASSERT(now.tv_sec == ts.tv_sec);
  333. TEST_ASSERT_INT_WITHIN(5000000L, ts.tv_nsec, now.tv_usec * 1000L);
  334. ts.tv_sec = 20;
  335. ts.tv_nsec = 100000000L;
  336. TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == 0);
  337. TEST_ASSERT(gettimeofday(&now, NULL) == 0);
  338. TEST_ASSERT_EQUAL(ts.tv_sec, now.tv_sec);
  339. TEST_ASSERT_INT_WITHIN(5000L, ts.tv_nsec / 1000L, now.tv_usec);
  340. TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
  341. uint64_t delta_monotonic_us = 0;
  342. #if defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER )
  343. TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0);
  344. TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec);
  345. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0);
  346. TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec);
  347. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
  348. delta_monotonic_us = esp_system_get_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L);
  349. TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0);
  350. TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us);
  351. #elif defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
  352. TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0);
  353. TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec);
  354. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0);
  355. TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec);
  356. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
  357. delta_monotonic_us = esp_clk_rtc_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L);
  358. TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0);
  359. TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us);
  360. #endif // CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER
  361. #else
  362. struct timespec ts = {0};
  363. TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == -1);
  364. TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == -1);
  365. TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == -1);
  366. TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
  367. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == -1);
  368. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == -1);
  369. #endif // defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER ) || defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
  370. }
  371. TEST_CASE("test posix_timers clock_... functions", "[newlib]")
  372. {
  373. test_posix_timers_clock();
  374. }
  375. #ifdef CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS
  376. #include <string.h>
  377. static struct timeval get_time(const char *desc, char *buffer)
  378. {
  379. struct timeval timestamp;
  380. gettimeofday(&timestamp, NULL);
  381. struct tm* tm_info = localtime(&timestamp.tv_sec);
  382. strftime(buffer, 32, "%c", tm_info);
  383. ESP_LOGI("TAG", "%s: %016llX (%s)", desc, timestamp.tv_sec, buffer);
  384. return timestamp;
  385. }
  386. TEST_CASE("test time_t wide 64 bits", "[newlib]")
  387. {
  388. static char buffer[32];
  389. ESP_LOGI("TAG", "sizeof(time_t): %d (%d-bit)", sizeof(time_t), sizeof(time_t)*8);
  390. TEST_ASSERT_EQUAL(8, sizeof(time_t));
  391. struct tm tm = {4, 14, 3, 19, 0, 138, 0, 0, 0};
  392. struct timeval timestamp = { mktime(&tm), 0 };
  393. ESP_LOGI("TAG", "timestamp: %016llX", timestamp.tv_sec);
  394. settimeofday(&timestamp, NULL);
  395. get_time("Set time", buffer);
  396. while (timestamp.tv_sec < 0x80000003LL) {
  397. vTaskDelay(1000 / portTICK_PERIOD_MS);
  398. timestamp = get_time("Time now", buffer);
  399. }
  400. TEST_ASSERT_EQUAL_MEMORY("Tue Jan 19 03:14:11 2038", buffer, strlen(buffer));
  401. }
  402. TEST_CASE("test time functions wide 64 bits", "[newlib]")
  403. {
  404. static char origin_buffer[32];
  405. char strftime_buf[64];
  406. int year = 2018;
  407. struct tm tm = {0, 14, 3, 19, 0, year - 1900, 0, 0, 0};
  408. time_t t = mktime(&tm);
  409. while (year < 2119) {
  410. struct timeval timestamp = { t, 0 };
  411. ESP_LOGI("TAG", "year: %d", year);
  412. settimeofday(&timestamp, NULL);
  413. get_time("Time now", origin_buffer);
  414. vTaskDelay(10 / portTICK_PERIOD_MS);
  415. t += 86400 * 366;
  416. struct tm timeinfo = { 0 };
  417. time_t now;
  418. time(&now);
  419. localtime_r(&now, &timeinfo);
  420. time_t t = mktime(&timeinfo);
  421. ESP_LOGI("TAG", "Test mktime(). Time: %016llX", t);
  422. TEST_ASSERT_EQUAL(timestamp.tv_sec, t);
  423. // mktime() has error in newlib-3.0.0. It fixed in newlib-3.0.0.20180720
  424. TEST_ASSERT_EQUAL((timestamp.tv_sec >> 32), (t >> 32));
  425. strftime(strftime_buf, sizeof(strftime_buf), "%c", &timeinfo);
  426. ESP_LOGI("TAG", "Test time() and localtime_r(). Time: %s", strftime_buf);
  427. TEST_ASSERT_EQUAL(timeinfo.tm_year, year - 1900);
