test_common_spi.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. /*
  2. * SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include "test/test_common_spi.h"
  7. #include "driver/spi_slave.h"
  8. #include "esp_log.h"
  9. #include "driver/gpio.h"
  10. #include "hal/gpio_hal.h"
  11. int test_freq_default[]=TEST_FREQ_DEFAULT();
  12. const char MASTER_TAG[] = "test_master";
  13. const char SLAVE_TAG[] = "test_slave";
  14. DRAM_ATTR uint8_t spitest_master_send[] = {
  15. 0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43,
  16. 0x74,
  17. 0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43,
  18. 0x74,
  19. 0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43,
  20. 0x74,
  21. };
  22. DRAM_ATTR uint8_t spitest_slave_send[] = {
  23. 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0,
  24. 0xda,
  25. 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0,
  26. 0xda,
  27. 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0,
  28. 0xda,
  29. };
  30. void spitest_def_param(void* arg)
  31. {
  32. spitest_param_set_t *param_set=(spitest_param_set_t*)arg;
  33. param_set->test_size = 8;
  34. if (param_set->freq_list==NULL) param_set->freq_list = test_freq_default;
  35. }
  36. /**********************************************************************************
  37. * functions for slave task
  38. *********************************************************************************/
  39. esp_err_t init_slave_context(spi_slave_task_context_t *context)
  40. {
  41. context->data_to_send = xQueueCreate( 16, sizeof( slave_txdata_t ));
  42. if ( context->data_to_send == NULL ) {
  43. return ESP_ERR_NO_MEM;
  44. }
  45. context->data_received = xRingbufferCreate( 1024, RINGBUF_TYPE_NOSPLIT );
  46. if ( context->data_received == NULL ) {
  47. return ESP_ERR_NO_MEM;
  48. }
  49. context->spi=TEST_SLAVE_HOST;
  50. return ESP_OK;
  51. }
  52. void deinit_slave_context(spi_slave_task_context_t *context)
  53. {
  54. TEST_ASSERT( context->data_to_send != NULL );
  55. vQueueDelete( context->data_to_send );
  56. context->data_to_send = NULL;
  57. TEST_ASSERT( context->data_received != NULL );
  58. vRingbufferDelete( context->data_received );
  59. context->data_received = NULL;
  60. }
  61. /* The task requires a queue and a ringbuf, which should be initialized before task starts.
  62. Send ``slave_txdata_t`` to the queue to make the task send data;
  63. the task returns data got to the ringbuf, which should have sufficient size.
  64. */
  65. void spitest_slave_task(void* arg)
  66. {
  67. spi_slave_task_context_t* context = (spi_slave_task_context_t*) arg;
  68. QueueHandle_t queue = context->data_to_send;
  69. RingbufHandle_t ringbuf = context->data_received;
  70. uint8_t recvbuf[320+8];
  71. slave_txdata_t txdata;
  72. ESP_LOGI( SLAVE_TAG, "slave up" );
  73. //never quit, but blocked by the queue, waiting to be killed, when no more send from main task.
  74. while( 1 ) {
  75. BaseType_t ret = xQueueReceive( queue, &txdata, portMAX_DELAY );
  76. assert(ret);
  77. spi_slave_transaction_t t = {};
  78. t.length = txdata.len;
  79. t.tx_buffer = txdata.start;
  80. t.rx_buffer = recvbuf+8;
  81. //loop until trans_len != 0 to skip glitches
  82. do {
  83. TEST_ESP_OK( spi_slave_transmit( context->spi, &t, portMAX_DELAY ) );
  84. } while ( t.trans_len <= 2 );
  85. memcpy(recvbuf, &t.trans_len, sizeof(uint32_t));
  86. *(uint8_t**)(recvbuf+4) = (uint8_t*)txdata.start;
  87. ESP_LOGD( SLAVE_TAG, "received: %d", t.trans_len );
  88. xRingbufferSend( ringbuf, recvbuf, 8+(t.trans_len+7)/8, portMAX_DELAY );
  89. }
  90. }
  91. void slave_pull_up(const spi_bus_config_t* cfg, int spics_io_num)
  92. {
  93. gpio_set_pull_mode(cfg->mosi_io_num, GPIO_PULLUP_ONLY);
  94. gpio_set_pull_mode(cfg->sclk_io_num, GPIO_PULLUP_ONLY);
  95. gpio_set_pull_mode(spics_io_num, GPIO_PULLUP_ONLY);
  96. }
  97. /**********************************************************************************
  98. * functions for slave task
  99. *********************************************************************************/
  100. static int test_len[] = {1, 3, 5, 7, 9, 11, 33, 64};
  101. void spitest_init_transactions(const spitest_param_set_t *cfg, spitest_context_t* context)
  102. {
  103. spi_transaction_t* trans = context->master_trans;
  104. uint8_t *rx_buf_ptr = context->master_rxbuf;
  105. const spi_dup_t dup = cfg->dup;
  106. for (int i = 0; i < cfg->test_size; i++) {
  107. const void* tx_buffer = spitest_master_send + i%8;
  108. int length = 8*test_len[i];
  109. if (cfg->length_aligned) length = (length+31)&(~31);
  110. if (dup == HALF_DUPLEX_MISO) {
  111. trans[i] = (spi_transaction_t) {
  112. .rx_buffer = rx_buf_ptr,
  113. .rxlength = length,
  114. };
  115. } else if (dup == HALF_DUPLEX_MOSI) {
  116. trans[i] = (spi_transaction_t) {
  117. .tx_buffer = tx_buffer,
  118. .length = length,
  119. };
  120. } else {
  121. trans[i] = (spi_transaction_t) {
  122. .tx_buffer = tx_buffer,
  123. .length = length,
  124. .rx_buffer = rx_buf_ptr,
  125. };
  126. }
  127. rx_buf_ptr = (uint8_t*)( (uint32_t)(rx_buf_ptr + (length+7)/8 + 3) & (~3));
  128. const void* slave_tx = spitest_slave_send + (cfg->slave_unaligned_addr? i%3: (i%3)*4);
  129. //prepare slave tx data
  130. context->slave_trans[i] = (slave_txdata_t) {
  131. .start = slave_tx,
  132. .len = 512,
  133. };
  134. if (cfg->slave_dma_chan != 0) context->slave_trans[i].len = 1024;
  135. }
  136. }
  137. void spitest_master_print_data(spi_transaction_t *t, int rxlength)
  138. {
  139. if (t->tx_buffer) ESP_LOG_BUFFER_HEX( "master tx", t->tx_buffer, t->length/8 );
  140. if (t->rx_buffer) ESP_LOG_BUFFER_HEX( "master rx", t->rx_buffer, rxlength/8 );
  141. }
  142. void spitest_slave_print_data(slave_rxdata_t *t, bool print_rxdata)
  143. {
  144. int rcv_len = (t->len+7)/8;
  145. ESP_LOGI(SLAVE_TAG, "trans_len: %d", t->len);
  146. ESP_LOG_BUFFER_HEX("slave tx", t->tx_start, rcv_len);
  147. if (print_rxdata) ESP_LOG_BUFFER_HEX("slave rx", t->data, rcv_len);
  148. }
  149. esp_err_t spitest_check_data(int len, spi_transaction_t *master_t, slave_rxdata_t *slave_t, bool check_master_data, bool check_slave_len, bool check_slave_data)
  150. {
  151. esp_err_t ret = ESP_OK;
  152. uint32_t rcv_len = slave_t->len;
  153. //currently the rcv_len can be in range of [t->length-1, t->length+3]
  154. if (check_slave_len &&
  155. (rcv_len < len - 1 || rcv_len > len + 4)) {
  156. ret = ESP_FAIL;
  157. }
  158. if (check_master_data &&
  159. memcmp(slave_t->tx_start, master_t->rx_buffer, (len + 7) / 8) != 0 ) {
  160. ret = ESP_FAIL;
  161. }
  162. if (check_slave_data &&
  163. memcmp(master_t->tx_buffer, slave_t->data, (len + 7) / 8) != 0 ) {
  164. ret = ESP_FAIL;
  165. }
  166. if (ret != ESP_OK) {
  167. ESP_LOGI(SLAVE_TAG, "slave_recv_len: %d", rcv_len);
  168. spitest_master_print_data(master_t, len);
  169. spitest_slave_print_data(slave_t, true);
  170. //already failed, try to use the TEST_ASSERT to output the reason...
  171. if (check_slave_len) {
  172. TEST_ASSERT(rcv_len >= len - 1 && rcv_len <= len + 4);
  173. }
  174. TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_t->tx_start, master_t->rx_buffer, (len + 7) / 8);
  175. TEST_ASSERT_EQUAL_HEX8_ARRAY(master_t->tx_buffer, slave_t->data, (len + 7) / 8);
  176. }
  177. return ESP_OK;
  178. }
  179. void master_free_device_bus(spi_device_handle_t spi)
  180. {
  181. TEST_ESP_OK( spi_bus_remove_device(spi) );
  182. TEST_ESP_OK( spi_bus_free(TEST_SPI_HOST) );
  183. }
  184. void spitest_gpio_output_sel(uint32_t gpio_num, int func, uint32_t signal_idx)
  185. {
  186. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], func);
  187. GPIO.func_out_sel_cfg[gpio_num].func_sel = signal_idx;
  188. }
  189. void spitest_gpio_input_sel(uint32_t gpio_num, int func, uint32_t signal_idx)
  190. {
  191. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], func);
  192. GPIO.func_in_sel_cfg[signal_idx].func_sel = gpio_num;
  193. }
  194. //Note this cs_num is the ID of the connected devices' ID, e.g. if 2 devices are connected to the bus,
  195. //then the cs_num of the 1st and 2nd devices are 0 and 1 respectively.
  196. void same_pin_func_sel(spi_bus_config_t bus, spi_device_interface_config_t dev, uint8_t cs_num)
  197. {
  198. spitest_gpio_output_sel(bus.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  199. spitest_gpio_input_sel(bus.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spid_in);
  200. spitest_gpio_output_sel(bus.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  201. spitest_gpio_input_sel(bus.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiq_in);
  202. spitest_gpio_output_sel(dev.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[cs_num]);
  203. spitest_gpio_input_sel(dev.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spics_in);
  204. spitest_gpio_output_sel(bus.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  205. spitest_gpio_input_sel(bus.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiclk_in);
  206. #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
  207. GPIO.func_in_sel_cfg[FSPIQ_IN_IDX].sig_in_sel = 1;
  208. #endif
  209. }
  210. void get_tx_buffer(uint32_t seed, uint8_t *master_send_buf, uint8_t *slave_send_buf, int send_buf_size)
  211. {
  212. srand(seed);
  213. for (int i = 0; i < send_buf_size; i++) {
  214. slave_send_buf[i] = rand();
  215. master_send_buf[i] = rand();
  216. }
  217. }