soc_memory_layout.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. // Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #ifndef BOOTLOADER_BUILD
  14. #include <stdlib.h>
  15. #include <stdint.h>
  16. #include "soc/soc.h"
  17. #include "soc/soc_memory_layout.h"
  18. #include "esp_heap_caps.h"
  19. #include "sdkconfig.h"
  20. #ifdef CONFIG_ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY
  21. #define MALLOC_IRAM_CAP MALLOC_CAP_EXEC|MALLOC_CAP_32BIT|MALLOC_CAP_IRAM_8BIT
  22. #else
  23. #define MALLOC_IRAM_CAP MALLOC_CAP_EXEC|MALLOC_CAP_32BIT
  24. #endif
  25. /* Memory layout for ESP32 SoC */
  26. /*
  27. Memory type descriptors. These describe the capabilities of a type of memory in the SoC. Each type of memory
  28. map consist of one or more regions in the address space.
  29. Each type contains an array of prioritised capabilities; types with later entries are only taken if earlier
  30. ones can't fulfill the memory request.
  31. The prioritised capabilities work roughly like this:
  32. - For a normal malloc (MALLOC_CAP_DEFAULT), give away the DRAM-only memory first, then pass off any dual-use IRAM regions,
  33. finally eat into the application memory.
  34. - For a malloc where 32-bit-aligned-only access is okay, first allocate IRAM, then DRAM, finally application IRAM.
  35. - Application mallocs (PIDx) will allocate IRAM first, if possible, then DRAM.
  36. - Most other malloc caps only fit in one region anyway.
  37. */
  38. const soc_memory_type_desc_t soc_memory_types[] = {
  39. //Type 0: Plain ole D-port RAM
  40. { "DRAM", { MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA|MALLOC_CAP_32BIT, 0 }, false, false},
  41. //Type 1: Plain ole D-port RAM which has an alias on the I-port
  42. //(This DRAM is also the region used by ROM during startup)
  43. { "D/IRAM", { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL|MALLOC_CAP_DEFAULT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }, true, true},
  44. //Type 2: IRAM
  45. { "IRAM", { MALLOC_CAP_INTERNAL|MALLOC_IRAM_CAP, 0, 0 }, false, false},
  46. //Type 3-8: PID 2-7 IRAM
  47. { "PID2IRAM", { MALLOC_CAP_PID2|MALLOC_CAP_INTERNAL, 0, MALLOC_IRAM_CAP }, false, false},
  48. { "PID3IRAM", { MALLOC_CAP_PID3|MALLOC_CAP_INTERNAL, 0, MALLOC_IRAM_CAP }, false, false},
  49. { "PID4IRAM", { MALLOC_CAP_PID4|MALLOC_CAP_INTERNAL, 0, MALLOC_IRAM_CAP }, false, false},
  50. { "PID5IRAM", { MALLOC_CAP_PID5|MALLOC_CAP_INTERNAL, 0, MALLOC_IRAM_CAP }, false, false},
  51. { "PID6IRAM", { MALLOC_CAP_PID6|MALLOC_CAP_INTERNAL, 0, MALLOC_IRAM_CAP }, false, false},
  52. { "PID7IRAM", { MALLOC_CAP_PID7|MALLOC_CAP_INTERNAL, 0, MALLOC_IRAM_CAP }, false, false},
  53. //Type 9-14: PID 2-7 DRAM
  54. { "PID2DRAM", { MALLOC_CAP_PID2|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
  55. { "PID3DRAM", { MALLOC_CAP_PID3|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
  56. { "PID4DRAM", { MALLOC_CAP_PID4|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
  57. { "PID5DRAM", { MALLOC_CAP_PID5|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
  58. { "PID6DRAM", { MALLOC_CAP_PID6|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
  59. { "PID7DRAM", { MALLOC_CAP_PID7|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
  60. //Type 15: SPI SRAM data
  61. { "SPIRAM", { MALLOC_CAP_SPIRAM|MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}, false, false},
  62. //Type 16: RTC Fast RAM
  63. { "RTCRAM", { MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_32BIT, 0 }, false, false},
  64. };
  65. const size_t soc_memory_type_count = sizeof(soc_memory_types)/sizeof(soc_memory_type_desc_t);
  66. /*
  67. Region descriptors. These describe all regions of memory available, and map them to a type in the above type.
  68. Because of requirements in the coalescing code which merges adjacent regions, this list should always be sorted
  69. from low to high start address.
  70. */
  71. const soc_memory_region_t soc_memory_regions[] = {
  72. #ifdef CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
  73. { SOC_RTC_DRAM_LOW, 0x2000, 16, 0}, //RTC Fast Memory
  74. #endif
  75. #ifdef CONFIG_SPIRAM
  76. { SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_SIZE, 15, 0}, //SPI SRAM, if available
  77. #endif
  78. { 0x3FFAE000, 0x2000, 0, 0}, //pool 16 <- used for rom code
  79. { 0x3FFB0000, 0x8000, 0, 0}, //pool 15 <- if BT is enabled, used as BT HW shared memory
  80. { 0x3FFB8000, 0x8000, 0, 0}, //pool 14 <- if BT is enabled, used data memory for BT ROM functions.
  81. { 0x3FFC0000, 0x2000, 0, 0}, //pool 10-13, mmu page 0
  82. { 0x3FFC2000, 0x2000, 0, 0}, //pool 10-13, mmu page 1
  83. { 0x3FFC4000, 0x2000, 0, 0}, //pool 10-13, mmu page 2
  84. { 0x3FFC6000, 0x2000, 0, 0}, //pool 10-13, mmu page 3
  85. { 0x3FFC8000, 0x2000, 0, 0}, //pool 10-13, mmu page 4
  86. { 0x3FFCA000, 0x2000, 0, 0}, //pool 10-13, mmu page 5
  87. { 0x3FFCC000, 0x2000, 0, 0}, //pool 10-13, mmu page 6
  88. { 0x3FFCE000, 0x2000, 0, 0}, //pool 10-13, mmu page 7
  89. { 0x3FFD0000, 0x2000, 0, 0}, //pool 10-13, mmu page 8
  90. { 0x3FFD2000, 0x2000, 0, 0}, //pool 10-13, mmu page 9
  91. { 0x3FFD4000, 0x2000, 0, 0}, //pool 10-13, mmu page 10
  92. { 0x3FFD6000, 0x2000, 0, 0}, //pool 10-13, mmu page 11
  93. { 0x3FFD8000, 0x2000, 0, 0}, //pool 10-13, mmu page 12
  94. { 0x3FFDA000, 0x2000, 0, 0}, //pool 10-13, mmu page 13
  95. { 0x3FFDC000, 0x2000, 0, 0}, //pool 10-13, mmu page 14
  96. { 0x3FFDE000, 0x2000, 0, 0}, //pool 10-13, mmu page 15
  97. { 0x3FFE0000, 0x4000, 1, 0x400BC000}, //pool 9 blk 1
  98. { 0x3FFE4000, 0x4000, 1, 0x400B8000}, //pool 9 blk 0
  99. { 0x3FFE8000, 0x8000, 1, 0x400B0000}, //pool 8 <- can be remapped to ROM, used for MAC dump
  100. { 0x3FFF0000, 0x8000, 1, 0x400A8000}, //pool 7 <- can be used for MAC dump
  101. { 0x3FFF8000, 0x4000, 1, 0x400A4000}, //pool 6 blk 1 <- can be used as trace memory
  102. { 0x3FFFC000, 0x4000, 1, 0x400A0000}, //pool 6 blk 0 <- can be used as trace memory
  103. { 0x40070000, 0x8000, 2, 0}, //pool 0
  104. { 0x40078000, 0x8000, 2, 0}, //pool 1
  105. { 0x40080000, 0x2000, 2, 0}, //pool 2-5, mmu page 0
  106. { 0x40082000, 0x2000, 2, 0}, //pool 2-5, mmu page 1
  107. { 0x40084000, 0x2000, 2, 0}, //pool 2-5, mmu page 2
  108. { 0x40086000, 0x2000, 2, 0}, //pool 2-5, mmu page 3
  109. { 0x40088000, 0x2000, 2, 0}, //pool 2-5, mmu page 4
  110. { 0x4008A000, 0x2000, 2, 0}, //pool 2-5, mmu page 5
  111. { 0x4008C000, 0x2000, 2, 0}, //pool 2-5, mmu page 6
  112. { 0x4008E000, 0x2000, 2, 0}, //pool 2-5, mmu page 7
  113. { 0x40090000, 0x2000, 2, 0}, //pool 2-5, mmu page 8
  114. { 0x40092000, 0x2000, 2, 0}, //pool 2-5, mmu page 9
  115. { 0x40094000, 0x2000, 2, 0}, //pool 2-5, mmu page 10
  116. { 0x40096000, 0x2000, 2, 0}, //pool 2-5, mmu page 11
  117. { 0x40098000, 0x2000, 2, 0}, //pool 2-5, mmu page 12
  118. { 0x4009A000, 0x2000, 2, 0}, //pool 2-5, mmu page 13
  119. { 0x4009C000, 0x2000, 2, 0}, //pool 2-5, mmu page 14
  120. { 0x4009E000, 0x2000, 2, 0}, //pool 2-5, mmu page 15
  121. };
  122. const size_t soc_memory_region_count = sizeof(soc_memory_regions)/sizeof(soc_memory_region_t);
  123. /* Reserved memory regions
  124. These are removed from the soc_memory_regions array when heaps are created.
  125. */
  126. SOC_RESERVE_MEMORY_REGION(SOC_CACHE_PRO_LOW, SOC_CACHE_PRO_HIGH, cpu0_cache);
  127. #ifndef CONFIG_FREERTOS_UNICORE
  128. SOC_RESERVE_MEMORY_REGION(SOC_CACHE_APP_LOW, SOC_CACHE_APP_HIGH, cpu1_cache);
  129. #endif
  130. /* Warning: The ROM stack is located in the 0x3ffe0000 area. We do not specifically disable that area here because
  131. after the scheduler has started, the ROM stack is not used anymore by anything. We handle it instead by not allowing
  132. any mallocs memory regions with the startup_stack flag set (these are the IRAM/DRAM region) until the
  133. scheduler has started.
  134. The 0x3ffe0000 region also contains static RAM for various ROM functions. The following lines
  135. reserve the regions for UART and ETSC, so these functions are usable. Libraries like xtos, which are
  136. not usable in FreeRTOS anyway, are commented out in the linker script so they cannot be used; we
  137. do not disable their memory regions here and they will be used as general purpose heap memory.
  138. Enabling the heap allocator for this region but disabling allocation here until FreeRTOS is started up
  139. is a somewhat risky action in theory, because on initializing the allocator, the multi_heap implementation
  140. will go and write metadata at the start and end of all regions. For the ESP32, these linked
  141. list entries happen to end up in a region that is not touched by the stack; they can be placed safely there.
  142. */
  143. SOC_RESERVE_MEMORY_REGION(0x3ffe0000, 0x3ffe0440, rom_pro_data); //Reserve ROM PRO data region
  144. #ifndef CONFIG_FREERTOS_UNICORE
  145. SOC_RESERVE_MEMORY_REGION(0x3ffe3f20, 0x3ffe4350, rom_app_data); //Reserve ROM APP data region
  146. #endif
  147. SOC_RESERVE_MEMORY_REGION(0x3ffae000, 0x3ffae6e0, rom_data);
  148. #if CONFIG_ESP32_MEMMAP_TRACEMEM
  149. #if CONFIG_ESP32_MEMMAP_TRACEMEM_TWOBANKS
  150. SOC_RESERVE_MEMORY_REGION(0x3fff8000, 0x40000000, trace_mem); //Reserve trace mem region, 32K for both cpu
  151. #else
  152. SOC_RESERVE_MEMORY_REGION(0x3fffc000, 0x40000000, trace_mem); //Reserve trace mem region, 16K (upper-half) for pro cpu
  153. #endif
  154. #endif
  155. #ifdef CONFIG_SPIRAM
  156. /* Reserve the whole possible SPIRAM region here, spiram.c will add some or all of this
  157. * memory to heap depending on the actual SPIRAM chip size. */
  158. SOC_RESERVE_MEMORY_REGION(SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH, spi_ram);
  159. #endif
  160. extern int _data_start, _heap_start, _iram_start, _iram_end, _rtc_force_fast_end, _rtc_noinit_end;
  161. // Static data region. DRAM used by data+bss and possibly rodata
  162. SOC_RESERVE_MEMORY_REGION((intptr_t)&_data_start, (intptr_t)&_heap_start, dram_data);
  163. // IRAM code region
  164. // ESP32 has an IRAM-only region 0x4008_0000 - 0x4009_FFFF, reserve the used part
  165. SOC_RESERVE_MEMORY_REGION((intptr_t)&_iram_start, (intptr_t)&_iram_end, iram_code);
  166. // RTC Fast RAM region
  167. #ifdef CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
  168. #ifdef CONFIG_ESP32_RTCDATA_IN_FAST_MEM
  169. SOC_RESERVE_MEMORY_REGION(SOC_RTC_DRAM_LOW, (intptr_t)&_rtc_noinit_end, rtcram_data);
  170. #else
  171. SOC_RESERVE_MEMORY_REGION(SOC_RTC_DRAM_LOW, (intptr_t)&_rtc_force_fast_end, rtcram_data);
  172. #endif
  173. #endif
  174. #endif /* BOOTLOADER_BUILD */