  428. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, strftime_buf, strlen(origin_buffer));
  429. struct tm *tm2 = localtime(&now);
  430. strftime(strftime_buf, sizeof(strftime_buf), "%c", tm2);
  431. ESP_LOGI("TAG", "Test localtime(). Time: %s", strftime_buf);
  432. TEST_ASSERT_EQUAL(tm2->tm_year, year - 1900);
  433. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, strftime_buf, strlen(origin_buffer));
  434. struct tm *gm = gmtime(&now);
  435. strftime(strftime_buf, sizeof(strftime_buf), "%c", gm);
  436. ESP_LOGI("TAG", "Test gmtime(). Time: %s", strftime_buf);
  437. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, strftime_buf, strlen(origin_buffer));
  438. const char* time_str1 = ctime(&now);
  439. ESP_LOGI("TAG", "Test ctime(). Time: %s", time_str1);
  440. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, time_str1, strlen(origin_buffer));
  441. const char* time_str2 = asctime(&timeinfo);
  442. ESP_LOGI("TAG", "Test asctime(). Time: %s", time_str2);
  443. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, time_str2, strlen(origin_buffer));
  444. printf("\n");
  445. ++year;
  446. }
  447. }
  448. #endif // CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS
  449. #if defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER ) && defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
  450. extern int64_t s_microseconds_offset;
  451. static const uint64_t s_start_timestamp = 1606838354;
  452. static RTC_NOINIT_ATTR uint64_t s_saved_time;
  453. static RTC_NOINIT_ATTR uint64_t s_time_in_reboot;
  454. typedef enum {
  455. TYPE_REBOOT_ABORT = 0,
  456. TYPE_REBOOT_RESTART,
  457. } type_reboot_t;
  458. static void print_counters(void)
  459. {
  460. int64_t frc = esp_system_get_time();
  461. int64_t rtc = esp_rtc_get_time_us();
  462. uint64_t boot_time = esp_time_impl_get_boot_time();
  463. printf("\tFRC %lld (us)\n", frc);
  464. printf("\tRTC %lld (us)\n", rtc);
  465. printf("\tBOOT %lld (us)\n", boot_time);
  466. printf("\ts_microseconds_offset %lld (us)\n", s_microseconds_offset);
  467. printf("delta RTC - FRC counters %lld (us)\n", rtc - frc);
  468. }
  469. static void set_initial_condition(type_reboot_t type_reboot, int error_time)
  470. {
  471. print_counters();
  472. struct timeval tv = { .tv_sec = s_start_timestamp, .tv_usec = 0, };
  473. settimeofday(&tv, NULL);
  474. printf("set timestamp %lld (s)\n", s_start_timestamp);
  475. print_counters();
  476. int delay_s = abs(error_time) * 2;
  477. printf("Waiting for %d (s) ...\n", delay_s);
  478. vTaskDelay(delay_s * 1000 / portTICK_RATE_MS);
  479. print_counters();
  480. printf("FRC counter increased to %d (s)\n", error_time);
  481. esp_timer_private_advance(error_time * 1000000ULL);
  482. print_counters();
  483. gettimeofday(&tv, NULL);
  484. s_saved_time = tv.tv_sec;
  485. printf("s_saved_time %lld (s)\n", s_saved_time);
  486. int dt = s_saved_time - s_start_timestamp;
  487. printf("delta timestamp = %d (s)\n", dt);
  488. TEST_ASSERT_GREATER_OR_EQUAL(error_time, dt);
  489. s_time_in_reboot = esp_rtc_get_time_us();
  490. if (type_reboot == TYPE_REBOOT_ABORT) {
  491. printf("Update boot time based on diff\n");
  492. esp_sync_counters_rtc_and_frc();
  493. print_counters();
  494. printf("reboot as abort\n");
  495. abort();
  496. } else if (type_reboot == TYPE_REBOOT_RESTART) {
  497. printf("reboot as restart\n");
  498. esp_restart();
  499. }
  500. }
  501. static void set_timestamp1(void)
  502. {
  503. set_initial_condition(TYPE_REBOOT_ABORT, 5);
  504. }
  505. static void set_timestamp2(void)
  506. {
  507. set_initial_condition(TYPE_REBOOT_RESTART, 5);
  508. }
  509. static void set_timestamp3(void)
  510. {
  511. set_initial_condition(TYPE_REBOOT_RESTART, -5);
  512. }
  513. static void check_time(void)
  514. {
  515. print_counters();
  516. int latency_before_run_ut = 1 + (esp_rtc_get_time_us() - s_time_in_reboot) / 1000000;
  517. struct timeval tv;
  518. gettimeofday(&tv, NULL);
  519. printf("timestamp %ld (s)\n", tv.tv_sec);
  520. int dt = tv.tv_sec - s_saved_time;
  521. printf("delta timestamp = %d (s)\n", dt);
  522. TEST_ASSERT_GREATER_OR_EQUAL(0, dt);
  523. TEST_ASSERT_LESS_OR_EQUAL(latency_before_run_ut, dt);
  524. }
  525. TEST_CASE_MULTIPLE_STAGES("Timestamp after abort is correct in case RTC & FRC have + big error", "[newlib][reset=abort,SW_CPU_RESET]", set_timestamp1, check_time);
  526. TEST_CASE_MULTIPLE_STAGES("Timestamp after restart is correct in case RTC & FRC have + big error", "[newlib][reset=SW_CPU_RESET]", set_timestamp2, check_time);
  527. TEST_CASE_MULTIPLE_STAGES("Timestamp after restart is correct in case RTC & FRC have - big error", "[newlib][reset=SW_CPU_RESET]", set_timestamp3, check_time);
  528. #endif // CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER && CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER